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Abstract
This paper assesses the sources of volatility persistence in Euro

Area money market interest rates and the existence of linkages relat-
ing volatility dynamics. The main �ndings of the study are as follows.
Firstly, there is evidence of stationary long memory, of similar degree,
in all series. Secondly, there is evidence of fractional cointegration
relationships relating all series, except the overnight rate. Two com-
mon long memory factors are found to drive the temporal evolution of
the volatility processes. The �rst factor shows how persistent volatil-
ity shocks are trasmitted along the term structure, while the second
factor points to excess persistent volatility at the longer end of the
yield curve, relative to the shortest end. Finally, impulse response
analysis and forecast error variance decomposition point to forward
transmission of shocks only, involving the closest maturities.
Keywords: Money market interest rates; liquidity e¤ect; realized

volatility; fractional integration and cointegration, fractional vector er-
ror correction model.
JEL classi�cation: C32; F30; G10
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Non-technical summary
Recent work by Prati et al. (2003), Bartolini and Prati (2003a), and

Bartolini et al. (2002) document the close connection between the institu-
tional details of the operational frameworks for the implementation of mon-
etary policy by central banks and the behavior of overnight interest rates
in the US, the euro area and other G-7 countries. Moreover, Bartolini and
Prati (2003b) show that short-term interest rate volatility also re�ects dif-
ferences in central banks� commitment to interest rate smoothing at high
frequency. Their evidence is supported by other empirical papers showing
the relevance of institutional details in shaping the behavior of money mar-
ket rates and their volatility (see Ayuso et al., 1997; Hartmann et al., 2001).
Cassola and Morana (in press) estimate the factors underlying the volatil-
ity of the overnight interest rate and its transmission along the euro money
market yield curve using hourly data. The estimates show repetitive intra-
daily and monthly patterns that can be explained by the microstructure of
the money market and the institutional features of the Eurosystem�s oper-
ational framework for monetary policy implementation. Strong persistence
is detected in all log-volatility processes, and two common long-memory fac-
tors are extracted. The �rst factor explains the long-memory dynamics of
the shortest maturities, while the second factor explains the transmission of
volatility along the money market yield curve. The present paper comple-
ments and extends the study of Cassola and Morana (in press) by considering
a new econometric methodology, a di¤erent log-volatility measure (the real-
ized volatility estimator) and an extended and improved data set. Moreover,
in the present paper the analysis considers both the short-run and long-run
properties of the data, with cointegration analysis performed by means of the
frequency domain principal components approach of Morana (2004a, 2005)
(see also Beltratti and Morana, 2006), and the short-run dynamics estimated
by means of a fractional vector error correction model (F-VECM). Addition-
ally, a new approach to permanent-persistent-non persistent decomposition is
implemented. The latter decomposition also allows to shed light on the issue
on whether the change in the monetary policy operational framework carried
out by the European Central Bank (ECB) in March 2004 has had any impact
on money market volatility. Finally, in the present paper the transmission of
volatility shocks is investigated by means of impulse response analysis and
forecast error variance decomposition. Hence, in addition to the modelling
tools employed, the novelty of the paper is also in the empirical analysis, pro-
viding evidence on issues so far unexplored for the euro area money market.
The empirical approach followed in the paper is broadly consistent with
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the modelling of the term structure of interest rates proposed by Piazzesi
(2001), which generates a money market volatility curve that is U-shaped.
Intuitively, such shape can be explained by two di¤erent features. First, liq-
uidity noise and other money-market disturbances are shocks to the spread
between the overnight interest rate and the central bank target rate (in gen-
eral a short-term rate). These shocks a¤ect the term structure of interest
rates only at its very short end. Second, the spread between the target rate
and the two-year interest rate re�ects the direction of expected future short-
term interest rates and, thus, is mainly a¤ected by news about the cyclical
evolution of the economy and the perception, by market participants, of how
the central bank will �react� to such news. These news a¤ect longer-term
rates more intensely than they a¤ect intermediate interest rates. This is due
to the fact that markets expect the central bank, when changing short-term
interest rates, to move in a sequence of small steps in one direction, and these
changes to be somewhat persistent. Thus, the shape of the volatility curve
is also related to the expected timing of o¢ cial interest rate decisions and
the �inertia�in policy interest rates. However, in Piazzesi (2001) neither the
yields nor the volatility processes for short-term money market interest rates
display long memory.
Modelling the term structure of interest rates with fractionally cointe-

grated yields seems to be a largely unexplored territory. One of the few
exceptions is Backus and Zin (1993), which develop a term structure model
where yields are driven by the fractionally integrated short-term interest rate
process. Backus and Zin (1993) argue that the volatility curve implied by
this process matches very closely the average volatility curve observed in
U.S. government bond data for the post war period. However, in their model
the volatility processes are non-stochastic. In contrast, we �nd ample evi-
dence that interest rate volatility in the euro money market is stochastic and
strongly persistent. As pointed out by Borio and McCauley (1996), there is
pervasive evidence of persistence of volatility in bond markets, i.e. volatility
shocks tend to exercise signi�cant e¤ects for longer than what is expected for
a short memory process1, showing a slow hyperbolic pattern of decay, rather
than a quick exponential one. Three main interpretations have been sug-
gested for this phenomenon. The �rst interpretation is that volatility reacts
immediately on the arrival of information, however the arrival of �news�it-
self exhibits persistence (Granger, 1980; Andersen and Bollerslev, 1997). The
second interpretation is that market participants respond at various speeds to
information that arrives uniformly over time or to di¤erent volatility dynam-
ics (high frequency versus low frequency; Muller et al., 1997), thus generating

1For instance an I(0) process.
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persistence. The third one is that persistence re�ects the memory of risk-
averse traders. In the paper, the �long memory� property of volatility is
accurately investigated and modelled, also by employing testing approaches
which are robust to the presence of such a feature.
The main �ndings of the study are as follows. Firstly, there is evidence

of long memory in the money market interest rates volatility processes, with
two common long memory factors driving the temporal evolution of the se-
ries analyzed. The identi�ed cointegration space reveals near homogeneous
bivariate relationships involving the closest maturities. Moreover, the com-
mon long memory factor analysis points to a single factor explaining the
transmission of persistent volatility shocks along the term structure, and to
a second factor explaining excess persistent volatility at the longer end of
the yield curve, relative to the shortest end. Forward propagation of per-
sistent volatility shocks is also pointed out by the impulse response analysis
and the forecast error variance decomposition, while no evidence of forward
transmission of liquidity shocks is found.
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1 Introduction

Recent work by Prati et al. (2003), Bartolini and Prati (2003a), and Bar-
tolini et al. (2002) document the close connection between the institutional
details of the operational frameworks for the implementation of monetary
policy by central banks and the behavior of overnight interest rates in the
US, the euro area and other G-7 countries. Moreover, Bartolini and Prati
(2003b) show that short-term interest rate volatility also re�ects di¤erences
in central banks�commitment to interest rate smoothing at high frequency.
Their evidence is supported by other empirical papers showing the relevance
of institutional details in shaping the behavior of money market rates and
their volatility (see Ayuso et al., 1997; Hartmann et al., 2001). Cassola
and Morana (in press) estimate the factors underlying the volatility of the
overnight interest rate and its transmission along the euro money market
yield curve using hourly data. The estimates show repetitive intra-daily and
monthly patterns that can be explained by the microstructure of the money
market and the institutional features of the Eurosystem�s operational frame-
work for monetary policy implementation. Strong persistence is detected
in all log-volatility processes, and two common long-memory factors are ex-
tracted. The �rst factor explains the long-memory dynamics of the short-
est maturities, while the second factor explains the transmission of volatil-
ity along the money market yield curve. The present paper complements
and extends the study of Cassola and Morana (in press) by considering a
new econometric methodology, a di¤erent log-volatility measure (the real-
ized volatility estimator) and an extended and improved data set. Moreover,
in the present paper the analysis considers both the short-run and long-run
properties of the data, with cointegration analysis performed by means of the
frequency domain principal components approach of Morana (2004a, 2005)
(see also Beltratti and Morana, 2006), and the short-run dynamics estimated
by means of a fractional vector error correction model (F-VECM). Addition-
ally, a new approach to permanent-persistent-non persistent decomposition is
implemented. The latter decomposition also allows to shed light on the issue
on whether the change in the monetary policy operational framework carried
out by the European Central Bank (ECB) in March 2004 has had any impact
on money market volatility. Finally, in the present paper the transmission of
volatility shocks is investigated by means of impulse response analysis and
forecast error variance decomposition. Hence, in addition to the modelling
tools employed, the novelty of the paper is also in the empirical analysis, pro-
viding evidence on issues so far unexplored for the euro area money market.
The empirical approach followed in the paper is broadly consistent with

