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Abstract

What are the macroeconomic consequences of AI innovation? We answer this ques-

tion by constructing a measure of AI intensity of US innovation based on a scoring of

the AI content of each patent. An increase in the AI intensity of US innovation leads to

a delayed surge in industrial production and a slight decline in consumer prices, in line

with the transmission of a positive supply shock. Such positive effects descend from a

positive, albeit lagged, response of total factor productivity. Our estimates also show

that employment, hours, and wages increase following a positive shock to AI innova-

tion, even in high AI-exposed sectors, underscoring the crucial role played by general

equilibrium effects when studying the aggregate implications of AI technology. The

expansionary effect of an AI-driven technological development comes at the cost of an

increase in inequality across the income and wealth distributions.
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1 Introduction

General-purpose technologies (GPTs) such as steam engines, electricity, computers, and the

internet have been recognized to drive eras of technological progress and growth (Bresnahan

and Trajtenberg, 1995). Recent works on artificial intelligence (AI) have argued that for

its effectiveness to spur innovation across different economic sectors, such technology might

potentially be seen as a GPT (Cockburn et al., 2019; Goldfarb et al., 2023). Such initial

evidence and the recent AI breakthroughs – the release of AI-based chatbots like Chat GPT

– have put the economic effects of AI adoption at the forefront of academic and policy debates.

Although nascent empirical literature has focused on the partial equilibrium implications of

the AI diffusion, such as those pertaining firm-level innovation and performance (Babina

et al., 2024; Chen et al., 2024) or sectoral hiring and wages in the labor market (Acemoglu

et al., 2022), its full macroeconomic impact is yet under-investigated.1 AI-based technology

might have repercussions on multiple dimensions such as productivity, economic growth,

inflation, labor market and inequality both in the long-run and at the business cycle frequency.

As such, these innovations may have profound repercussions also for the conduct of monetary

and fiscal policies.2

We take up this issue by investigating the macroeconomic implications of AI innovation in

the United States. For this purpose, we rely on granular data on US patents to construct an

aggregate measure of AI intensity in innovation. We construct this measure by averaging, at

the monthly frequency, patent-level AI scores – ranging from 0 to 1 – proxying the artificial

intelligence content in the underlying technology, which are available for all patents filed at

the US patent office since late 1970s. Scores are averaged based on the filing month of each

patent – when the information content of a new technology is disclosed to the public for the

first time, as in Miranda-Agrippino et al. (2020) – and used to proxy news of a future AI-

driven technology development. In other words, fluctuations in the AI content of innovation

constitute an anticipated shock to the AI intensity of future technology.

1For a review of the literature on the economics of AI, see Lu and Zhou (2021); Comunale and Manera
(2024).

2On the impact of AI on firms’ productivity, opposite views dominate the academic debate and empir-
ical evidence is still scant. Views go from skeptical (Gordon, 2018) to positive (Czarnitzki et al., 2023).
Brynjolfsson et al. (2018) discusses possible reasons for the lack of productivity effect of AI in the short run.
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We estimate the dynamic effects of anticipated AI technology shocks on the US macroe-

conomy between January 1980 and December 2019 by means of local projections (Jordà,

2005). We find that an increase in the AI intensity of US innovation leads to a delayed surge

in industrial production and a slight decline in consumer prices, suggesting the shock trans-

mitting as a positive supply shock. Such positive effects descend from gradual improvement

in total factor productivity (TFP), which peaks five years after the shock. The expansionary

effect of the shock induces a shift in the yield curve, with a stronger impact on its short end,

suggesting an endogenous contractionary response of the monetary authority.

The overall expansionary macroeconomic effect can be linked to the implications of AI

innovation to the labor market, which is the linchpin of its aggregate transmission. Indeed,

while an amplification of the AI content of US innovation seems to trigger recomposition

effects within the workforce, these turn out to be overall employment-enhancing: following a

positive AI tech shock, employers’ demand for new workers surges (the number of job open-

ings rises), more than offsetting the contemporaneous increase in layoffs. Overall, positive

shocks lead to an increase in the number of employed people, in the number of hours worked

and in wages (measured by hourly earnings). These results underscore the importance of

considering the general equilibrium effects of AI-driven technological developments, which

can even reverse the negative partial-equilibrium repercussions documented in some micro-

level estimates. To stress this point, we repeat our estimates on labor market variables at

the sectoral level, i.e. by running local projections separately for 13 sectors available at the

NAICS 2-digit level. We plot our results by ranking sectors based on their AI exposure, from

the most to the least exposed, where sectoral exposure rests on the overlap between the main

types of occupations in the sector and the tasks potentially be performed by AI (Felten et al.,

2018; Acemoglu et al., 2022). We find that the effect of AI intensity shocks on employment

and wages, among other variables, do not vary significantly between highly AI-exposed vis-

à-vis lowly AI-exposed sectors. Such homogeneity underscores the the power of the overall

(general equilibrium) expansionary push of the AI technology in driving the results and,

potentially, a certain degree of complementarity (rather than simply substutability) between

AI and human work.

