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Abstract

We develop a technique for analyzing the response dynamics of economic vari-

ables to structural shocks in linear rational expectations models. Our work

differs from standard SVARs since we allow expectations of future variables to

enter structural equations. We show how to estimate the variance-covariance

matrix of fundamental and non-fundamental shocks and we construct point

estimates and confidence bounds for impulse response functions. Our tech-

nique can handle both determinate and indeterminate equilibria. We provide

an application to U.S. monetary policy under pre and post Volcker monetary

policy rules.

JEL-Classification: C39, C62, D51, E52, E58

Key-words: Identification, indeterminacy, rational expectations models.
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Non Technical Summary

We develop a technique for analyzing the response dynamics of economic

variables to structural shocks in linear rational expectations models. Our

work differs from standard SVARs since we allow expectations of future vari-

ables to enter structural equations. We show how to estimate the variance-

covariance matrix of fundamental and non-fundamental shocks and we con-

struct point estimates and confidence bounds for impulse response functions.

Our technique can handle both determinate and indeterminate equilibria. We

provide an application to U.S. monetary policy under pre and post Volcker

monetary policy rules.
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1 Introduction

This paper introduces a technique for analyzing the dynamic effects of struc-

tural shocks in linear rational expectations models. It is analogous to the

method used to construct impulse response functions in structural VARs.

However, our suggested technique differs from identification schemes com-

monly used in the SVAR literature because the models we study contain

future expectations as explanatory variables. Typically, equations of this

kind arise as linearized equilibrium or first-order conditions in representative

agent dynamic stochastic general equilibrium (DSGE) models. If the model

is sufficiently identified, the parameters of these equations will be truly struc-

tural and the impulse responses that we compute may be used in comparative

exercises to assess the effects of shocks across different regimes.

We demonstrate our method along an empirical application to U.S. mon-

etary policy that is closely related to the large literature, surveyed by Chris-

tiano, Eichenbaum and Evans [12], on the use of structural VAR’s to estimate

the monetary transmission mechanism. Prominent contributions to this lit-

erature include e.g. papers by Bernanke and Mihov [3] and Christiano et. al.

[13].1 Bernanke and Mihov estimate models of regime changes and find that

the best indicator of monetary policy stance differs across regimes. Our own

analysis complements their approach. Although we consider only a single in-

dicator of monetary policy, the fed funds rate, our estimates are potentially

of more use to the policy maker since, by including expectations as explana-

tory variables, we claim to identify parameters of the “deep structure” that

are, conceptually, invariant to changes in the policy rule. This issue was first

pointed to by Keating [22] who argued that most standard SVAR identifica-

1See also the debate between Chari, Kehoe and McGratten [11] and Christiano, Eichen-

baum and Vigfussen [14], [15] over the effects of a productivity shock in an SVAR and the

paper by Ferndandez-Villaverde, Rubio-Ramirez and Sargent [18].
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tion schemes will yield inconsistent estimates since they confound structural

parameters with expectational effects. Our estimates are not subject to the

“Keating critique” since we explicitly account for expectations in our struc-

tural estimates.

One important issue that arises in our work is the possibility that struc-

tural parameter estimates may be associated with either a determinate or an

indeterminate model. For some points in the parameter space, a structural

linear rational expectations model has a unique determinate equilibrium that

is driven solely by shocks to preferences, endowments and technology. But for

other points in the parameter space there may exist multiple indeterminate

equilibria and in this case non-fundamental or ‘sunspot’ shocks may also play

a role such that there would be room for belief shocks, due to the self-fulfilling

revisions of expectations, to add additional components to the variances of

economic variables of interest. We confront this possibility by presenting a

method for estimating the variance-covariance matrix of structural shocks

that may be applied in both the determinate and the indeterminate case.

From that perspective we find the SVAR approach to identification of struc-

tural shocks problematic since, if the nature of the shocks driving the econ-

omy can change when economic policy changes, fixed identification schemes

in an SVAR cannot be considered “structural”.

To illustrate our method, we apply it to a New-Keynesian model esti-

mated using U.S. data before and after 1979. We chose this data set since

Clarida et. al. ([16], CGG) have argued that U.S. data in the period from

1960 through 1979 is well characterized by an indeterminate equilibrium but

that after 1979 the characteristics of the data changed and the period since

that date is described by a single determinate rational expectations equilib-

rium. CGG suggested that the observed reduction in volatility in inflation,

unemployment and the output gap, following 1979, may be attributed to

7
ECB

Working Paper Series No. 586
February 2006



the implementation of a monetary policy that caused a switch from an in-

determinate to a determinate equilibrium. Those findings, which have been

substantiated by Lubik-Schorfheide (LS) [24] and Boivin-Giannoni [9], sug-

gest that there may be a high payoff to a method that can disentangle the

direct effects of fundamental impulses to the structural equations with their

indirect effects on expectations.

Our work is most closely related to the paper by LS [24] who present a

Bayesian maximum likelihood approach to compute posterior odds ratios for

determinate versus indeterminate regions of the parameter space of a DSGE

model. In contrast, we use a classical method and suggest a system GMM

estimator which has the advantage that the researcher needs only to specify

certain moment conditions rather than the full density of the errors. As a

practical matter, our method is relatively easy to implement in particular in

larger models and we provide MATLAB code that is easily transportable to

a range of environments. A corresponding disadvantages of our method, if

the true structural model is known, is that since GMM is a limited informa-

tion estimator it is less efficient than full information maximum likelihood.