the modelling of the term structure of interest rates proposed by Piazzesi
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(2001), which generates a money market volatility curve that is U-shaped.
Intuitively, such shape can be explained by two di¤erent features. First, liq-
uidity noise and other money-market disturbances are shocks to the spread
between the overnight interest rate and the central bank target rate (in gen-
eral a short-term rate). These shocks a¤ect the term structure of interest
rates only at its very short end. Second, the spread between the target rate
and the two-year interest rate re�ects the direction of expected future short-
term interest rates and, thus, is mainly a¤ected by news about the cyclical
evolution of the economy and the perception, by market participants, of how
the central bank will �react� to such news. These news a¤ect longer-term
rates more intensely than they a¤ect intermediate interest rates. This is due
to the fact that markets expect the central bank, when changing short-term
interest rates, to move in a sequence of small steps in one direction, and these
changes to be somewhat persistent. Thus, the shape of the volatility curve
is also related to the expected timing of o¢ cial interest rate decisions and
the �inertia�in policy interest rates. However, in Piazzesi (2001) neither the
yields nor the volatility processes for short-term money market interest rates
display long memory.
Modelling the term structure of interest rates with fractionally cointe-

grated yields seems to be a largely unexplored territory. One of the few
exceptions is Backus and Zin (1993), which develop a term structure model
where yields are driven by the fractionally integrated short-term interest rate
process. Backus and Zin (1993) argue that the volatility curve implied by
this process matches very closely the average volatility curve observed in
U.S. government bond data for the post war period. However, in their model
the volatility processes are non-stochastic. In contrast, we �nd ample evi-
dence that interest rate volatility in the euro money market is stochastic and
strongly persistent. As pointed out by Borio and McCauley (1996), there is
pervasive evidence of persistence of volatility in bond markets, i.e. volatility
shocks tend to exercise signi�cant e¤ects for longer than what is expected for
a short memory process1, showing a slow hyperbolic pattern of decay, rather
than a quick exponential one. Three main interpretations have been sug-
gested for this phenomenon. The �rst interpretation is that volatility reacts
immediately on the arrival of information, however the arrival of �news�it-
self exhibits persistence (Granger, 1980; Andersen and Bollerslev, 1997). The
second interpretation is that market participants respond at various speeds to
information that arrives uniformly over time or to di¤erent volatility dynam-
ics (high frequency versus low frequency; Muller et al., 1997), thus generating
persistence. The third one is that persistence re�ects the memory of risk-

1For instance an I(0) process.
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averse traders. In the paper, the �long memory� property of volatility is
accurately investigated and modelled, also by employing testing approaches
which are robust to the presence of such a feature.
The main �ndings of the study are as follows. Firstly, there is evidence

of long memory in the money market interest rates volatility processes, with
two common long memory factors driving the temporal evolution of the se-
ries analyzed. The identi�ed cointegration space reveals near homogeneous
bivariate relationships involving the closest maturities. Moreover, the com-
mon long memory factor analysis points to a single factor explaining the
transmission of persistent volatility shocks along the term structure, and to
a second factor explaining excess persistent volatility at the longer end of
the yield curve, relative to the shortest end. Forward propagation of per-
sistent volatility shocks is also pointed out by the impulse response analysis
and the forecast error variance decomposition, while no evidence of forward
transmission of liquidity shocks is found.
The paper is organized as follows. In Sections 2 and 3 the econometric

methodology and the data employed in the study are presented; in Section 4
the empirical results of the study are discussed, while in Section 5 conclusions
are drawn. Finally, methodological details and the results of a Monte Carlo
exercise aiming to assess the econometric tools proposed in the paper are
included in the Appendix.

2 Econometric methodology

Consider the following decomposition for the n-variate volatility process yt

yt = �bt +��t + "t;

where bt is a k-variate deterministic common structural break process, �t is
a s-variate stationary common long memory process (I(d); 0 < d < 0:5)2, "t
is a n-variate residual idiosyncratic I(0) component, � is the n� k common
break processes loading matrix, and � is the n � s common long memory
processes loading matrix.
Following Morana (2006b), estimation of the common factor model is

achieved in two steps.
Firstly, a permanent-persistent-non persistent (P-P-NP) decomposition

is carried out for any of the n volatility processes, i.e.

yi;t = b
�
i;t + �

�
i;t + "

�
i;t; i = 1; :::; n;

2See Baillie (1996) for an introduction to long memory processes.
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where b�i;t, the permanent component, is estimated by b̂
�
i;t, computed either by

means of the �exible least squares approach or the adaptive semiparametric
approach described in Appendix A, and ��i;t and "

�
i;t, the persistent and non

persistent components, respectively, are estimated by �̂�i;t and "̂
�
i;t, computed

by means of the Fourier transform method of Morana (2006b), also described
in Appendix A.3 Monte Carlo results reported in Morana (2006b) and in
Appendix B strongly support the proposed �ltering methodology, pointing
to its robustness to the degree of persistence of the actual series, sample
size, presence of observational noise and biased estimation of the fractional
di¤erencing parameter.
Secondly, the common break and long memory processes are estimated

by means of a principal components (PCA) approach, implemented using the
estimated permanent and persistent components, as follows

yt = �̂b̂t + �̂�̂t + "̂t;

where �̂ = Â�̂
1=2

b is the estimated n � k common break processes loading

matrix, �̂b is the diagonal matrix of the estimated non zero eigenvalues of the
reduced rank variance-covariance matrix of the (estimated) break processes
�b� (rank k < n), Â is the matrix of the associated orthogonal eigenvectors,
and b̂t = �̂

�1=2
b Â

0
b�t is the k � 1 vector of the standardized (�b = Ik)

principal components or common break processes. Moreover, �̂ = B̂�̂
1=2

�

is the estimated n � s common break processes loading matrix, �̂� is the
diagonal matrix of the non zero eigenvalues of the reduced rank variance-
covariance matrix of the (estimated) long memory components ��� (rank
s < n), B̂ is the matrix of the associated orthogonal eigenvectors, and �̂t =
�
�1=2
� B̂

0
��t is the s � 1 vector of the estimated standardized (�� = Is)

principal components or common long memory processes. Finally, "̂t = "̂
�
t +

"̂b;t + "̂�;t, where "̂b;t is an n � 1 vector of idiosyncratic components from
�bt = �̂b̂t+ "̂b;t and "̂�;t is an n�1 vector of idiosyncratic components from
�t = �̂�̂t + "̂�;t.

4

3Note that the break process b�i;t, the permanent component, can be interpreted as the
long-run forecast for the series yi;t, since lim

s!1
Et+syi;t = b�i;t+s; given that for d < 0:5

lim
s!1

Et+s�
�
i;t = 0, and for b < 0:5 lim

s!1
Et+s"

�
i;t = 0: On the other hand, the persistent

component, i.e. the long memory component, can be interpreted as the medium-run
forecast, since for a su¢ ciently long but �nite forecast horizon lim

s!k<1
Et+s(yi;t � b�i;t) =

lim
s!k<1

Et+s�
�
i;t; since lim

s!k<1
Et+s"

�
i;t = 0.

4See Morana (2006) also for an extension of the procedure to the non stationary long
memory case (0:5 < d < 1) and to the case of multiple common degrees of persistence.
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The above principal components approach has been originally proposed
by Bierens (2000)5 for the estimation of common deterministic break processes,
and extended to the estimation of common long memory processes by Morana
(2006). The validity of the proposed estimation procedure has been shown
by Bai (2004, 2003) and Bai and Ng (2001). In fact, recent theoretical de-
velopments of Bai (2004, 2003) and Bai and Ng (2001) have justi�ed the
use of the PCA estimator also for dependent processes. In particular, Bai
(2004) has considered the generalization of PCA to the case in which the se-
ries are weakly dependent processes, establishing consistency and asymptotic
normality when both the unobserved factors and idiosyncratic components
show limited serial correlation, also allowing for heteroskedasticity in both
the time and cross section dimension in the idiosyncratic components. In
Bai (2003) consistency and asymptotic normality has been derived for the
case of I(1) unobserved factors and I(0) idiosyncratic components, also in the
presence of heteroskedasticity in both the time and cross section dimension
in the idiosyncratic components. Finally, Bai and Ng (2001) have established
consistency also for the case of I(1) idiosyncratic components. As pointed
out by Bai and Ng (2001) consistent estimation should also be achieved by
PCA in the intermediate case represented by long memory processes. Monte
Carlo results supporting the use of the PCA approach also in the case of
long memory processes, and the proposed econometric methodology, have
been provided in Morana (2006b). It is shown that the performance of the
principal components approach is indeed not a¤ected by the presence of
long memory, performing well independently of the degree of persistence, the
sample size, and the number of factors, being also robust to the presence of
moderate noise.

3 The data

The data employed in this study are 5-minute observations for the overnight
interest rate, and the one-week, two-week, one-month, three-month, six-
month, nine-month and twelve-month EONIA swap rates. Intra-daily obser-
vations have been computed as averages of real-time, bid-ask quotes taken
from REUTERS screens. The raw data were �ltered for typing errors and
other outliers using the simple and the dynamic �ltering techniques explained
in Brousseau (2005).6 It is known that these quotes are only indicative. Yet,
like Hartmann et al. (2001) it is assumed that there is a close link be-

5This result can not be found in the published version of Bierens (2000) paper.
6The authors are grateful to Vincent Brousseau, in the Market Operations Analysis

Division, European Central Bank, for providing the �ltered data.
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tween market activity and quotes updating. The sample is from 28/11/2000
through 22/04/2005, for a total of 107291 5-minute observations, excluding
weekends and holidays. Excluding thin trading days (days in which prices
did not change) 91392 usable observations are left, i.e. 952 days, with 95
�ve-minutes observations each (from 9 a.m. to 5 p.m.).