Our aggregate and sector-level evidence neglect potential distributional consequences.
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Thus, we investigate the heterogeneous impact of our shock on total income, wealth, and

labor income for specific percentiles of the respective distributions (data come from Blanchet

et al., 2022), showing that an increase in the AI intensity of US innovation leads to a rise in

labor income and wealth in the top 10% of the distribution (more than the top 1%) and a fall

of the same variables in the bottom 50th percentile. These results inform the literature on

the inequality effects of automation and technology more generally (Acemoglu and Restrepo,

2020; Prettner and Strulik, 2020). By driving substitution within the workforce, AI-driven

technological advances may have contributed to the secular decline in the demand of low-

skilled workers in developed economies highlighted by Berman et al. (1998).

Our empirical results contribute to the literature by shedding light on the aggregate im-

plications of AI technology diffusion, whose overall economic impact depends on the relative

importance of either partial equilibrium effects, on which the literature has mostly focused,

and general equilibrium effects. In this regard, the findings obtained from micro-level es-

timates must be interpreted as partial equilibrium results as they suffer from the “missing

intercept” problem, explained in a general framework by Wolf (2023).3 To the best of our

knowledge, this work constitutes the first empirical analysis of the aggregate economic im-

plications of AI technology that, as such, takes into account general equilibrium effects. As,

according to our findings, AI diffusion acts as an expansionary technology shock, the aggre-

gate productivity gains dominate the potential displacement effects coming from such type of

innovation, although AI technology diffusion leads to a transformation of the skills demanded

by firms. The findings contained in this paper also have fiscal policy implications: while they

highlight the potential of promoting a type of private R&D tilted toward the diffusion and

adoption of artificial intelligence in business (that pays off by expanding total factor produc-

tivity in the economy), they also underscore the potential problems related to income and

wealth inequality.

3Results in this literature are mixed. For instance, Bonfiglioli et al. (2023) find a negative displacement
effect negative for low-skill and production workers, while the effect turns positive for workers at the top
of the wage distribution. Hui et al. (2023) and Grennan and Michaely (2020) document a negative impact
of AI on the employment of free-lancers and financial analysts, respectively. Abis and Veldkamp (2024)
suggest that higher data intensity led a decline in the labor share in the investment management industry.
Conversely, Brynjolfsson et al. (2023) highlight instead the complementary of AI with respect to workers by
showing that the productivity of customer support agents has surged.
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2 Data

While AI advances are significantly based on open-source platforms, AI patenting is con-

sidered a valuable source of information on the development and diffusion of AI technology

(Webb, 2019, Grimm and Gathmann, 2022, Chen et al., 2024). We here make use of the

Artificial Intelligence Patent Dataset (AIPD) from the United States Patent and Trademark

Office (USPTO), a database constructed for research purposes by Giczy et al. (2022). This

dataset, obtained from the whole patent database of the USPTO with machine learning mod-

els, and validated using manual review by patent examiners, identifies the AI content in all

patents filed between 1976 and 2020. The AI content of patents can stem from innovations

that either develop AI technologies or use AI and the application of AI technologies as a key

instrument in other technological development that firms wish to patent. Search into each

patent encompasses a broad spectrum of AI fields divided into eight categories: machine

learning, natural language processing, computer vision, speech technology, knowledge pro-

cessing, AI hardware, evolutionary computation, and planning and control systems. To each

patent, the AIPD assigns a score ranging from 0 to 1 for each AI category, where the scores

proxy the artificial intelligence content of each category in the patent, and then average these

scores to get a single AI score for each patent.

We use this granular patent-level database to construct a macroeconomic shock to AI-

driven technological progress. Specifically, we build a measure of the economy-wide AI in-

tensity of innovation as the average AI intensity of patents across the whole universe of filed

patents each month. In formulas,

AIintt =
Nt∑
i=1

AIscorei,t

where AIscorei,t is the average AI score of patent i in month t, and Nt is the total number

of patents filed in month t. Crucially, we aggregate the AI score of patents in the month

each patent is filed (and not granted), consistently with the empirical literature using the

dynamics of patent applications to proxy news shocks over future technology (Miranda-

Agrippino et al., 2020; Ferriani et al., 2024). The intuition about the news effect of patenting

for future technology is that the filing of a patent discloses information to the public –
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granting can come years after filing – on future technology developments, inducing significant

macroeconomic effects.