Moreover, GMM estimates may suffer from weak instruments, but that can

be tested and can, in practice, often be avoided.

Our method involves four steps. First, estimate a linear rational expec-

tations model. For reasons that we motivate further in Section 2, we prefer a

limited information method such as system-GMM. Second, compute the re-

duced form of the model by applying a complex Schur decomposition to the

structural parameter estimates. Third, construct an estimate of the variance-

covariance matrix of the fundamental and non-fundamental shocks. Fourth,

order the fundamental and non-fundamental shocks and compute impulse

responses to the reduced form using a Choleski decomposition. We provide

MATLAB code to implement our method.2

2http://farmer.sscnet.ucla.edu
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The remainder of this paper is organized as follows. Section 2 outlines

briefly the class of linear rational expectation models we deal with and moti-

vates a suitable method for model estimation. Section 3 discusses the mean-

ing of structural shocks within the framework of linear rational expectations

models. Section 4 presents an application of our Impulse-Response method

to a standard New-Keynesian model and the final Section concludes. Appen-

dices A and B present details about our solution algorithm and Appendix

C contains a consistency proof for our proposed estimator of the variance-

covariance matrix.

2 Estimating a structural linear rational ex-

pectations model

In this section we discuss the use of GMM to obtain consistent estimates of

the parameters of A,F,B and C in the structural model:

AYt + FEt [Yt+1] = BYt−1 + C + Vt, (1)

Et [VtV
0
s ] =

⎧⎨⎩ Ωvv, t = s,

0, otherwise.
(2)

In this notation A,F, and B are n× n matrices of coefficients, C is an n× 1
vector of constants, Et is a conditional expectations operator, Yt is an n-

dimensional vector of endogenous variables, and {Vt} is a weakly stationary
i.i.d. stochastic process with covariance matrix Ωvv and mean zero.3 We

3Without loss of generality, we focus on the case of one lead and one lag. Our method

can easily be expanded to include additional lags or leads.
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maintain the convention that coefficients of endogenous variables appear on

the left side of each equation with positive signs and explanatory variables

appear on the right side of equations with positive signs.

The first issue we face is that of identification. Each of the n equations in

(1) contains 2n endogenous variables since the expectations terms Et (Yt+1)

are endogenous variables to be determined at date t. Application of order and

rank conditions should be checked for the entire system, but identification

does not pose insurmountable complications over standard structural models.

In Beyer and Farmer [6] we present an algorithm, implemented in MATLAB,

that finds equivalence classes of exactly identified models. This algorithm

can easily be adapted to check for system-wide identification in a DSGE

model. The main complication introduced by the presence of expectations

variables is that the validity of the instruments will depend on the degree of

determinacy of the solution. (See Pesaran [26]).

In order to estimate the parameters of model (1), we propose an estima-

tor based on a system GMM approach. This method, originally suggested by

McCallum [25], replaces unobserved expectations Et (Yt+1) by their realiza-

tions Yt+1 and rewrites Equation (1) as a linear model that includes future

values of the observed endogenous variables with moving average error terms:

AYt + FYt+1 = BYt−1 + C +ΨvVt +ΨwWt+1. (3)

The vector Wt+1 represents one-step-ahead forecast errors. Let the joint

variance-covariance matrix of forecast errors Wt and fundamental shocks Vt

be:

Ω = E [Vt,Wt] [Vt,Wt]
0 .

When the model has a unique rational expectations equilibrium the non-

fundamental errors Wt will be exact functions of the fundamental shocks Vt.
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In this case the 2n× 2n covariance matrix:

Ω =

⎡⎣ Ωvv Ωvw

Ωwv Ωww

⎤⎦ , (4)

has rank n. When the model has an indeterminate equilibrium of degree r,

the variance-covariance matrix Ω has rank n + r > n. In this case one can

pick a particular rational expectations equilibrium by imposing the assump-

tion that the elements of Ωww and Ωwv are time invariant. In either case,

estimation of Equation (3) must take account of the fact that the errors have

an MA(1) structure. This is taken care of in GMM by estimating (3) using a

heteroskedastic-autocorrelation-consistent (HAC) estimator for the optimal

weighting matrix.

A prominent alternative approach to estimate the parameters of (1) is

full information maximum likelihood (FIML). This approach is discussed in

Anderson et al [1] and has been implemented in models similar to ours by,

amongst others, Lindé [21], and LS [23]. We chose not to use FIML since it

requires the econometrician to take a prior stand on the determinacy prop-

erties of the equilibrium. To construct the likelihood function one must be

prepared to specify the joint probability distribution of the errors and to make

assumptions about the covariance matrix Ω. The rank of Ω can change across

regions of the parameter space, depending on whether the rational expecta-

tion equilibrium is determinate or indeterminate. In case of indeterminacy

the rank of Ω depends also on the degree of indeterminacy. A likelihood based

estimation technique requires the econometrician to estimate a different the-

oretical model for every such region of the parameter space. Although it is

possible to construct a piecewise likelihood function to tackle this issue, as in

LS [24], in practice their approach is not particularly easy to implement and

has been applied only in simple examples. When applying Bayesian estima-

tion techniques the researcher faces a couple of decision problems given that
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different types of equilibria might require different identification schemes. He

might be forced to decide either on the choice of different priors correspond-

ing to different characteristics of the equilibria. Alternatively, he might chose

flat priors for a set of chosen parameters. In any case a rather firm stand on

the choice of the priors and a firm view on which parameters to be identified

is required. This might lead to serious identification problems as pointed

out by Canova and Sala [10] in a recent study. In that respect the advan-

tages of a system GMM estimator are obvious: the moment conditions that

define the estimation procedure do not depend on the rank of Ω, hence the

same estimator can be used for both determinate and indeterminate models.