3.1 The variance process

The daily variance process has been computed by means of the realized vari-
ance estimator. Following Andersen et al. (2001) and Barndor¤-Nielsen and
Shephard (2002), suppose that the logM �1 vector price process, pt, follows
a multivariate continuous-time stochastic volatility di¤usion

dpt = �tdt+ 
tdWt;

where Wt denotes a standard M -dimensional Brownian motion process, and
both the processes for the M �M positive de�nite di¤usion matrix 
t and
the M-dimensional instantaneous drift �t are strictly stationary and jointly
independent of the Wt process.
Then, conditional on the sample path realization of 
t and �t, the distri-

bution of the continuously compounded h-period return

rt+h;h = pt+h � pt

is

rt+h;hj�
�
�t+� ;
t+�

	h
�=0

� N(
hZ
0

�t+�d� ;

hZ
0


t+�d�):

The integrated di¤usion matrix

hZ
0


t+�d�

can be employed as a measure of multivariate volatility.
By the theory of quadratic variation, under some weak regularity condi-

tions,


̂t+h =
X

j=1;:::;[h=�]

rt+j��;�r
0
t+j��;�

p!
hZ
0


t+�d� ;
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i.e. the realized variance covariance matrix estimator is a consistent esti-
mator, in the frequency of sampling (� ! 0), of the integrated variance
covariance matrix.
It is also known thatp

h=�
�

̂(ii);t;t+h � 
(ii);t;t+h

�
vuuut2 hZ

0


2(ii);t;t+�d�

d�! N (0; 1) :

Since

h=�

3

X
j=1;:::;[h=�]

r4i;t+j��;�
p!

hZ
0


2(ii);t;t+�d� ;

as �! 0, it follows the feasible limiting distribution�

̂(ii);t;t+h � 
(ii);t;t+h

�
s
2

3

P
j=1;:::;[h=�]

r4i;t+j��;�

d�! N (0; 1) ;

showing that the realized variance estimator may be more noisy in high
volatility periods.
An additional interesting result concerns the log realized variance, i.e.p

h=�
�
ln 
̂(ii);t;t+h � ln
(ii);t;t+h

�
vuuut2

3

P
j=1;:::;[h=�]

r4
(ii);t+j��;� P

j=1;:::;[h=�]

r2
(ii);t+j��;�

!2
d�! N (0; 1) ;

which, according to Barndor¤-Nielsen and Shephard (2004), provides a more
accurate asymptotic approximation.
On the basis of the above results, daily realized variance (
̂(ii);t) can be

computed from high frequency observations as follows


̂(ii);t =

HX
j=1

r2
i;j;t
;

where r
i;j;t
is the return on asset i at the intra-daily observation j for day t:7

7Asymptotic results for the distribution of realized correlations and covariances are also
available, but are not discussed since they are not of interest for the paper.
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4 Empirical results

4.1 Descriptive statistics

Descriptive statistics for the daily standard deviation and log standard devi-
ation processes are reported in Table 1. As shown in the Table, mean daily
volatility is highest at the very short end of the yield curve (overnight rate
and one-week rate) and at the nine-month level, ranging between 2.6% and
3.4%, while the other maturities show a lower but similar mean volatility
level (about 1.9%). The volatility of volatility is also highest at the very
short end of the yield curve (overnight rate, one- and two-week rates), but
no clear-cut relationship can be established between the mean level of volatil-
ity and the volatility of volatility. According to both the Bera-Jarque and
the Kolmogorov-Smirnov tests, deviations from the normality assumption for
the log standard deviation processes can be detected for all the maturities,
suggesting that the rejection of normality may not be determined only by the
violation of the i.i.d hypothesis. The persistence properties of the volatility
series, in terms of structural breaks and long memory, are assessed below.

4.2 Structural break tests

As a �rst step, in order to avoid biased estimation of the persistence parame-
ter8, as well as that (relative) high frequency cyclical e¤ects may a¤ect the
detection of the low frequency deterministic dynamics associated with struc-
tural change, the e¤ects of (i) known institutional features of the operational
framework, such as the beginning and end of the maintenance period, the
number of days between the last allotment and the end of the maintenance
period, the �rst and last trading date of the maintenance period, and (ii)
of monetary policy related features, such as press conferences following the
Governing Council meeting and interest rate (minimum bid rate) changes,
have been removed from the data by regressing the log realized standard
deviation series on impulse dummy variables capturing the above mentioned
e¤ects.9 Then, structural break and cobreaking tests have been carried out
on the purged series. Two methods for candidate break process estimation
have been employed, i.e. the �exible least squares approach of Morana (2006)
and the adaptive semiparametric approach of Enders and Lee (2004), as de-
scribed in Appendix A. Candidate break processes have been computed by

8See Cassola and Morana (in press).
9See Cassola and Morana (in press) for details on the construction of the dummy

variables and their relation to the institutional features of the operational framework of
the Eurosystem.
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considering trigonometric expansions up to the eighth order for the adap-
tive semiparametric approach. On the basis of the smoothing criterion and
the Monte Carlo results reported in Appendix B, the optimal order of the
trigonometric expansion has been set to four. On the other hand, for the
�exible least squares approach one hundred di¤erent values for the penaliza-
tion parameter for intercept�s dynamics (i.e., � = 100; 200; :::; 10; 000) have
been assumed. Then, on the basis of the smoothing criterion and the Monte
Carlo results reported in Appendix B the number of selected components
has been set to twenty six (i.e., � = 100; 200; :::; 2600). Both methods are
suited to extract a slowly varying deterministic non linear trend, which, ac-
cording to the decomposition discussed in the methodological section, bears
the interpretation of long-run forecast o permanent component for the series
from which it is extracted. The estimated candidate break processes and
the processes analyzed are plotted in Figure 1. As is shown in the plot, the
estimated break processes are smooth, capturing well the trend dynamics in
all the series. The two methods yield similar estimates, although, on the
basis of a smoothness criterion, adaptive estimation may be preferred. The
degree of commonality among the various processes is also strong for all the
series, apart from the overnight rate, in both cases. In fact, the correlation
coe¢ cient ranges between a minimum of 0.5 and a maximum of 0.9 for all
maturities, apart from the overnight rate. For the latter series the high-
est correlation coe¢ cient is about 0.3 for the FLS method, and 0.4 for the
adaptive method.
To test for spurious break processes, possibly due to neglected long mem-

ory, four complementary tests robust to the presence of long memory have
been implemented, namely the augmented Engle and Kozicki test (Morana,
2002), the Dolado et al. (2004) test, the Teverovsky and Taqqu (1997) test,
and the Sibbertsen and Venetis (2004) test. Moreover, in all the cases, to
control for small sample e¤ects, the tests have been carried out using critical
values obtained by means of the parametric bootstrap.10 The �nal evaluation
has then been carried out by means of a test based on the Bonferroni bounds
principle. Since four tests have been used, the null of no structural change
at the 5% level can be rejected if in the worst case the null is rejected at
the 1.25% level. The results of the structural break analysis are reported in
Table 2, Panels A and B. As is shown in the Table, the structural break tests
point to the rejection of the null of no structural change at the 5% signi�-
cance level only for the one-week rate for the case of FLS estimation, and for
the two-week rate only for the case of adaptive estimation. Yet, the evidence

10See Sibbertsen and Venetis (2004) and Poskitt (2005) for a justi�cation of the ap-
proach.
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is not compelling since, according to the Teverovsky and Taqqu (1997) test,
the linear relationship between the log variance and the log level of aggrega-
tion of the series becomes weaker (the R2 decreases) in both cases once the
break process is removed from the series (from 0.98 to 0.95 and from 0.97
to 0.92, for the one-week rate and the two-week rate, respectively), as for all
the other series for which the null of no break process has not been rejected.
Moreover, the latter result is not spurious and determined by the approach
followed in the estimation of the candidate break processes, since, as shown
in Panel 2, the single common break process pointed by the Bierens (2000)
test, is not any longer detected once the test is carried out on the break-free
series. This latter �nding suggests that, if any, the break process would have
been adequately modelled by the approaches followed. The results of the
cobreaking test may then point to the existence of a single stochastic trend
driving the eight log standard deviation processes, i.e. to seven cointegration
relationships relating the processes investigated.
Hence, the results of the structural change analysis have some interesting

implications for the evaluation of the impact of the changes introduced in
March 2004 by the European Central Bank (ECB) to its operational frame-
work for the implementation of monetary policy.11 These changes were intro-
duced with the aim of stabilizing the bidding behavior of banks at the regular
tenders of the ECB, and thereby achieving greater stability of money mar-
ket conditions. In fact, previous to the changes, expectations of key policy
rates changes within the reserve maintenance period created incentives for
banks to either overbid or underbid their true liquidity needs at the Eurosys-
tem tenders, depending on whether o¢ cial rates were expected to increase
or decrease, respectively. This in turn created excess volatility in money
market conditions (both in liquidity and short-term interest rates), which
occasionally interfered with the signaling of the monetary policy stance.
Since the ECB changed its key policy rates more than one year after the

introduction of the reform (i.e. beyond the sample covered in this study)
it is di¢ cult to test the ability of the new framework to cope with expec-
tations of interest rate changes. Yet, some useful insights can be gauged
from the structural break analysis carried out. The stabilizing impact of the
operational framework should be visible only at the very short end of the

