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Introduction

* Artificial intelligence (Al) = “the science and engineering of making intelligent machines”

m Turing (1950), McCarthy et al. (2007)

* Release of Al-based chatbots like Chat GPT = lively debate on the economic effects of Al

m Focus on labor market implications: complementarity vs substitutability

e What are the aggregate implications?

= Al = game changer
> Alis a General-Purpose Technology (Bresnahan & Trajtenberg 1995, Brynjolfsson et al. 2023, etc)
> Goldman Sachs = +7% GDP, +1.5% prod growth in US (p.a. over next 10 years)

m Al = incremental

> Gains are modest (Acemoglu, 2024; "What happened to the Al revolution?", The Economist, 2024)



This paper

* Studies empirically the aggregate economic implications of Al innovation (AZint;)

m Our sample predates the development of LLM such as ChatGPT..
m ..but covers the rise of the digital economy and its major companies
m In line with other empirical papers on the topic (Bonfiglioli et al., 2023)

e Identify shocks to AZint; by exploiting US patent data

* Employ local projections (LPs) — ideal to study dynamic effects at long horizons

Preview of results

O ATint: shocks are expansionary and affects the economy as a technology shock

O Evidence of sizable general equilibrium effects (neglected in micro-estimates)

0 Downside is an increase in wealth inequality



Literature

e Economic implications of automation and Al

m Acemoglu and Restrepo (2020) Prettner and Strulik (2020) Moll et al. (2022), Grennan and
Michaely (2020), Hui et al. (2023), Brynjolfsson et al. (2023), Bonfiglioli et al. (2023), Pizzinelli et
al. (2023), Acemoglu (2024), Babina et al. (2024)

= First empirical evidence on aggregate effects of Al

® Patents in empirical macro
m Cascaldi-Garcia and Vukoti¢ (2022), Miranda-Agrippino et al. (2020), Ferriani et al. (2023)

= Exploit novel dataset to measure Al intensity of innovation

® Missing intercept
= Wolf (2023), ...

=- Sizable general equilibrium effects of Al innovation



AIPD Data

e Al advances are often open-source

* But patents informative on the Al content of new technology (e.g. Webb, 2019)

Exploit Artificial Intelligence Patent Dataset (AIPD)

m from the United States Patent and Trademark Office (USPTO) = Giczy et al. (2022)
m Patent-level score of the Al content of the tech for all patents (1980-2019)
m Based on 8 Al domains detected through machine learning and experts validation

* We construct an aggregate index of Al intensity in US innovation
Nt
ATint, =) ATint;, (1)
i=1

N = # of patents filed in each month (t month of filing)



Al intensity over time
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Al classification
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* Knowledge processing: representing and deriving facts about the world
and using this information in automated systems.

* Speech recognition: includes techniques to understand a sequence of
words given an acoustic signal.
Apple’s Siri, Amazon’s Alexa, or Microsoft's Cortana

* Machine learning: contains a broad class of computational models that
learn from data.

Al hardware: Al hardware includes physical
computer components designed to meet Al
computing power through increased processing
efficiency and/or speed.

Google's Tensor Processing Unit for neural
networks

Evolutionary computation: a set of
computational routines using aspects of nature
and, specifically, evolution as genetic
algotithms.

Chevron’s evolutionary approach to predicting
available petroleum reserves.

Natural language processing: Understanding
and using data encoded in written language.
Large language models

Computer Vision: extracts and understands
information from images and videos.

The Mayo Foundation for Medical Education and
Research and Arizona State University patented
a software to detect abnormalities in images
taken during colonoscopies.

Planning and control: contains processes to
identify, create, and execute activities to
achieve specified goals.

Stochastic optimal control for dynamic
optimization under uncertainty



Pre-estimation step

* Patenting potentially endogenous to expected economic conditions
m Miranda-Agrippino et al. (2022)
* We test orthogonality of AZint: wrt

1. economic forecasts

2. TFP

3. total number of patents per month
4. structural shocks

e Similar to what is done in Ferriani, Gazzani & Natoli (2023) on green patents
= No correlation with other structural shocks

= correlation with TFP and patenting activity



Orthogonality test

Panel (a): Macroeconomic aggregates
W-stat P-value Obs. Diff R*

Long-term Consensus Forecast 077 038 318 . . .

McCracken and Ng (2016) FRED-MD factors  0.84 0.36 468 Notes. Panel (a) AZint IS.