As a consequence, GMM does not require to break up the parameter space

according to different types of equilibria such that different identification

schemes for different types of equilibria can be avoided. Nevertheless, as it

is well known, a potential disadvantage of GMM is that the estimator may

suffer from weak instruments. There are, however, methods available that

test for weak instruments and, in practice, help avoiding them to be used for

estimation (see e.g. Stock et al. [31]).

3 Accounting for Shocks

In this section we discuss the problem of disentangling the dynamic effects

of different kinds of shocks. This problem involves first, estimating Ω, the

variance-covariance matrix of the fundamental and non-fundamental shocks

and second, attributing the effects of these shocks to the reduced form equa-

tions. When equilibria are indeterminate the impact effects of alternative

shocks must be attributed to fundamental and non-fundamental sources.

We begin by constructing an estimator of Ω using a two-step approach.

First, we obtain estimates of the structural parameters Â, F̂ , B̂, Ĉ, Ψ̂v and
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Ψ̂w in (3) by GMM; second, we use these parameter estimates to construct

reduced form residuals from which we estimate Ω. This two-step procedure

involves a complication which we discuss in the following section. It arises

from the fact that the reduced form of the model obtained by standard

solution algorithms will not generally be free of unobserved expectations.4

3.1 Finding an Observable Reduced Form

To compute the reduced form of our structural model we define a vector:

Xt =

⎡⎣ Yt

Et [Yt+1]

⎤⎦ ,
which consists of observable variables Yt and (possibly unobserved) expecta-

tions variables Et [Yt+1]. Our procedure for computing the reduced form of

the model uses an algorithm, SysSolve,which returns a VAR(1) in this aug-

mented state vector. When the equilibrium is determinate, the system can be

broken down into two separate subsystems. One is a VAR(1) in the observ-

able variables Yt and the other is a static function that determines Et [Yt+1]

as a function of Yt. When the equilibrium is indeterminate, however, it is not

generally possible to carry out this decomposition. The following example,

taken from Beyer-Farmer [5], illustrates this problem for a one variable model

and proposes a solution that can be generalized to the case of n variables.

Consider the single equation model

pt =
1

α
Et [pt+1] + vt,

where pt is observable and vt is a fundamental error. This model can be

4We compute the reduced form of the model with a QZ decomposition. Our algorithm,

SysSolve, is described in Appendix A. It is based on code by Sims [29] as amended by LS

[23] to account for the possibility that there may be multiple indeterminate solutions.
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written as follows,⎡⎣ 1 − 1
α

1 0

⎤⎦⎡⎣ pt

Et [pt+1]

⎤⎦ =
⎡⎣ 0 0

0 1

⎤⎦⎡⎣ pt−1

Et−1 [pt]

⎤⎦+
⎡⎣ 1
0

⎤⎦ vt +
⎡⎣ 0
1

⎤⎦wt.

When |α| < 1, the solution is indeterminate and SysSolve returns the solu-
tion

pt = Et−1 [pt] + wt, (5)

Et [pt+1] = αEt−1 [pt−1]− αvt + αwt. (6)

Although this solution is valid, both equations contain unobservable expec-

tations and for some purposes it might be helpful to have an alternative

dynamic representation that involved a single stochastic difference equation

in the observable variable pt. In this example one can find such a represen-

tation by rearranging Equation (5) to find Et−1 [pt] as a function of pt and

wt and substituting this solution at dates t− 1 and t− 2 into Equation (6).
This process leads to the expression

pt = αpt−1 − αvt−1 + wt. (7)

Equation (7) is a VARMA(1, 1) in the observable variable pt and the vector

of shocks (vt, wt)
0 .

The coexistence of VAR and VARMA representations, exhibited in this

example, carries over to more general DSGE models when the solution is

indeterminate. TheQZ solution method suggested by Sims and implemented

in SysSolve, leads to a reduced form expression of the form

Xt = Γ∗Xt−1 + C∗ +Ψ∗V Vt +Ψ∗WWt.

Since Γ∗ is generally singular, there will be more than one way to partitionXt

into two subsets (X1
t , X

2
t ) such that X

1
t forms an autonomous VARMA(1, k)

model that is independent of X2
t and k is the number of zero eigenvalues of
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Γ∗. One or more of these representations will be in terms of the observable

variables Yt and Yt−1, but these observable representations will not generally

reduce to a VAR(1). An exception, is the case of a determinate equilibrium

when the solution is unique and, in this case, the rank of Γ∗ equals n. In

Appendix B, we provide an algorithm to generalize the above example to the

case of an n−dimensional DSGE and we provide MATLAB code, Arrange,
that implements our algorithm by rearranging the output from the QZ de-

composition provided by SysSolve.

3.2 Computing an Estimate of Ω

In this section we provide a method to recover consistent estimates of the

population variance-covariance matrix Ω. First, we write the reduced form

as a VARMA(1, k) in the observable variables Y1t and the unobserved shocks

ηt = (Vt,W
1
t )
0,

Y1t = Γ∗1Y1t−1 + C∗1 +
k+1X
j=0

Ψ∗jηt−j. (8)

We assume that the econometrician can obtain consistent estimates of the

population parameters Γ∗1, C
∗
1 , and Ψ∗j which we refer to as Γ̂

∗
1, Ĉ

∗
1 , and Ψ̂∗j .