11Firstly, the maturity of the regular main re�nancing operations was reduced from two-
weeks to one-week; secondly, the reserve maintenance periods, which started always on
the 24th of each month and ended on the 23rd, were realigned such that they would start
after the ECB�s Governing Council policy decison meeting, which takes place normally on
the �rst Thursday of the month. Moreover, the ECB rates decided at that meeting (the
standing facilities rates and the minimum bid rate of the weekly tenders) would be applied
as of the settlement day of the main re�nancing operation following the policy meeting.
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money market curve (i.e. below the 1-month maturity). In fact, even with-
out expectations of interest rate changes a¤ecting the behavior of market
rates, the reduction in the maturity of the regular re�nancing, the calen-
dar adjustment in the reserve maintenance period, and the non-overlapping
of liquidity provision across maintenance periods, are changes in the details
of the operational framework that may matter for the functioning of the
money market. Although some changes in the dynamics of the log-volatility
processes seem already visible at the very short end of the money market
curve, as lower levels in the break processes of the log-volatility of the one-
and two-week rates, and the one-month rate may be observed, the estimated
break processes are not statistically signi�cant, i.e. none of the maturities
seems to have been permanently a¤ected by the change in the operational
framework in the period considered. Yet, this �nding does not exclude that
the change in the operational framework may have had a persistent impact
on money market volatility. The declining trend dynamics pointed out by
the estimated candidate break processes, in the light of the outcome of the
structural break tests, actually indicate the latter to be the case. Hence,
it is possible to conclude that, while the change in the operational frame-
work has not had a permanent impact on money market volatility, i.e. it
has not a¤ected the unconditional expectation of volatility, it has exercised
persistent e¤ects, i.e. it has a¤ected the conditional expectation of volatility,
documented by the declining trend behavior shown by the volatility of the
shortest maturities about the time the change took place. It is worthwhile
noting that the subtle, yet important, distinction between permanent and
persistent e¤ects could have not been gauged without the proposed P-P-NP
decomposition.

4.3 Long memory properties

The degree of long memory of the series analyzed has been assessed by means
of semiparametric and parametric estimators of the fractional di¤erencing pa-
rameter, implemented, given the outcome of the structural break analysis,
using the actual series. In order to achieve robust conclusions, both paramet-
ric and semiparametric estimators have been employed. The semiparametric
estimators employed belong to two classes, i.e. log periodogram estima-
tion (GPH, Geweke and Porter-Hudak, 1983), and local Whittle estimation
(Kunsch, 1987; Robinson,1995). Recent extensions to these two classes of
estimators have been considered, aiming to improve the performance of the
estimators in the presence of: i) short memory dynamics, (Andrews and
Guggenberger (2000) bias reduced log periodogram estimator, Andrews and
Sun (2004) biased reduced local Whittle estimator, Shimotsu and Phillips
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(2002) pooled log periodogram estimator, Moulines and Soulier (1999) broad
band log periodogram estimator); ii) observational noise (Sun and Phillips
(2003) non linear log periodogram estimator); and iii) non stationarity (Shi-
motsu and Phillips (2004) exact local Whittle estimator). The estimator of
Robinson (1998), which has proved to be robust to both bandwidth selection
and the presence of nonstationarity in Monte Carlo experiments, has also
been employed. Following Taqqu and Teverovsky (1998), in all the cases the
�nal estimates have been obtained as averages over the stable region closest
to the zero frequency. On the other hand, parametric estimation of the frac-
tional di¤erencing operator has been performed by means of exact maximum
likelihood (Sowell, 1992), modi�ed pro�le likelihood (An and Bloom�eld,
1993) and non linear least squares estimation (Beran, 1995). For robustness,
the �nal estimate of the fractional di¤erencing parameter for each series has
been computed as the median of the estimates obtained by means of the var-
ious estimators. The results are reported in Table 3, Panels A-B. As shown
in Panel A, the median estimates of the fractional di¤erencing operator are
in the range 0.22-0.35, with an average value equal to 0.296 (0.032), and the
Bonferroni test for the equality of the fractional di¤erencing parameters does
not allow to reject the null of equality of the fractional di¤erencing parame-
ters at the 1% signi�cance level in all cases (Panel B). Hence, in the rest
of the analysis a common estimate of the fractional di¤erencing parameter
equal to the average value obtained from the eight realized log standard de-
viation processes, i.e. 0.296 (0.032), has been employed. Finally, no evidence
of observational noise could be detected on the basis of the non linear log-
periodogram estimator, providing evidence in favour of the volatility proxy
employed in the study.

4.3.1 Fractional cointegration analysis

The existence of fractional cointegration has been assessed by means of the
Robinson and Yajima (2002) fractional cointegrating rank test. In Table 4,
Panels A-B, the results of the fractional cointegration analysis are reported.
As shown in Panel A, coherent with previous empirical evidence (Cassola
and Morana, in press), the test points to six cointegrating vectors at the
1% signi�cance level, with the two implied common long memory factors ex-
plaining 100% of total variance at the selected bandwidth (2 ordinates). The
cointegrating vectors have been estimated by means of the frequency domain
principal components approach proposed by Morana (2004a, 2005; see also
Beltratti and Morana, 2006), applied to the series in levels. In Table 4, Panel
A, the unidenti�ed cointegrating vectors are reported. As shown in the Table,
the degree of cointegration is moderate, since the error correction residuals
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still show some persistence. In fact, the estimated fractional di¤erencing pa-
rameters range between 0.15 and 0.24, with an average value equal to 0.191
(0.029). Moreover, the Bonferroni test does not allow to reject the null of
equality for the estimated fractional di¤erencing parameters at the 5% level.
The identi�cation of the cointegration space has been carried out by relying
on unitary zero frequency square coherence tests and fractional cointegrating
rank tests carried out on subsets of variables. Since the information set is
composed of eight variables and there are six cointegrating vectors, the num-
ber of identifying restrictions which needs to be imposed on the cointegrating
matrix for exact identi�cation, in addition to the normalization restrictions,
are thirty. As shown in Table 4, Panel B, on the basis of the fractional coin-
tegrating rank test, carried out on all the possible subsets of variables, �ve
bivariate and one trivariate cointegrating relationships could be identi�ed.
The fractional cointegrating rank test points to cointegration for four out of
six cases at the 1% signi�cance level, while for the remaining two cases the
signi�cance level is just over the 10% level. Yet, since in all cases the implied
common fractional trend(s) explains over 97% of total variance and the se-
lection of the threshold level (0.1) for the Robinson and Yajima (2002) test is
arbitrary, it is possible to conclude in favour of the selected structure for the
cointegration space. Moreover, support for the identi�ed cointegration space
is also provided by the zero frequency square coherence analysis. As is shown
in Panel B, for all the identi�ed cointegrating vectors the point estimate of
the square coherence at the zero frequency is very close to the predicted uni-
tary value, the null of unity is largely non rejected, and the null of zero square
coherence is always rejected.12 Finally, from the identi�ed cointegrating vec-
tors it is possible to note the forward transmission of volatility shocks from
the overnight rate to the nine-month rate, moving from all the intermediate
maturities considered, i.e. the two-week, one-month, three-month, and the
six-month rate. Forward transmission of volatility shocks is also revealed
by the sixth cointegrating vector, from the six and nine-month rates to the
one-year rate. Interestingly, in only two cases the null of homogeneity is not
rejected by the data, i.e. for the two-week and one-week rates and for the
nine-month and sixth-month rates.

4.3.2 Permanent-persistent-non persistent decomposition

Since no signi�cant break processes have been found in the log realized volatil-
ity series, the permanent components have been estimated by the sample
unconditional means of the series and the persistent-non persistent decom-

12As shown in Morana (2004b), fractional cointegration implies and is implied by unitary
squared coherence at the zero frequency for the series involved.

20
ECB
Working Paper Series No 703
December 2006



position has been carried out by means of the Fourier approach of Morana
(2006b), selecting the optimal trimming frequency as the closest one to the
origin at which the decomposition objective is achieved, i.e. a smoothed per-
sistent component characterized by a degree of persistence non statistically
di¤erent from the one determined by the semiparametric analysis (d = 0:296
(0:032)), and a non persistent component characterized by a degree of per-
sistence non statistically di¤erent from zero.13 The common long memory
factors have then been computed by applying the principal components ap-
proach, detailed in the methodological section, to the estimated persistent
components. On the basis of the results of the cointegration analysis, it is ex-
pected that two common long memory factors explain the bulk of persistent
�uctuations.
In Figures 3-4 and Table 5 the results of the persistent-non persistent

decomposition are reported. As shown in the Table, in all the cases the de-
composition has been successful in extracting the long memory component
from the series, since the estimated fractional di¤erencing operators for the
log volatility series fall in the range 0.28-0.35, and in none of the cases they
are statistically di¤erent, at the 5% level, from the estimated common value,
i.e. 0.296. Moreover, coherent with the results of the cointegration analysis,
the �rst two principal components account for about 75% of total variance.
The estimated factors, with 95% con�dence bounds, are reported in Figure
3, while in Figure 4 the estimated persistent components, computed from the
estimated factors and factor loadings, are compared with the actual series.14

As shown in the plots, the methodology followed in estimation appears to
be robust to trimming, although the second factor appears to have been
estimated less precisely. Yet, when robustness is assessed on the basis of
the estimated persistent components, it is very hard to distinguish point es-
timates from their 95% signi�cance bounds, since on average the standard
error is only about 10% of the estimated process. As shown by the estimated
factor loading matrix, the �rst factor a¤ects positively all series, while the
second factor a¤ects the shorter (up to the two-week horizon) and the longer
maturities (from the one-month horizon onwards) with di¤erent signs, re-
�ecting an excess persistent volatility component in the longer maturities,
relatively to the shorter ones. Overall, the results suggest that the ECB has
successfully controlled the shortest end of the yield curve. In fact, the excess

13See Appendix A.
14Standard errors have been computed from the corresponding cross-sectional distribu-

tion determined by the sequential trimming followed, with window length determined by
the selected smallest (5) and largest (121) optimal ordinates among the volatility processes
analyzed.
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volatility of the longer end of the money market curve relative to the shorter
end (captured by the second factor) points that the former rates react more
promptly to this factor than the latter do. Coherent with previous �ndings
of Cassola and Morana (in press), it is likely that the excess volatility factor
captures the �ow of �news�about economic conditions, to which the shorter
end of the curve is not �free�to react because of the design of the operational
framework.