Figure 1 displays the dynamics of our measure of AIint together with an alternative

measure (AIshare) constructed as the share of the number of “AI patents” (defined by the

AIPD as those with score exceeding the 0.5 threshold) over the total number of patents filed

in month t.4 The two series contain very similar information so using one or the other in

the empirical analysis does not materially change the results. They both show an upward

trend since the beginning of our sample 1980, which was reinforced since the second half of

the 1990s. In 2019 (the end of our estimation sample), the AI intensity in patenting was

around 5%, and about 16% of patents filed in each month were AI patents. In our baseline

estimation, we employ AIint as its continuous nature is likely to capture more precisely the

AI-technology diffusion.
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Figure 1: AI intensity in US patenting, based on the AIPD dataset.

Note. The figure displays AIint and AIshare at the monthly frequency between 1980 and 2019.

4In formulas AIshare = # AI patentst
# total patentst

. A measure of a news-based shock of this kind, constructed using

the number of climate change mitigation patents over the total number of patents to get an anticipated shock
to a greener technology mix is proposed in Ferriani et al. (2024).
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3 Empirical Analysis

As explained in the previous section, we employ our measure AIint to proxy for an anticipated

(news) shock on future AI-diffusion in technological innovation in the US economy across

January 1980 to December 2019. We employ AIint as an internal instrument (Plagborg-

Møller and Wolf, 2021) and estimate the dynamic effects by means of local projections (LPs;

Jordà, 2005). We choose LPs over VAR methods due to the long and variable lags that

are likely to characterize AI technology diffusion (Brynjolfsson et al., 2018), which tilt the

bias-variance trade-off across the two methods in favor of local projections (Li et al., 2024).

Our analysis proceeds in four steps. First, we focus on the macroeconomic effects on the US

economy. Second, we analyze the effect of AI tech shocks on TFP, highlighting the crucial

role played by general equilibrium effects. Third, we delve into the labor market by studying

occupational flows and sectoral quantities. Finally, we investigate the consequences of AI

tech diffusion for inequality.

3.1 Aggregate Effects

Our endogenous variables consist of a mix of macro-financial indicators, with particular

attention to the labor market. We include industrial production, the headline Personal Con-

sumption Expenditures (PCE) price index, employment, weekly hours worked, and hourly

earnings, the 1- and 10-year Treasury yields, and the S&P500. The estimation is conducted

at the monthly frequency and includes 12 lags of each variable as controls.

Figure 2 displays the aggregate responses to a AIint shock. The impact on the US

economy is overall consistent with an expansionary technology news shock as i) all variables

respond with delay and ii) output increases while consumer prices fall (Portier, 2014; Miranda-

Agrippino et al., 2020). The positive response of the labor market quantities, i.e. employment

and hours worked, is consistent with findings in Chahrour et al. (2023). AIint shock is

nonetheless distinct from standard TFP shocks because of the response of wages: hourly

earnings increase rather than fall. These results suggest that the combination of worker

complementary to AI and the aggregate productivity gains (see Section 3.1.1) dominate the

displacement effect of this innovation (documented for instance in partial equilibrium by
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Bonfiglioli et al., 2023).

Another key feature that makes the propagation of an AIint shock different from that of

a standard technology shock concerns the speed of the response of the stock market, which is

often thought of as discounting relatively quickly the beneficial effects of technological news

on the macro economy (Beaudry and Portier, 2014). Similarly to our analysis, Miranda-

Agrippino et al. (2020) exploit patent data (as the raw number of patents filing) to identify

technology news shocks. Specifically, they proxy TFP news shocks via the number of filed

patents and find a rapid response of stock valuations. In our case, stock prices display a

delayed response as we use information on the intensive AI margin of the patenting process,

whose characteristics and consequences can be harder to gauge for investors compared to the

extensive margin (the number of patents).5

5Results employing AIshare are very similar to our baseline (Figure A1).
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Figure 2: IRFs to a AI technology shock.

Note. The figure displays the IRFs to a shock to a AIint. Sample 1980-2019. The estimates are based on
local projections with Newey-West standard errors. Point estimate and 68%-90% confidence bands.

3.1.1 The role of productivity

The response of TFP rationalizes the aggregate response of the US economy. As TFP is

available only at the quarterly frequency, we estimate the effect of AIint shocks on utilization-

adjusted TFP by transforming AIint as the average over the quarter. The IRFs in Figure 3

display a delayed and yet very persistent response and contribute to highlight the importance

of considering general equilibrium effects when assessing the economic consequence of AI

technology diffusion (the “missing intercept” problem, see Wolf, 2023).
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Figure 3: TFP response to a AI technology shock.

Note. The figure displays the IRFs to a shock to a AIint. Sample 1980-2019. The estimates are based on
local projections with Newey-West standard errors. Point estimate and 68%-90% confidence bands.