Let et be a vector of sample residuals defined as follows;

et = Y1t − Γ̂∗1Y1t−1 − Ĉ∗1 , (9)

where Y1t are observable variables and Γ̂∗1 and Ĉ∗1 are consistent estimates

of the parameters of the VARMA(1, k) representation of the reduced form.

Define the sample autocorrelations Ŝ0 and Ŝj as follows;

Ŝ0 =
1

T

TX
t=2

³
Y1t − Γ̂∗1Y1t−1 − Ĉ∗1

´³
Y1t − Γ̂∗1Y1t−1 − Ĉ∗1

´0
, (10)

Ŝj =
1

T

TX
t=j+2

³
Y1t − Γ̂∗1Y1t−1 − Ĉ∗1

´³
Y1t−j − Γ̂∗1Y1t−j−1 − Ĉ∗1

´0
, j = 1, ...k.

(11)
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In Appendix C, we show that one can obtain consistent estimates of the

elements of Ω by finding a solution to the equations

Ŝ
n×n

= Ψ̂
n×(n+r)

Ω̂ Ψ̂0
(n+r)×n

, (12)

where

Ŝ = Ŝ0 +
kX

j=1

³
Ŝj + Ŝ0j

´
, (13)

Ψ̂ =
kX

j=0

Ψ̂∗j , (14)

and Ψ̂∗j are consistent estimates of Ψ
∗
j for j = 1, ...k.

It is important to notice that Equation (12) cannot be solved uniquely

for the elements of Ω̂ since it consists of n (n+ 1) /2 independent equations

in (n+ r) (n+ r + 1) /2 unknowns.5 The non-uniqueness of the solution to

Equation (12) means that, when equilibrium is indeterminate, the econome-

trician cannot distinguish between fundamental and non-fundamental distur-

bances to the economy.

For the purposes of examining the dynamic properties of the model, the

inability to distinguish between determinate and indeterminate shocks is not

a problem as long as the variance-covariance matrix Ω remains time invari-

ant - it is simply a question of how we choose to name the observed distur-

bances to each equation.6 For the purposes of constructing impulse response

5As an example, consider the case when there are two equations and one degree of

indeterminacy. In this case Ŝ is a known symmetric 2× 2 matrix and Ψ̂ is a known 2× 3
matrix both of which are functions of the data. For this example, Equation (12) consists of

4 equations in 9 unknowns. Since Ŝ is symmetric only 3 of these equations are independent

and since Ω̂ is symmetric only 6 elements of Ω need to be independently calculated. Only

three linear combinations of the variance-covariance parameters Ω are identified from the

data.
6The question becomes more interesting if we observe data from different regimes since

then one might ascribe a change in the observed variance of the data to the additional

contribution of sunspots as suggested by CGG [16].
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functions in the New-Keynesian model that we describe below, we chose to

ascribe all shocks in the indeterminate regime to fundamentals by setting the

elements of Ωww and Ωwv to zero.

4 Application to the New-Keynesian Model

In this section we describe a New-Keynesian model that puts together sim-

plified versions of specifications of the representative agent’s Euler equation

by Fuhrer and Rudebusch [19], the Phillips curve by Galí-Gertler [20], and

the Central Bank reaction function by CGG [16].

4.1 A Description of the Model

The model we estimate consists of the following three equations.

yt = α0 + α1Et [yt+1] + α2(it −Et [πt+1]) + α3yt−1 + v1t , (15)

πt = β0 + β1Et [πt+1] + β2yt + β3πt−1 + v2t , (16)

it = γ0 + γ1 (1− γ3)Et [πt+1] + γ2 (1− γ3) yt + γ3it−1 + v3t . (17)

The variable yt is a measure of the output gap, we used the same one-sided

HP-filtered series as in Beyer et. al., (BFHM [8]), πt is the GDP deflator, it

is the Federal Funds rate and Et is again a conditional expectations operator.

Equation (15) is an output equation derived from the representative agent’s

Euler equation, Equation (16) is a hybrid New-Keynesian Phillips curve, and

Equation (17) is a Central Bank reaction function, (also referred to as a

Taylor rule after the work of Taylor [30]).
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4.2 Parameter Estimates

In this section we report the results of estimating Equations (15)—(17) by

GMM on the full system. In Beyer-Farmer [6] we show that parameters as-

sociated with the unstable roots of DSGE models are typically not identified

in the absence of additional restrictions. Table 1 reports these estimates us-

ing two lags of the endogenous variables as instruments.7 The reduced form

of our model contains one lag if the solution is determinate. In the case of an

indeterminate solution one or more second lags of the variables may appear

as additional explanatory variables. Since we do not take a prior stand on

whether the solution is determinate or indeterminate we included two lags

as instruments in our GMM estimation.