4.4 The propagation of money market volatility shocks

The propagation of volatility shocks in the euro area money market has also
been assessed by means of impulse response analysis. Coherent with the
long memory properties of the data, impulse responses have been computed
from a fractionally cointegrated vector error correction (F-VECM) model.
Considering the vector of n I(d), 0 < d < 1, fractionally cointegrated long
memory processes (log volatility processes) yt, the F-VECM representation
(Engle and Granger, 1987; Dittmann, 2004) of the series can be written as

�(L)(1� L)d̂ (yt �m) =
h
1� (1� L)d̂�b̂

i
(1� L)b̂�zt + "t t = 1; :::; T;

(1)
where � (L) = In �

Pp
i=1�iL

i is a polynomial matrix in the lag operator,
with all the roots outside the unit circle, describing the short-run dynamics
of the system, m is a n� 1 vector of intercepts, d̂ is the estimated common
degree of fractional integration of the actual series, b̂; 0 � b̂ < d̂; is the
estimated degree of fractional integration of the r-variate estimated vector
disequilibrium processes zt = �̂

0
yt, with the n � r matrix of cointegrating

vectors denoted by �; and the n � r matrix of loadings denoted by �, and
"t~IID (0;�). Since, as pointed out in the previous section, the estimation
of the cointegration space is semiparametric, the F-VECM model has been
estimated following the Engle and Granger (1987) two-step approach, in
the framework of the thick modelling strategy proposed by Granger and
Jeon (2004), leading to median estimates and 95% con�dence bounds for the
parameters of interest.15

Both information criteria (AIC, BIC) and misspeci�cation tests have been
employed for the selection of the lag length of the F-VECMmodel. While the
inclusion of a single lag is su¢ cient to yield serially uncorrelated residuals,

15In the current framework the �rst step of the Engle and Granger approach requires the
determination of the order of integration of all series, the estimation of the cointegrating
vectors and the determination of their degree of persistence. The second step then concerns
the estimation of the short-run parameters.
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according to both the AIC and BIC criteria three lags can be selected.16 Fol-
lowing the thick modelling strategy, the parameters of the VECMmodel have
then been estimated by considering VECM(1), VECM(2), and VECM(3)
structures, with 1000 Monte Carlo replications for each case. Median esti-
mates, as well as 5th and 95th percentiles, have been computed.
The estimated loading matrix for the cointegrating vectors is reported in

Table 4, Panels B and C. As is shown in the Table, the results are coherent
with the results of the cointegration analysis, since error correcting behavior
can be found relatively to all the disequilibria. In particular, the one-month
rate disequilibrium is corrected by the two-week rate; the two-week rate
disequilibrium by the one-week rate; the six-month rate disequilibrium by
the overnight rate, the one-week rate and the own process itself; the three-
month rate disequilibrium by the one-month rate; the one-year disequilibrium
by the one-month rate and the own process itself; and the nine-month rate
disequilibrium by the three-month rate, the one-year rate and the own process
itself. Moreover, none of the volatility series is weakly exogenous relatively
to the long-run parameters at the 5% signi�cance level.

4.4.1 Identi�cation of structural shocks and impulse response analy-
sis

Exact identi�cation of the structural shocks has been achieved by means of
the Choleski decomposition approach. In particular, the following structure
has been assumed for the contemporaneous impact matrix266666666664

i0;t
i1w;t
i2w;t
i1m;t
i3m;t
i6m;t
i9m;t
i1y;t

377777777775
=

26666664
� 0 0 0 0 0
� � 0 0 0 0
� � � 0 0 0
� � � � 0 0
� � � � � 0
� � � � � �

37777775

266666666664

�i0;t
�i1w;t
�i2w;t
�i1m;t
�i3m;t
�i6m;t
�i9m;t
�i1y ;t

377777777775
:

The ordering of the variables follows standard theoretical assumptions
concerning the propagation of shocks along the term structure, with longer
maturities showing stronger reactivity to shocks than shorter maturities. The
results of the forecast error variance decomposition are reported in Table 7,
while median impulse response functions, with 95% con�dence bounds, are

16Only for the overnight rate the evidence still points to serially correlated residuals,
independently of the inclusion of lagged values of the variables.
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plotted in Figures 4-11.17 As shown in Table 7, the own shocks explain the
bulk of variability (between 71% and 96%) at all horizons for all variables.
Moreover, the evidence points to limited forward propagation of volatility
shocks, since for all maturities, apart from the overnight rate and the three-
month rate, the own shocks a¤ect non negligibly only the consecutive ma-
turities and, at most, within a time horizon of three months. Furthermore,
in none of the cases there is evidence of signi�cant backward propagation of
shocks. Finally, according to the forecast error variance decomposition, the
bulk of the adjustment is completed within twenty days, with only non signif-
icant changes taking place thereafter. The forward propagation of volatility
shocks can also be noted from the impulse response functions. The fol-
lowing �ndings are noteworthy. Firstly, an overnight rate shock a¤ects its
own volatility mostly within one day, its e¤ects having faded away already
within �ve days. The overnight rate shock also contemporaneously a¤ects
the volatility of other maturities within three months, but the e¤ects of the
shock are already not signi�cant (at the 5% level) after one day. For matu-
rities beyond three months the e¤ects are not signi�cant even contempora-
neously. Hence, the �ndings point that liquidity shocks are not transmitted
forward along the term structure. On the other hand, the e¤ects of the
one-week, two-week and one-month volatility shocks are similar, with shocks
propagating forward along the term structure and declining contemporane-
ous impact as the maturity increases. While the e¤ects of the one-week rate
and two-week rate volatility shocks tend to fade away within ten days, for
the one-month rate the e¤ects tend to be more long lasting. Interestingly,
the e¤ects of the two-week rate volatility shock tend to be weaker than for
the other two maturities. Moreover, for all the three maturities signi�cant
backward propagation of shocks can be found, with impact decreasing in
signi�cance and magnitude as the shortest maturity is approached. Yet, in
the light of the results of the forecast error variance decomposition, back-
ward propagation of shocks does not seem to be an important feature for
the data analyzed. In the light of the common factor analysis, the persis-
tent factors may be related to the one-week, two-week and one-month rate
volatility shocks. In particular, the �rst persistent factor may be related to
the one-week and two-week rate shocks, re�ecting the change in the maturity
of one of the key ECB policy rates (minimum bid rate of the main re�nancing
operations) occurred in March 2004, and pointing to forward transmission
of persistent shocks, potentially related to ECB monetary policy decisions.

17Median impulse responses have been computed by truncating the in�nite order VAR
representation for the F-VECM model at 25 lags. The median estimates as well as the
95% con�dence intervals have been obtained following the thick modelling strategy.
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On the other hand, the second persistent factor may be related to the one-
month rate volatility shock, possibly re�ecting the reaction of the market to
macroeconomic news. Finally, also the three-month, six-month, nine-month
and one-year rate volatility shocks, show similar properties, with only for-
ward propagation being statistically signi�cant, and declining impact as the
maturity increases.
Overall, the results con�rm previous �ndings that, di¤erently from per-

sistent shocks, liquidity shocks are not transmitted along the yield curve.
Moreover, the absence of backward transmission of shocks from the longer
end of the curve suggests that the ECB controls very closely the shortest end
of the yield curve.