3.2 A zoom on the labor market

Shocks to AI-based technological diffusion transmit crucially through the labor market. We

examine in further detail the consequences of AIint for occupational flows and sectoral

quantities. Figure 4 displays the aggregate responses of occupational flows. Despite the

improvement in employment, hours, and wages, AIint shocks transform the US labor market

by modifying the composition of jobs and workers. Both job openings and separations surge

after the shock hits, but the former dominates the latter consistently with the response of

employment in Figure 2. Digging further into the dynamics of outflows, separations increase

due to an increase in layoffs, whereas the number of quits falls. This pattern is consistent

with firms shifting the labor force composition towards workers that are more complementary

with the AI-based progress to exploit the new technological advancements.
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Figure 4: Response of labor market flows to a AI technology shock.

Note. The figure displays the IRFs to a shock to a AIint. Sample 2006-2019. The estimates are based on
local projections with Newey-West standard errors. Point estimate and 68%-90% confidence bands.

Next, we investigate the response of some selected labor market variables by sector. Figure

5 displays the LP-based response, cumulated over 60 months, of labor quantities, wages, and

flows at the sectoral level. The sectors are ordered according to the AI exposure measure

in Acemoglu et al. (2022), which is in turn based on occupation-level exposure reported

in Felten et al. (2018).6 High AI-exposed sectors are those in which the overlap between

occupational abilities and the scope of past AI advances is largest, so where the effects of

AI-based tech shocks on employment and wages might, in principle, also be largest. In line

with our aggregate findings, sectoral evidence is consistent with the presence of large general

equilibrium effects given that we do not observe monotonous effects based on sectoral AI

exposure. Wages in sectors less exposed to AI appear to grow more than those in sectors more

exposed to AI. This patterns might be consistent with the partial equilibrium displacement

effect based on micro-level estimates, coupled with strong positive general equilibrium effects.

6In Acemoglu et al. (2022), sector-level exposure is the weighted average of occupation-level exposure
weighted by the number of vacancies posted by each sector in each occupation. Other papers proposing
matching occupations and AI exposure of working tasks are Webb (2019) and Eloundou et al. (2023).
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Figure 5: Response of labor market flows to a AI technology shock.

Note. The figure displays the cumulated IRFs over 60 months to a AIint shock. Sample 2006-2019. The
estimates are based on local projections with Newey-West standard errors. Point estimate and 90% confidence
bands.

3.3 Implications for Inequality

Several commentators suggest that one of the major impacts of AI tech diffusion concerns

inequality. We explore this mechanism by exploiting the data compiled by Blanchet et al.

(2022).7 Figure 6 reports the effect of AIint shocks on overall income, wealth, and labor

7The data is available at https://realtimeinequality.org/

12

https://realtimeinequality.org/


income shares. These results deal exclusively with redistributive consequences while not being

informative of the net income or wealth gains for each group. The total income distribution

(top raw) is the least affected; broadly speaking, the top shares go up although the growth

appears weak in terms of economic magnitudes and statistical precision. A different pattern

emerges for the wealth distribution (second row): the top 1% and especially top 10% of the

wealth share increases while the AI tech diffusion is detrimental for the bottom 50%. Notably,

the responses of the latter two groups are very persistent. A similar pattern emerges for the

labor income share. An important difference is that the share for the bottom quantile of the

distribution falls but, in the case of labor income, the effects appear to be transitory.8
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Figure 6: Response of inequality to a AI technology shock.

Note. The figure displays the IRFs to a shock to a AIint. Sample 1980-2019. The estimates are based on
local projections with Newey-West standard errors. Point estimate and 68%-90% confidence bands.

8The income and wealth breakdown provided in https://realtimeinequality.org/ is different from
the one for labor income.
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4 Conclusions

AI-based innovations such as ChatGPT have brought AI to the center of the academic and

policy debate. By exploiting data on the AI intensity of US patents between 1980 and 2019

we have investigated the macroeconomic consequences of AI-based innovation. An increase

in the AI intensity of US innovation leads to a delayed surge in industrial production and

a slight decline in consumer prices, in line with the transmission of a positive supply shock.

Such positive effects descend from the positive response of total factor productivity. However,

this expansionary effect comes at the cost of an increase in inequality: the more intensive

use of AI technology in innovation also leads to increased inequality as the wealth and labor

income share of the top 10% workers benefits from AI whereas the bottom 50%-25% see

their shares falling. These results might have important implications for the conduct of fiscal

policy.
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Figure A1: IRFs to a AI technology shock.
Note. The figure displays the IRFs to a shock to a AIshare. Sample 1980-2019. The estimates are based on
local projections with Newey-West standard errors. Point estimate and 68%-90% confidence bands.
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