Since there is evidence of parameter instability across the full sample,

particularly in the policy rule, we split the data in 1979. This follows the

lead of CGG [16], who suggest that the rule followed in the pre-Volcker period

(1960:4—1979:3), has very different properties from that during the Volcker-

Greenspan years. We discarded the quarters 1979:4—1982:4 since this was a

period of considerable instability in which the Fed followed a money targeting

rule that was quickly abandoned. Our second sub-sample consists of the years

1983:1—1999:3.
7Beyer et. al. [8] estimate this model on the same data set that we use here. They

report results from a number of alternative estimation methods and show how to obtain

more efficient parameter estimates using factors as instruments. The reader is referred

to their work for a more complete description of the robustness properties of the system

GMM estimator and for a discussion of parameter stability across different subsamples.
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TABLE 1:                                         GMM PARAMETER ESTIMATES UNDER RESTRICTIONS 

 Sample 60:4 79:3 Sample 83:1 99:3 

Eqn Param Coeff Std Err t-stat p-val Coeff Std Err t-stat p-val 

Euler  Eq. gapt+1(α1) 0. 503*** 0. 025 19.69 0.00 0. 487*** 0. 030 15.80 0.00 

 rit(α2) -0.02 n.a.   -0.02 n.a.   

 gapt-1(α3) 0.514*** 0. 023 19.68 0.00 0. 516*** 0. 026 19.81 0.00 

Phil. Curve πt+1(β1) 0. 618*** 0.056 11.00 0.00 0.616*** 0. 081 7.52 0.00 

 gapt(β2) 0.025 n.a.   0.025 n.a.   

 πt-1(β3) 0. 366*** 0.058 6.30 0.00 0. 331** 0. 051 6.42 0.00 

Pol. Rule πt+1(γ1) 0.789*** 0. 189 4.17 0.00 1.794*** 0. 598 3.00 0. 002 

 gapt(γ2) 0.759** 0.316 2.40 0.016 0. 294 0. 184 1.59 0. 11 

 it-1(γ3) 0. 867*** 0.046 18.72 0.00 0. 877*** 0. 047 18.40 0.00 

 J-stat = 10.98    p-val = 0.94 J-stat = 10.31    p-val = 0.96 

* (**) (***) denotes significance at 10% (5%) (1%) level 

Table 1 is divided into three sections, one for each equation of the New-

Keynesian model. The table is further divided into two halves reporting

estimates, in the left panel, for the sub-sample from 1960:4—1979:3 and in

the right panel, for the sub-sample 1983:1—1999:3. For each sub-sample we

were able to fit a tightly parameterized model; the equality and exclusion

restrictions that we imposed to achieve identification passed Hansen’s J−test
with p−values of 94% and 96% for the two samples. Further, as reported

in BFHM [8], the residuals for this model are consistent with the model

assumptions. After removing an MA(1) component, as predicted by theory,

BFHM report that the residuals passed a range of mis-specification tests

including absence of ARCH effects, absence of additional serial correlation

and the Jarque-Bera test for normality.

To identify the forward dynamics associated with the Euler equation, we

restricted the interest rate coefficient α2. In single agent DSGE models this

parameter is obtained from linearization of a representative agent’s marginal

utility of consumption. Theory suggests that the absolute value of α2 in

Equation (15) should be (approximately) in the range 0.01 to 0.1, the same
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order of magnitude as a measure of the real interest rate. We experimented

with a number of values in this range with little qualitative difference from

the results reported in Table 1 which contains parameter estimates by GMM

for the case when a2 is equal to −0.02.
To identify the forward dynamics associated with the Phillips curve we

restricted the output-gap coefficient, β2 in Equation (16). We experimented

with values in the range 0 to 1 but our parameter estimates led to non-

existence of stationary equilibrium for values much above 0.05. In Table 1

we report the results of GMM estimates in which we restrict β2 = 0.025.

CGG choose β2 = 1 in their calibrated model and LS set a prior mean of

β2 = 0.5. Our value of β2 is smaller than those used in earlier studies because

we estimated a hybrid Phillips curve that includes lagged inflation as a right-

hand-variable and we explicitly modeled the dynamics of the model instead

of adding autocorrelated disturbance terms.

As in BFHM, we find that detrended output and inflation are well de-

scribed by their own future and lagged values. Coefficients on future and

lagged output in the Euler equation are tightly estimated and qualitatively

similar across sub-periods. Our point estimate for α1, (the estimated coef-

ficient on future output), is equal to 0.503 in the first sub-period and 0.487

in the second and both coefficients are significant at the 1% level using HAC

standard errors. The coefficient on lagged output, a3, is estimated as 0.514

and 0.516 in the two sub-samples and are also highly significant. The coeffi-

cients on future and lagged inflation, β1 and β3, are equal to 0.618 and 0.366

in the first sub-period and 0.616 and 0.331 in the second sub-period. These

parameter estimates are remarkably similar across the two regimes and they

provide strong support to the CGG interpretation that the change in the
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Fed policy rule.8

Our estimates of the policy rule are similar to those reported by CGG.

Like CGG, we find that the estimated coefficient on future inflation in the

policy rule, γ1, switches from 0.79 in the pre-Volcker period to 1.79 in the

Volcker-Greenspan years.9 This is an important coefficient since, when the

parameters of the Phillips curve and the Euler equation are calibrated to

values suggested by economic theory, γ1 regulates the determinacy of equi-

librium. If γ1 is less than one, the Fed responds to expected future inflation

by lowering the real rate of interest; a policy of this kind is called passive. If

γ1 is greater than one, the Fed responds to expected inflation by raising the

real interest rate; a policy of this kind is called active.

4.3 Dynamics Implied by the Unrestricted Parameter

Estimates

Our next step was to compute VARMA(1, 1) representations of the reduced

form for each regime using the SysSolve and Arrange algorithms described

in Appendices A and B. In Table 2 we report the absolute values of the

generalized eigenvalues of the companion forms for the first and second sub-

samples. In the first sub-sample our point estimates suggest an indeterminate

equilibrium with two unstable roots, and for the second sub-sample, a deter-

minate equilibrium with three unstable roots. These findings are consistent

with the reported results of CGG [16], LS [23] and Boivin-Giannoni [9].