5 Conclusions

In the paper the persistence of money market interest rates volatility and
the existence of long-run linkages among volatility processes along the term
structure has been analyzed. The main �ndings of the study are as fol-
lows. Firstly, the evidence points to a common degree of long memory in
the money market interest rates volatility processes. Secondly, evidence of
fractional cointegration relationships relating all the series, apart from the
overnight rate, and of two common long memory factors, driving the tempo-
ral evolution of the volatility processes, has been found. One factor points to
forward transmission of persistent volatility shocks along the term structure
(�rst factor), and the other factor points to excess persistent volatility af-
fecting the longer maturities relative to the shorter (second factor). Forward
propagation of volatility shocks is also pointed out by the impulse response
analysis and the forecast error variance decomposition, showing e¤ects fading
away quickly and mostly a¤ecting closest maturities. Interestingly, while the
�rst persistent factor may be related to the ECB policy rate volatility shocks,
the second factor may be related to one-month rate volatility shocks. It is
conjectured that the second factor in volatility captures the �ow of �news�
about economic conditions to which the shorter end of the curve is not �free�
to react because of the design of the operational framework.
Overall the results suggest that liquidity shocks are not transmitted along

the term structure, and that the ECB has successfully controlled the shortest
end of the yield curve. In fact, the excess volatility of the longer end of the
money market curve relative to the shorter end (captured by the second
factor) suggests that the former rates react more promptly to this factor
than the latter do. Moreover, negligible evidence of backward transmission
of volatility shocks has been found.
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6 Appendix A: Estimation of the permanent,
persistent, and non persistent components

6.1 Estimation of the permanent component

6.1.1 Flexible least squares estimation

Following Morana (2006), estimation of the break processes has been carried
out by means of the FLS estimator. By de�ning the measurement equation
as

yt = �t + �yt�1 + "t;

and the associated transition equation as


i;t�
i;t�1 ' 0;

where 
i;t =
�
�t �

�0
is the vector parameters in the measurement equa-

tion, the FLS problem can be stated as

min


c2i;M (
) + c

2
i;D (
) ;

where c2M (
) =
XT

t=1
"2t is the measurement cost,

c2D (
) =
TX
t=2

�

t � 
t�1

�0
�
�

t � 
t�1

�
is the dynamic cost, and � =

�
�1 0
0 �2

�
is the matrix containing the pe-

nalization terms for parameters dynamics. It is known that lim
�!1


j;t;FLS =


j;OLS:
The �exible least squares (FLS) estimator of the break process is then

denoted as

b̂t(�) =
�̂t
1� �̂ :

A key issue in FLS estimation is the selection of the value of the penaliza-
tion parameters �j. This latter problem has been solved by following a thick
modelling strategy (Granger and Jeon, 2004), i.e. by carrying out estimation
over a grid of values, i.e. �1 = f100; 200; :::; 10; 000g, �2 = 106, and then
averaging over a given number of break process candidates, i.e.

b̂�H;t =
1

H

HX
j=1

b̂j;t;
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where H is determined on the basis of a smoothing criterion, i.e. H is such
that

V [b̂�H;t]� V [b̂�H�1;t]
V [b̂�H�1;t]

= s ' 0:

In the empirical implementation s can be optimally set to a small value,
i.e. 0.01 or 0.005, determined on the basis of the Monte Carlo results reported
in the Appendix.

6.1.2 Adaptive semiparametric estimation

Following Enders and Lee (2004), the break process can be modelled by
means of the Gallant (1984) �exible functional form

bt = b0 + b1t+

pX
k=1

(bs;k sin(2�kt=T ) + bc;k cos(2�kt=T )) :

Once the number of trigonometric terms is selected, the break process
can then be estimated by running the following OLS regression

yt = bt + "t:

Both a smoothing criterion and the Monte Carlo results reported in the
Appendix may be followed to determine the order of the expansion k, which
has been set to four in the paper. In fact, as far as the Monte Carlo results are
concerned, an expansion of the fourth order is optimal in terms of both the
Theil inequality coe¢ cient and the root mean square forecast error criteria,
being both values negligible. Moreover, in order to assess the impact of
increasing the order of the trigonometric expansion on the smoothness of the
estimated break process, the break process can been computed for di¤erent
orders of the expansion, i.e. k = f1; 2; :::; 8g, and the optimal order of the
expansion can be determined on the basis of a smoothing criterion, i.e. k� is
such that

V [b̂k�;t]� V [b̂k��1;t]
V [b̂k��1;t]

= s ' 0.

6.2 Estimation of the persistent and non persistent
components

Consider the stationary process fytgT�1t=0 ,

yt = st + nt;
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where st is the persistent component (I(d), d < 0:5) and nt is the non
persistent component (I(0)).
Then, following Morana (2006b), estimation of the persistent component

st, can be achieved as follows. Firstly, the discrete Fourier transform of yt is
computed

~yt =
1

N

T�1X
k=0

yte
i2�k=T :

Then, the portion of the transformed process corresponding to the non
persistent component is discarded by setting

~y�t =

�
~yt 0 � t � H
0 t > H

:

Finally, st is estimated by applying the inverse discrete Fourier transform
to ~y�t , yielding

st =
1

N

T�1X
k=0

~y�t e
�i2�k=T :

A two-step procedure for the determination of the trimming frequency
2�H=T is proposed. Once the degree of fractional integration (d̂y) of the
process yt has been determined, candidate persistent processes are computed
by allowing H to vary, i.e. H = f3; 4; :::T � 1g ; computing, in correspon-
dence of each value of H, the degree of persistence of the reconstructed per-
sistent (d̂s;H) and non persistent (d̂n;H) components. The optimal trimming
frequency is then determined by selecting H in such a way that

d̂s;H ' d̂y and dn;H ' 0;

i.e. as the frequency at which the reconstructed persistent component has
a degree of persistence not statistically di¤erent from the one of the ac-
tual process and the reconstructed non persistent component has a degree
of persistence not statistically di¤erent from zero.18 In the case more than
a frequency satis�ed this latter criterion, the farthest one from the zero fre-
quency may be selected in order not to disregard signal potentially belonging
to the persistent component. On the other hand, if a smoothed version of
the unobserved component is sought, or when the non persistent component
may still be an integrated process I(b), although of lower order than the
actual series, i.e. b < d, the optimal trimming frequency may be set equal
to the closest one to the zero frequency, still satisfying the above persistence

18See Pollock (2005) for additional details on Fourier series based signal extraction
methods.
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requirements. The Monte Carlo results reported in Appendix B provide full
support to the proposed methodology.19

7 Appendix B: Break process estimation, Monte
Carlo results

The following data generating process has been assumed for the log realized
volatility process

(1� L)dyt = bt + "t

"t~n:i:d:(0; 1)

b1;t =

�
0 1 � t � 500
1 501 � t � 1000

b2;t =

8<:
0 1 � t � 300
1 301 � t � 700
�0:5 701 � t � 1000

;

with s = f0:01; 0:007; 0:005; allg; d = f0:2; 0:3; 0:4g; bt = fb1;t; b2;tg; t =
1; :::; 1000: The number of replications has been set to 500 for each case.
The performance of the estimators has been assessed with reference to the

ability of recovering the unobserved components bt, st, and ft, respectively.
The Theil inequality coe¢ cient (IC) and the root mean square forecast error
(RMSFE) have been employed in the evaluation

RMSFE =

vuut 1

T

TX
t=1

(x�t � xt)
2

IC =
RMSFEvuut 1

T

TX
t=1

x�2t +

vuut 1
T

TX
t=1

x2t

;

where x�t =
1
n

nX
j=1

x̂j;t and x̂j;t is the estimated unobserved component at time

t for replication j, xt = fbt; st; ftg.
The results of the Monte Carlo exercise for the break process estimation

approach are reported in Table 8. As is shown in Table 8, the performance

19Note that the proposed methodology could also be employed to compute a signal-noise
decomposition.
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of both the FLS and the adaptive estimator is not a¤ected by the degree of
persistence of the series, increasing with the number of trigonometric compo-
nents included in the speci�cation (adaptive) and as the smoothing threshold
s (FLS) is lowered. While according to the Theil inequality coe¢ cient the
adaptive estimator performs well already when a single trigonometric com-
ponent is included, a substantial improvement may be noticed by adding an
additional trigonometric component for the single break case and three addi-
tional components for the two breaks case. On the other hand, for the FLS
estimator averaging over all the candidate break processes does not seem to
be optimal. An optimal threshold can be found by assessing the contribution
of the additional candidate to the smoothness of the break process, yielding
an optimal smoothing threshold (s) equal to 0.01. Moreover, both the FLS
and adaptive estimators perform best in the case of a single break point than
for the case of two break points. While both approaches may successfully
recover an unobserved break process, the FLS approach seems to perform
slightly better than the adaptive one.
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Table 1, Panel A: Summary statistics for daily realized standard deviations
i0 i1w i2w i1m i3m i6m i9m i1y

mean 3.296 3.355 1.896 1.879 1.998 1.875 2.554 1.877
s.d. 6.367 9.759 7.368 3.511 2.743 2.707 3.012 2.818
sk 4.578 6.765 13.066 4.045 3.682 6.101 4.097 8.988
ek 29.180 56.511 210.45 21.212 19.260 47.226 26.289 108.73
min 0.104 0.010 0.021 0.015 0.048 0.071 0.228 0.235
max 64.573 109.72 147.70 32.727 26.128 31.156 34.001 42.513
NBJ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 1, Panel B: Summary statistics for daily realized log standard deviations
i0 i1w i2w i1m i3m i6m i9m i1y

mean 0.175 -0.041 -0.341 -0.345 0.119 0.232 0.545 0.316
s.d. 1.352 1.392 1.173 1.348 1.035 0.808 0.831 0.668
sk 0.582 0.661 0.572 0.369 0.303 0.535 0.563 1.215
ek -0.475 0.629 1.369 -0.197 -0.119 1.222 0.000 2.801
min -2.262 -4.630 -3.882 -4.215 -3.044 -2.651 -1.479 -1.450
max 4.168 4.698 4.995 3.488 3.263 3.439 3.526 3.750
NBJ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KS 2.849 2.241 1.697 2.074 1.66 1.509 2.491 2.857
The table reports summary statistics for daily realized standard deviations