TFP 3.45 0.04 156 <0.001 regressed on a constant, Its

# patents (AZint) 518 0.02 468 <0.001 own 12 lags and the

# patents (AZshare) 1.86 047 468  <0.001 L t ’ iabl £

Panel (b): Monthly structural shocks _exp anatory variables o

Shocks o p-value Obs. interest. The Wald test

Baumeister and Hamilton (2019) oil supply -0.03 046 480 statistics correspond to the

géfr‘tzlig (2°§1I)<°”ZHFP‘V ot ooor ooT 480 joint significance tests of the
ertler and Karadi (2015) monetary -0.03 0.60 324 A . .
Romer and Romer (2004) monetary 0.05 0.48 204 coefficient aSSOCIat?d with
Baker et al. (2016) EPU -0.04 038 390 the explanatory variables. In
Bloom (2009) uncertainty 0002 095 456 the case of FRED-MD factors,

Gilch}rist and Zakrajéek(gom) EBP -0.08  0.07 480 7 factors are extracted from
Kanzig (2022) carbon policy shocks -0.001 0.99 246 the FRED-MD database. Panel

Panel (c): Quarterly structural shocks (b)-(C) report the correiation

Shocks P P-value Obs. ; .

Basu et al. (2006) TFP 003 076 8 between the AZint residual
Smets and Wouters (2007) TFP -0.08 0.4 100 extracted from an AR(12)
Beaudry and Portier (2014) news 0.02 079 131 process and various

Barsky and Sims (2011) news -021  0.03 M structural shocks from the
Kurmann and Otrok (2013) news -0.06 055 102 literature

Romer and Romer (2010) fiscal -0.05 0.57 12 :

Ramey (2011) fiscal 0.006 0.94 124

Fisher and Peters (2010) fiscal -0.04 071 116

Mertens and Ravn (2013) private tax -0.06 0.51 108

Mertens and Ravn (2013) corporate tax -0.06  0.56 108




Empirical analysis

* Identifying assumption: A7int; employed as internal instrument in local projections (LP)

m contemporaneously exogenous wrt the other variables in the system
m requires weaker assumptions compared to identification via external instruments

> Plagborg-Mgller and Wolf (2021)
m LP more reliable to study medium/long run effects than VARs

* LP specification throughout the analysis for each endogenous variable of interest y:

Virh = O+ BpAZint: + SpXe—1 + €rpp h=o,..,60 (2)

where h = horizon of the response, o = constant, § captures IRFs; X = set of controls that
include 12 lags of y, AZint;, and other variables that are specific to each econometric
exercise; &, = residual with moving average structure across h = the inference is based
on Newey and West (1994) standard errors.



Roadmap

1. Macroeconomic effects

m Baseline IRFs
= TFP
m Disaggregated consumer prices

2. Labor market

= Flows
m Sectoral heterogeneity
m Education heterogeneity

3. Inequality

m Income
m Wealth
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Note. The figure displays the IRFs to a A Zint shock. Sample 1980-2019. The estimates are based on local projections with 12 lags and Newey-West standard errors. Point estimate and 68%-90%

confidence bands.

0.15
0.1

d‘ 0.05
Q 0
-0.05
-0.1

PCE price index

At \j/\/\/\/\
10 20 30 40 50 60
10y rate

v ~
W

10 20 30 40 50 60

Hourly earnings
10 20 30 40 50 60



TFP
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Note. The figure displays the IRFs to a A Zint shock. Sample 1980-2019. The estimates are based on local projections with 4 lags and Newey-West standard errors. Point estimate and 68%-90%
confidence bands.



Heterogeneity in consumer prices response
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Note. The figure displays the IRFs to a A Zint; shock. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
confidence bands.



Variance decomposition

* Quantitative contribution of AZint; shock = forecast error variance decomposition

* Follow Gorodnicenko and Lee (2020, JBES) = R? approach

Ytrh = O +ﬁhAIintt+3hXt71+€t+h h=o,..,60 (3)

& trhjt—1 = Dz,08ALt+h+ T OzhEALL T Vephjt Vj = endog. vars ()

* R? from regression in Equation () yields variance contribution of AZint; to y

¢ Inference based on bootstrap



Variance decomposition (2)

Note. The figure displays the variance contribution of A Zint shock. Sample 1980-2019. The estimates are based on local projections with 12 lags. Point estimate and 90% confidence bands

from bootstrap.
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Summary of macro outcomes

e ATint; behave like expansionary technology shocks

m output 17, prices |
= monetary policy responds to the boost in economic activity (quantitatively small implications)

e Expansionary effects on the labor market

Interpretation - "The missing intercept problem" (Wolf, 2022 AER)
Results suggestive of large general equilibrium effects (complementary Al - labor)

e Fall in aggregate CPI masks glaring heterogeneity

m Drop in aggregate prices driven by core prices
= Driven by durables
m Driven in particular by high-tech products

e Quantitatively, Al development has not been a major driver of the US economy



Robustness and additional results

e Use A7Zshare; instead of AZint;