8In Beyer-Farmer [4] we report estimates of a DSGE model in which we identify the

coefficients of the private sector equations by assuming that these coefficients remain stable

across the break in 1979.
9CGG used GMM in a single equation framework and used a larger instrument set.

Our findings for the policy rule are, however, qualitatively the same as theirs for the

unrestricted model.

reduced form coefficients in 1979 can be attributed solely to a change in the
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  TABLE 2:                                  RESTRICTED ESTIMATES OF GENERALIZED EIGENVALUES 

Sample  Point estimates of roots 

60:4—79:3  0.00 0.00 0.00 0.56 0.93 0.93 0.97 Inf.  1.12 

83:1—99:3  0.00 0.00 0.00 0.46 0.91 0.91 Inf. 1.18 1.10 

 *Bold figures indicate unstable roots.   

Estimated size of determinate, indeterminate and unstable  regions of the parameter space 

60:4—79:3 83:1—99:3 
Point Estimates Imply Indeterminate Equilibrium Point Estimates Imply Determinate Equilibrium 

Percentage of Indeterminate Draws = 70.1 Percentage of Indeterminate Draws = 19.33 

Percentage of Determinate Draws = 25.58 Percentage of Determinate Draws = 72.76 

Percentage of Non-Existent Draws = 4.31 Percentage of Non-Existent Draws = 7.91 
  

To check the robustness of our determinacy findings for each sub-sample

we took 100, 000 parameter draws from a normal distribution centered on the

point estimates of the parameters with a variance covariance matrix equal to

the asymptotic estimate using HAC standard errors from the GMM estima-

tion. For each draw, we counted the number of stable generalized eigenvalues

and calculated whether the implied equilibrium was determinate, indetermi-

nate or non-existent. The results of this exercise are reported in Table 2.

For the first sub-sample we found that 70.1% of our draws were consistent

with the point estimate in the sense that they fell in the indeterminate re-

gion. A further 25.6% were in the determinate region and for 4.3% of the

draws stationary equilibrium did not exist. For the second sub-sample 72.8%

of the the draws were determinate, (consistent with the point estimates for

this sub-sample), 19.3% were indeterminate and 7.9% implied non-existence.

This exercise suggests a lower degree of confidence than that reported by LS

[24] who developed Bayesian techniques to determine the posterior odds ratio

for the probability that any given model is associated with a determinate as

opposed to an indeterminate region of the parameter space.
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Our next step was to study the dynamics of the economic response of

the output gap, inflation and the Fed funds rate to fundamental shocks to

the system. First, we constructed an estimate of the variance-covariance

matrix of the these shocks using the methods described in Section 3. Since

we found an indeterminate model in the first sub-period, we were forced to

take a stand on how to attribute the residuals to three equations to four

possible shocks. As described in Sub-section 3.2, there is no unique solution

to this problem and we chose to identify the shocks by setting the variance

and covariance terms of the sunspot shock equal to zero. The result of

identifying shocks with this assumption is reported in Table 3 which reports

the Choleski decomposition P̂ ,of the estimated variance-covariance matrix Ω̂

for each sub-sample, whereP̃ , defined by the following equation:

P̂ P̂ 0 = Ω̂,

is lower triangular.

According to our estimates of the elements of P , the Phillips curve and the

Euler equation were hit by uncorrelated shocks with individual variances that

changed across sub-samples. The estimated cross correlation of the output

gap and inflation is insignificantly different from zero in both periods. We find

the estimated standard deviation of output to be roughly three times as high

in the pre-Volcker period as in the Volcker-Greenspan years; the standard

deviation of interest rate shocks is also slightly larger. The inflation shock

is highly imprecisely estimated in the first sub-period and of comparable

magnitude to that in the second period. The second period inflation shock

is, however, significant.
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  TABLE 3:  ESTIMATES OF CHOLESKI DECOMPOSITION OF VCV MATRIX OF FUNDAMENTAL SHOCKS 

 Sample 60:4—79:3  Sample 83:1—99:3 

X 10-3 Gap Infl Irate Sunspot  X 10-3 Gap Infl Irate 

Gap 16.1 
(1.8) 
 

  0  Gap 5.4 
(3.5) 

  

Infl 29.5 
(24.4)

12.9 
(20.9) 
 

 0  Infl 5.0 
(4.3) 

8.5 
(2.3) 

 

Irate -1.0 
(4.7) 
 

4.4 
(3.1) 

10.7 
(1.4) 

0  Irate 4.5 
(1.7) 

1.0 
(2.2) 

7.1 
(0.6) 

Sunspot 0 0 0 0      

 

Standard errors in parentheses from Monte Carlo simulation.   
 

In Figures 1 and 2 we used our point estimates of the parameters to gener-

ate impulse response functions associated with the theoretical models for each

sub-sample. The solid lines in each figure are impulse responses computed

from the point estimates and the dashed lines are 90% confidence bounds.

The upper and lower bounds were computed by simulating 100, 000 draws

from the asymptotic distribution of the parameter estimates, ranking the re-

sponses for each quarter, and picking the values that delineate the 5th and

95th quantiles. In our simulations, we discarded draws for which the deter-

minacy properties of the simulation were different from the point estimates.