(Panel A) and log realized standard deviations (Panel B). ij ;
j = 0; 1w; 2w; 1m; 3m; 6m; 9m; 1y; denotes the overnight rate, the one-week
rate, the two-week rate, the one-month rate, the three-month rate, the six
month rate, the nine-month rate and the one-year rate, respectively. NBJ is
the p-value of the Bera-Jarque normality test, while KS is the value of the
Kolmogorov-Smirnov test (the 99% and 95% critical values are 1.63 and
1.36, respectively). The time span analysed is 28/11/2000:22/04/05, for a

total of 952 daily observations.
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Table 2, Panel A: Structural break and cobreaking tests, FLS estimation

i0 i1w i2w i1m i3m i6m i9m i1y
SBT 0:99 0:01 0:27 0:11 0:05 0.05 0.19 0.24
R2

R2bf

0:98
0:95

0:98
0:95

0:97
0:93

0:97
0:91

0:98
0:94

0:95
0:93

0:97
0:94

0:97
0:95

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
CBT 0.019 0.024 0.030 0.064 0.089 0.214 0.627 2.541�

CBTbf 0.014 0.016 0.019 0.020 0.025 0.030 0.031 0.034
95% 0.466 0.674 0.860 1.035 1.219 1.411 1.598 1.785

Table 2, Panel B: Structural break and cobreaking tests, adaptive estimation

i0 i1w i2w i1m i3m i6m i9m i1y
SBT 0:27 0:04 0:01 0:06 0:11 0.04 0.15 0.15
R2

R2bf

0:98
0:95

0:98
0:95

0:97
0:92

0:97
0:90

0:98
0:93

0:95
0:93

0:97
0:94

0:97
0:95

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
CBT 0.019 0.024 0.030 0.064 0.089 0.214 0.627 2.541�

CBTbf 0.011 0.011 0.014 0.015 0.016 0.018 0.021 0.0254
95% 0.466 0.674 0.860 1.035 1.219 1.411 1.598 1.785

The table reports the results of the (Bonferroni bounds) structural break
test (SBT ), and the R2 of the log-log variance regression obtained from the
Teverovsky and Taqqu (1997) test (actual series and break-free (bf) series).
The table also reports the results of the Bierens (2000) cobreaking test (CBT )
for the null of up to r cobreaking vectors for the actual and break-free (bf)
series. ���denotes rejection at the 5% signi�cance level; �95%�denotes the
critical value for the test.
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Table 3, Panel A: Median estimated fractional di¤erencing operators

i0 i1w i2w i1m i3m i6m i9m i1y

d
0:217
0:032

0:268
0:031

0:333
0:030

0:352
0:029

0:332
0:031

0:279
0:035

0:292
0:032

0:292
0:032

Table 3, Panel B: Test for the equality of the fractional di¤erencing operators

i0 i1w i2w i1m i3m i6m i9m i1y
i0 0:178 0:003 3E � 4 0:002 0:097 0:047 0:047
i1w 0:252 0:091 0:025 0:090 0:768 0:525 0:525
i2w 0:008 0:132 0:618 0:979 0:155 0:286 0:286
i1m 0:002 0:048 0:649 0:593 0:048 0:108 0:108
i3m 0:010 0:144 0:982 0:638 0:154 0:288 0:288
i6m 0:191 0:814 0:241 0:108 0:257 0:727 0:727
i9m 0:097 0:590 0:350 0:165 0:369 0:784 1:000
i1y 0:097 0:590 0:350 0:165 0:369 0:784 1:000

Panel A reports the estimated fractional di¤erencing operators, with stan-
dard error in brackets. Panel B reports the p-values of the tests for the
equality of the fractional di¤erencing parameter. The upper triangular ma-
trix refers to the Robinson and Yajima (2002) test; the lower triangular
matrix to the standard test for the equality of two estimated parameters.
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Table 4, Panel A: Fractional cointegrating rank test, all variables

b = 2 eig pv
1% 5% 10% TV 1.531 0.898

r = 1 0.000 0.000 0.000 0.013 0.175 0.102
r = 2 0.000 0.000 0.000 0.025 0.000 0.000
r = 3 0.000 0.000 0.000 0.038 0.000 0.000
r = 4 0.000 0.000 0.000 0.050 0.000 0.000
r = 5 0.000 0.000 0.000 0.063 0.000 0.000
r = 6 0.000 0.000 0.000 0.075 0.000 0.000
r = 7 0.256 0.211 0.187 0.088 0.000 0.000

Table 4, Panel B: Fractional cointegrating rank test, subsets

b = 2 (i2w; i1w) b = 2 (i1m; i2w)
eig 0.424 0.002 eig 0.712 0.019
pv 0.996 0.004 pv 0.973 0.027

1% 5% 10% 1% 5% 10% TV
r = 1 0.010 0.008 0.007 r = 1 0.069 0.057 0.050 0.050

b = 2 (i3m; i1m) b = 2 (i6m; i3m)
eig 0.647 0.006 eig 0.386 0.002
pv 0.991 0.009 pv 0.996 0.004

1% 5% 10% 1% 5% 10% TV
r = 1 0.024 0.019 0.017 r = 1 0.01 0.008 0.007 0.050
b = 2 (i9m; i6m) b = 2 (i1y; i2w; i0)
eig 0.438 0.012 eig 0.308 0.082 0.000
pv 0.973 0.027 pv 0.790 0.210 0.000

1% 5% 10% TV 1% 5% 10% TV
r = 1 0.071 0.059 0.052 0.050 r = 1 0.000 0.000 0.000 0.033

r = 2 0.484 0.403 0.361 0.067
Panels A and B report the results of the Robinson and Yajima (2002)

fractional cointegrating rank test. eig denotes the estimated eigenvalues, pv
the proportion of explained variance, rank = i; i = 1; :::; 2; denotes the

corresponding test at the given signi�cance level (1%, 5%, 10%), TV is the
threshold value for the test, computed as 0:1 � r=n, and b is the selected

bandwidth.
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Table 5, Panel A: Estimated (unidenti�ed) cointegrating vectors

CV1 CV2 CV3 CV4 CV5 CV6
i0 �0:337 �0:113 0:946 0:144 �0:978 0:527
i1w �0:240 �1:280 �0:829 0:216 �0:457 �0:214
i2w �1:245 1:000 �0:017 �0:319 �0:033 �0:640
i1m 1:000 0:354 0:121 �0:178 �1:326 0:014
i3m 0:103 0:832 �0:188 1:000 0:492 0:329
i6m 0:216 �0:750 1:000 0:106 1:054 �0:498
i9m �1:053 �0:375 0:009 �0:205 0:240 1:000
i1y 0:821 0:277 �0:257 0:561 1:000 0:538
C20 1:000 1:000 1:000 1:000 1:000 1:000
T0 0:000 0:000 0:000 0:000 0:000 0:000
T1 0:999 0:999 0:999 0:999 0:999 0:999

b
0:189
(0:029)

0:150
(0:029)

0:149
(0:029)

0:236
(0:029)

0:238
(0:029)

0:185
(0:029)

Table 5, Panel B: Estimated (identi�ed) cointegrating vectors

CV1 CV2 CV3 CV4 CV5 CV6

i0 0 0 0 0
�0:603
(0:126)

0

i1w 0
�0:992
(0:064)

0 0 0 0

i2w
�1:459
(0:103)

1 0 0
�0:695
(0:163)

0

i1m 1 0 0
�0:496
(0:051)

0 0

i3m 0 0
�1:359
(0:085)

1 0 0

i6m 0 0 1 0 0
�0:833
(0:083)

i9m 0 0 0 0 0 1
i1y 0 0 0 0 1 0
C20 0:875 0:984 0:983 0:945 1:000 0:833
T0 0:000 0:000 0:000 0:000 0:000 0:000
T1 0:974 0:996 0:996 0:988 0:999 0:964
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Table 5, Panel C: Loading matrix

i0 i1w i2w i1m

CV1
0:331

(�0:03 - 0:92)
0:258

(�0:26 - 0:74)
0:458�

(0:06 - 0:90)
0:107

(�0:40 - 0:55)

CV2
0:079

(�0:47 - 0:59)
0:699�

(0:23 - 1:15)
�0:032

(�0:50 - 0:36)
0:099

(�0:30 - 0:55)

CV3
�1:082�

(�2:01 - � 0:52)
0:728�

(0:02 - 1:62)
0:141

(�0:49 - 0:81)
�0:077

(�0:76 - 0:73)

CV4
0:192

(�0:50 - 1:06)
�0:337

(�1:12 - 0:33)
�0:101

(�0:74 - 0:43)
0:688�

(0:14 - 1:35)

CV5
0:066

(�0:18 - 0:41)
0:017

(�0:31 - 0:31)
�0:040

(�0:30 - 0:25)
0:295�

(0:01 - 0:64)

CV6
�0:442

(�1:32 - 0:30)
�0:549

(�1:29 - 0:18)
0:131

(�0:62 - 0:76)
�0:340

(�1:18 - 0:38)

Table 5, Panel D: Loading matrix

i3m i6m i9m i1y

CV1
0:125

(�0:20 - 0:52)
0:174

(�0:09 - 0:46)
0:251

(�0:11 - 0:53)
0:043

(�0:23 - 0:28)