Include alternative price indexes

Alternative stock prices

Stationary AZint;
e Estimates based on iid shocks @EE

e Controlling for # patents

No overlap with robotics patents

Controlling for financial/uncertainty conditions @& @ D



Roadmap

1. Macroeconomic effects

m Baseline IRFs
= TFP
m Disaggregated consumer prices

2. Labor market

= Flows
m Sectoral heterogeneity
m Education heterogeneity

3. Inequality

m Income
m Wealth



Labor market flows
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Note. The figure displays the IRFs to a A Zint; shock. Sample 2006-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%

confidence bands.
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Labor market overview

(a) Employment (b) Hours (c) Real wage

(d) Openings (e) Separations

Note. The figure displays the cumulated IRFs over 60 months to a Alint shock. Sample 2006-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate
and 90% confidence bands.



Employment by education
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Note. The figure displays the IRFs to a Alint shock. Sample 2000-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90% confidence
bands.



Earnings by education
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Note. The figure displays the IRFs to a Alint shock. Sample 2000-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90% confidence
bands.



Summary of labor market outcomes

* Widespread improvement in labor market conditions

m Suggestive of GE effects and/or complementarity
m Consistent with findings in Albanesi et al. (2023)

¢ Transformation of demand tasks

= Openings & layoffs 7 ..
m .. but the net effect is positive

* Heterogeneity by education

m All groups benefit in terms of earnings
m Employment gains proportional to education



Roadmap

1. Macroeconomic effects

m Baseline IRFs
= TFP
m Disaggregated consumer prices

2. Labor market

= Flows
m Sectoral heterogeneity
m Education heterogeneity

3. Inequality

m Income
m Wealth



Inequality

* We employ Blanchet et al. (2022) "Real-time inequality" database



Inequality
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The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90% confidence



Inequality

* We employ Blanchet et al. (2022) "Real-time inequality" database

Our results echo those in Moll et al. (2022, Econometrica)

= automation = asset returns = wealth inequality

Effects on labor income inequality are more transitory

Considering variable in absolute terms

m All groups benefit in terms of income
= But not in terms of wealth



Conclusions

e Economic implications of Al very uncertain
® |ssue very challenging to measure and study

* We have exploited historical data on patents to overcome these challenges

Highlight general equilibrium effect of Al innovation

= Neglected in micro-based estimates
m The missing intercept problem

e Al affects relatively more economic activity than consumer prices
Small monetary policy implications
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Core PCE
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Core CPI
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EBP and consumption
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Nasdaq
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Controlling for patents
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
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Al intensity in robotic patents

Robotic patent?

o (no) 1 (yes)
# observations 13,675,265 (99.8%) 30,129 (0.2%)
Al score 0.034(0.099)  0.035 (0.104)
Al intensive patent 0115(0.319) 0134 (0.347)
Al prediction score from machine learning model 0.018 (0114)  0.028 (0:147)
Al prediction score from evolutionary computation model 0.009 (0.053)  0.010 (0.053)
Al prediction score from natural lang. processing model 0.014(0.094)  0.007 (0.058)
Al prediction score from speech model 0.009 (0.077)  0.007 (0.063)
Al prediction score from vision model 0.036 (0.151)  0.069 (0.210)
Al prediction score from knowledge processing model 0.068 (0.229) 0.085 (0.256)
Al prediction score from planning/control model 0.075(0.233)  0.076 (0.228)
Al prediction score from Al hardware model 0.048 (0161)  0.050 (0.171)




Controlling for % of robotics patents
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Controlling for # of robotics patents
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%

confidence bands.



Detrended Alint
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Detrended (quadratic) Alint

AI patents intensity Industrial Production PCE price index
1 0.05
0.001
0.8 0
y 0.6
20.0005 o % -0.05
e 0.4
-0.1
MMA/_\ 0.2
0 - o -0.15
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Employment ly rate 10y rate
0.4 0.1
0.3 0.2
. 0.05
0 0.2 g 0-1 a
f R 0
[ Q
0.1 0
\/\/ -0.05
0 -0.1
-0.1
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
. S&P500 Hours 015 Hourly earnings
0.04
0.1
0.03
2
o 0.05
s 0.02
o0 ! o0 o
3
0 0.01 A, W
MAS 0 ah ~0.05
\ARA ki
- -0.01 -0.1
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
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Trend in LP
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
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Alint in growth rate
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High tech vs industrial stocks
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%

confidence bands.



Controlling for EBP
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1980-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
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Controlling for VXO
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1985-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%

confidence bands. Back



Controlling for EPU
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Note. The figure displays the IRFs to a shock to a Alint. Sample 1986-2019. The estimates are based on local projections with Newey-West standard errors. Point estimate and 68%-90%
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Absolute response of income and wealth
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