These confidence intervals should therefore be interpreted as conditional on

the determinacy properties of the point estimates.
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Our estimation procedure is capable of adding moment conditions that

force the covariance of structural shocks to be zero. We did not impose

this condition since we take the view that a structural model may be hit by

correlated disturbances. For example, a common shock may shift both the

Phillips curve and the Euler equation.

An implication of the finding that the equilibrium in the first sub-period

is indeterminate is that non-fundamental sunspot shocks cannot be sepa-

rately identified. The numbers reported in Table 3, and the corresponding

impulse response functions reported in Figures 1 and 2, disentangle funda-

mental and non-fundamental shocks by imposing the identifying assumption

that Ωww and Ωwv are zero; that is, all of the observed shocks were caused
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by fundamentals. Using our methods, there are many alternative possible

identification schemes, including one in which Ωvv is diagonal and assumed

to remain stable across regimes.
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Although the parameter estimates of the Euler equation and the Phillips

curve are almost identical across sub-periods, the policy rule has changed

dramatically. This shows up in Figures 1 and 2 as qualitative difference in

the impulse response functions. Nevertheless, the model provides a plausi-

ble economic interpretation of the effects of shocks and the way that their

dynamic effects on the endogenous variables trace themselves through the

system.
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5 Conclusion

In this paper we presented a technique to construct impulse response func-

tions in dynamic stochastic general equilibrium models. We applied our

method to the example of U.S. monetary policy before and after 1979 and

were able to estimate a tightly specified version of the New-Keynesian model.

Our estimates of the parameters of the Euler equation and the Phillips curve

remain stable across regimes but the parameters of the policy rule changed

dramatically.

Our method is simple to implement and the MATLAB code is capable of

being adapted to a wide range of related applications.
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Appendix A
In this section we explain how our solution algorithm SySolve works in

the case of an indeterminate equilibrium. The reader is referred to Sims [29]

for a more detailed explanation of GENSYS, on which our algorithm is based.

The structural model has the form

Ã0Xt = Ã1Xt−1 + C̃ + Ψ̃vVt + Ψ̃wWt. (A1)

Using a QZ decomposition, write this as

QSZXt = QTZXt−1 + C̃ + Ψ̃vVt + Ψ̃wWt. (A2)

where QQ0 = ZZ 0 = I and S and T are upper triangular and S and T are

ordered such that all unstable generalized eigenvalues are in the bottom right

corner. Recall that the generalized eigenvalues are defined as the ratios of

the diagonal elements of T to the diagonal elements of S. Now define,

xt = ZXt (A3)

and

et = S−1Q0
³
C̃ + Ψ̃vVt + Ψ̃wWt

´
, (A4)

and partition xt and et as follows;

xt =
¡
x1t , x

2
t

¢0
, et =

¡
e1t , e

2
t

¢0
(A5)

where x1t ∈ Cn1, x2t ∈ Cn2 are (possibly) complex vectors and n1 and n2 are

the numbers of stable and unstable roots. Now partition the matrices S and

T

S =

⎡⎣ S11 S12

0 S22

⎤⎦ , T =

⎡⎣ T11 T12

0 T22

⎤⎦ (A6)
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and the matrices S−1 and Q0 as;

S−1 =

⎡⎣ S11 S12

0 S22

⎤⎦ , Q0 =

⎡⎣ Q11 Q12

Q22 Q22

⎤⎦ . (A7)

Using this notation write (A2) as;⎡⎣ S11 S12

0 S22

⎤⎦⎡⎣ x1t

x2t

⎤⎦ =
⎡⎣ T11 T12

0 T22

⎤⎦⎡⎣ x1t

x2t

⎤⎦+
⎡⎣ e1t

e2t

⎤⎦ . (A8)

In Equation (A8) the lower block acts as an autonomous unstable subsystem

in the transformed variables x2t . For the system to exhibit a non-explosive

solution, one requires that x2t = e2t = 0 for all t. This restriction requires that

that the non-fundamental errors Wt be chosen to remove the influence of the

fundamental errors Vt. To this end, the solution algorithm sets

e2t = S22
h
Q21 Q22

i³
C̃ + Ψ̃vVt + Ψ̃wWt

´
= 0. (A9)

A necessary condition for these equations to have a solution is that there are

at least as many elements of Wt as there are unstable roots (the number of

rows in Equation system (A9) ). In the case of r degrees of indeterminacy

there are r more elements of Wt than one requires to eliminate unstable

roots. In this case, our algorithm transfers the first r non-fundamental shocks

to the vector Vt thereby treating the elements of W 1
t ∈ Rr as additional

fundamentals. We refer to the expanded vector of fundamentals as (Vt,W 1
t ).

It might appear that this solution is arbitrary since a particular solution

depends on the ordering ofWt. To see that this is not the case, let Ω represent

the variance-covariance matrix of the expanded fundamentals

Ω = Et

⎡⎣ Vt

W 1
t

⎤⎦⎡⎣ Vt

W 1
t

⎤⎦0 =
⎡⎣ Ωvv Ωvw

Ωwv Ωww

⎤⎦ . (A10)

Since we do not place any restrictions on Ω our algorithm is capable of gen-

erating the full range of sunspot solutions. Different solutions are captured

by picking different values for the variance-covariance terms Ωww and Ωwv.
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Appendix B
This appendix explains how to generate a VARMA model in observable

variables Yt from the VAR, (possibly involving unobservable components

Et−1 (Yt)) that is generated by the solution algorithm SySolve.