CV2
0:047

(�0:28 - 0:47)
�0:020

(�0:28 - 0:23)
�0:228

(�0:56 - 0:09)
�0:137

(�0:43 - 0:05)

CV3
0:171

(�0:48 - 0:74)
�0:505�

(�1:01 - � 0:15)
0:329

(�0:12 - 0:78)
0:257

(�0:05 - 0:77)

CV4
0:191

(�0:48 - 0:64)
0:192

(�0:18 - 0:67)
0:294

(�0:06 - 0:86)
0:159

(�0:14 - 0:56)

CV5
0:079

(�0:16 - 0:28)
�0:101

(�0:27 - 0:08)
0:019

(�0:17 - 0:20)
�0:167�

(�0:32 - � 0:02)

CV6
�0:678�

(�1:34 - � 0:11)
0:320

(�0:13 - 0.73)
�0:569�

(�1:01 - � 0:16)
�0:173�

(�0:60 - 0:21)

Panel A reports the unidenti�ed estimated cointegrating vectors, Panel B
reports the identi�ed estimated cointegrating vectors with Christensen and
Nielsen (in press) asymptotic standard error in parenthesis. C20 is the

estimated simple or multiple square coherence at the zero frequency; T0 and
T1 denote the p-values of the zero and unitary squared coherence at the
zero frequency test, respectively; b is the estimated fractional di¤erencing
parameter for the cointegrating vectors. Panels C and D report the

estimated median loadings, with 95% con�dence intervals in parenthesis.
���denotes rejection of the null of zero coe¢ cient at the 5% level.
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Table 6: Persistent-Non Persistent decomposition

dp dnp m f1 f2

i0
0:353
(0:071)

0:020
(0:049)

5
0:127
(0:056)

�0:232
(0:066)

i1w
0:290
(0:061)

0:000
(0:022)

42
0:618
(0:059)

�0:292
(0:054)

i2w
0:281
(0:059)

0:084
(0:065)

63
0:646
(0:027)

�0:295
(0:006)

i1m
0:300
(0:062)

0:014
(0:093)

121
0:965
(0:008)

0:119
(0:007)

i3m
0:282
(0:057)

0:076
(0:090)

73
0:533
(0:062)

0:066
(0:031)

i6m
0:316
(0:067)

0:066
(0:065)

64
0:402
(0:016)

0:284
(0:034)

i9m
0:290
(0:062)

0:083
(0:062)

83
0:317
(0:036)

0:369
(0:032)

i1y
0:287
(0:061)

0:069
(0:091)

90
0:246
(0:028)

0:078
(0:026)

pv
0:635
(0:029)

0:126
(0:007)

The table reports the estimated fractional di¤erencing operator for the
estimated persistent (p) and non-persistent (np) components, the optimal
trimming ordinate (m), and the estimated factor loading matrix (f1; f2),
with the proportion of total variance (pv) explained by each factor.

Standard errors are reported in brackets.
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Table 7: Forecast error variance decomposition

1- day �i0 �i1w �i2w �i1m �i3m �i6m �i9m �i1y
i0 96:58 1:11 0:78 0:06 0:49 0:17 0:30 0:05
i1w 3:05 94:09 0:02 0:28 0:04 0:07 0:05 0:05
i2w 3:02 19:51 76:32 0:55 0:05 0:14 0:04 0:06
i1m 1:64 13:59 7:21 76:26 0:12 0:33 0:05 0:07
i3m 1:22 2:71 3:11 8:69 83:55 0:04 0:14 0:07
i6m 0:15 3:42 0:65 4:18 3:18 86:34 1:28 0:26
i9m 0:14 1:75 0:23 3:26 1:87 14:01 78:40 0:04
i1y 0:25 2:58 0:69 3:55 0:61 6:22 10:73 74:77

5- day �i0 �i1w �i2w �i1m �i3m �i6m �i9m �i1y
i0 89:42 2:87 2:50 1:05 1:08 0:78 0:82 0:21
i1w 3:19 89:60 3:73 1:33 0:35 0:27 0:57 0:20
i2w 3:25 19:01 73:48 2:06 0:26 0:45 0:26 0:23
i1m 1:85 13:60 7:23 74:17 0:94 0:63 0:48 0:25
i3m 1:60 2:91 3:39 8:94 80:90 0:42 0:69 0:31
i6m 0:38 4:22 0:91 5:75 3:62 82:53 1:71 0:41
i9m 0:34 2:12 0:63 4:10 2:03 15:32 74:83 0:20
i1y 1:11 3:31 0:91 4:11 0:79 6:20 10:34 72:80

10- day �i0 �i1w �i2w �i1m �i3m �i6m �i9m �i1y
i0 88:40 3:10 2:59 1:10 1:20 1:01 1:07 0:25
i1w 3:22 88:56 3:99 1:69 0:45 0:31 0:67 0:23
i2w 3:28 18:95 72:84 2:44 0:35 0:51 0:32 0:27
i1m 2:02 13:42 7:12 73:32 1:49 0:71 0:60 0:28
i3m 1:68 2:90 3:55 8:84 80:34 0:46 0:85 0:37
i6m 0:43 4:51 0:98 6:05 4:02 81:26 1:71 0:46
i9m 0:42 2:21 0:76 4:27 2:15 15:80 73:68 0:26
i1y 1:37 3:58 0:98 4:54 0:85 6:24 10:09 71:83

20- day �i0 �i1w �i2w �i1m �i3m �i6m �i9m �i1y
i0 87:61 3:21 2:76 1:13 1:28 1:18 1:26 0:27
i1w 3:21 87:73 4:15 1:90 0:53 0:35 0:78 0:26
i2w 3:36 18:76 72:36 2:76 0:45 0:54 0:40 0:29
i1m 2:14 13:12 7:02 72:48 2:15 0:74 0:72 0:32
i3m 1:78 2:91 3:70 8:74 79:56 0:50 1; 04 0:41
i6m 0:49 4:71 1:03 6:33 4:38 79:90 1:73 0:49
i9m 0:47 2:29 0:86 4:49 2:25 16:10 72:61 0:32
i1y 1:58 3:85 1:06 4:88 0:91 6:25 9:97 70:86

The Table reports the median forecast error variance decomposition.
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Table 8: Break process estimation, Monte Carlo results
1 break point : IC

FLS ADAPTIV E
snd 0:2 0:3 0:4
0:01 0:04 0:04 0:05
0:007 0:04 0:04 0:05
0:005 0:05 0:05 0:05
all 0:07 0:07 0:07

cnd 0:2 0:3 0:4
1 0:13 0:13 0:13
2 0:10 0:10 0:10
3 0:09 0:09 0:09
4 0:08 0:08 0:08

1 break point : RMSFE
FLS ADAPTIV E

snd 0:2 0:3 0:4
0:01 0:06 0:06 0:07
0:007 0:06 0:06 0:07
0:005 0:06 0:07 0:07
all 0:10 0:10 0:10

cnd 0:2 0:3 0:4
1 0:17 0:17 0:17
2 0:14 0:14 0:14
3 0:12 0:12 0:12
4 0:11 0:11 0:11

2 break points : IC
FLS ADAPTIV E

snd 0:2 0:3 0:4
0:01 0:08 0:08 0:08
0:007 0:08 0:08 0:09
0:005 0:09 0:09 0:10
all 0:14 0:14 0:14

cnd 0:2 0:3 0:4
1 0:23 0:23 0:23
2 0:19 0:19 0:19
3 0:17 0:17 0:17
4 0:13 0:13 0:13

2 break points : RMSFE
FLS ADAPTIV E

snd 0:2 0:3 0:4
0:01 0:10 0:10 0:11
0:007 0:11 0:11 0:12
0:005 0:12 0:12 0:13
all 0:18 0:18 0:18

cnd 0:2 0:3 0:4
1 0:31 0:31 0:31
2 0:25 0:25 0:25
3 0:23 0:23 0:23
4 0:18 0:18 0:18

The Table reports the Theil inequality coe¢ cient (IC) and the root mean
square forecast error (RMSFE) for the FLS and the adaptive break

process estimator.
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Figure 1: Plots 1-6: log realized standard deviations: actual series and FLS
candidate break processes (overnight rate (i0), one-week rate (i1w),
two-week rate (i2w), one-month rate (i1m), three-month rate (i3m), six
month rate (i6m), nine month rate (i9m), twelve-month rate (i1y)). Plots

7-12 FLS (FLS) and adaptive (A) candidate break processes.



46
ECB
Working Paper Series No 703
December 2006

Figure 2: Persistent factors with 95% con�dence bounds.

Figure 3: Persistent components (with 95% con�dence bounds) and actual
series.



47
ECB

Working Paper Series No 703
December 2006

Figure 4: Impulse response functions; unitary overnight rate shock.

Figure 5: Impulse response functions; unitary one-week rate shock.
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Figure 6: Impulse response functions; unitary two-week rate shock.

Figure 7: Impulse response functions; unitary one-month rate shock.
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Figure 8: Impulse response functions; unitary three-month rate shock.

Figure 9: Impulse response functions; unitary six-month rate shock.
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Figure 10: Impulse response functions; unitary nine-month rate shock.

Figure 11: Impulse response functions; unitary one-year rate shock.
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