Consider the structural model, Equation (1), which we write in canonical

form by adding a second block of identities and a third block that defines

the expectational errors, Wt:

A0⎡⎢⎢⎢⎣
A 0 F

0 I 0

I 0 0

⎤⎥⎥⎥⎦
Xt⎡⎢⎢⎢⎣
Yt

Yt−1

Et [Yt+1]

⎤⎥⎥⎥⎦ =
A1⎡⎢⎢⎢⎣

B 0 0

I 0 0

0 0 I

⎤⎥⎥⎥⎦
Xt−1⎡⎢⎢⎢⎣
Yt−1

Yt−2

Et−1 [Yt]

⎤⎥⎥⎥⎦

+

C0⎡⎢⎢⎢⎣
C

0

0

⎤⎥⎥⎥⎦+
ΨV⎡⎢⎢⎢⎣
I

0

0

⎤⎥⎥⎥⎦Vt +
ΨW⎡⎢⎢⎢⎣
0

0

I

⎤⎥⎥⎥⎦Wt. (B1)

The reason for adding the identity block is to give us enough observable

variables to ‘carry’ the dynamics of the solution. Writing Equation (B1)

more compactly, letting N = 3n, gives:

A0
N×N

Xt
N×1

= A1
N×N

Xt−1
N×1

+ C0
N×1

+ ΨV
N×n

Vt
n×1

+ ΨW
N×n

Wt
n×1

. (B2)

Our goal is to find an n1 dimensional subset of the observable variables

Y1t ⊂ {Yt, Yt−1} that can be described by a VARMA(1, k):

Y1t = Γ∗1Y1t−1 + C∗1 +
kX

j=0

Ψ∗jηt−j, (B3)

where

ηt =

⎡⎣ Vt

W 1
t

⎤⎦ , (B4)
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and W 1
t is a subset of Wt. The W 1

t terms represent non-fundamental errors

that may be correlated with the fundamental error terms Vt and may exert

an independent influence on Yt if the equilibrium is indeterminate.

Using a complex Schur decomposition to eliminate the influence of un-

stable generalized eigenvalues, we first write the reduced form of (B2) as

follows:10

Xt = Γ̃Xt−1 + C̃ + Ψ̃V Vt + Ψ̃WW 1
t . (B5)

The complex Schur decomposition always exists. The matrix Γ̃ is N × N

and has n2 zero eigenvalues and n1 non-zero eigenvalues where n1+n2 = N .

In the following analysis we restrict ourselves to the case where a stationary

solution exists.11

By construction, all of the roots of Γ̃ are inside the unit circle andW 1
t has

dimension equal to the degree of indeterminacy. Γ̃ has at least n zero roots:

these are associated with the identity block Yt−1 = Yt−1. For each unstable

generalized eigenvalue of
n
Ã0, Ã1

o
, Γ̃ has an additional zero root. It follows

that

rank
³
Γ̃
´
= n1 ≤ 2n. (B6)

Next we make a second use of the complex Schur decomposition to find

orthonormal matrices Q and Z, and uppertriangular matrices D and T such

that

Q0DZ 0 = I, (B7)

Q0TZ 0 = Γ̃. (B8)

10See Sims [29] for a description of how to use the complex Schur decomposition to find

a solution to this problem in the determinate case and Lubik and Schorfheide [23] for a

generalization to models with indeterminate equilibria.
11A necessary condition for existence is that the number of unstable generalized eigen-

values of {A0, A1} is less than or equal to n; a sufficient condition is more complicated to
state but is relatively easy to compute (see Sims [29]).
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In general the Schur decomposition delivers an upper-triangular D but in

our case, since I is the identity matrix, D is diagonal. Using these results we

write the system as

Q0DZ 0Xt = Q0TZ 0Xt−1 + C̃ + Ψ̃V Vt + Ψ̃WWt. (B9)

Next we rearrange the rows of Equation (B9) so that the first n1 rows corre-

spond to the nonzero eigenvalues of Γ̃ and, we define the following coefficient

matrices:

Q =

⎡⎣ q11 q12

q21 q22

⎤⎦ , Z 0 =
⎡⎣ z11 z12

z21 z22

⎤⎦ , (B10)

⎡⎣ s11 s12

0 s22

⎤⎦ =
⎡⎣ d11 0

0 d22

⎤⎦−1 ⎡⎣ t11 t12

0 t22

⎤⎦ , (B11)

and we define new variables {x1t, x2t} and {ζ1t, ζ2t}:⎡⎣ x1t

x2t

⎤⎦ =
⎡⎣ z11 z12

z21 z22

⎤⎦⎡⎣ X1
t

X2
t

⎤⎦ , (B12)

⎡⎣ ζ1t

ζ2t

⎤⎦ =
⎡⎣ d11 0

0 d22

⎤⎦−1 ⎡⎣ q11 q12

q21 q22

⎤⎦⎡⎣ C̃1 Ψ̃1V Vt Ψ̃1WWt

C̃2 Ψ̃2V Vt Ψ̃2WWt

⎤⎦ . (B13)

Making use of this change of variables, premultiply (B9) by D−1Q to give⎡⎣ x1t

x2t

⎤⎦ =
⎡⎣ s11 s12

0 s22

⎤⎦⎡⎣ x1t−1

x2t−1

⎤⎦+
⎡⎣ ζ1t

ζ2t

⎤⎦ . (B14)

The second block of (B14) reads

x2t = ζ2t + s22x2t−1. (B15)

Since s22 is upper triangular of dimension n2 with zeros on the diagonal it

follows that

(s22)
k = 0, for k ≥ n2, (B16)
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and hence x2t can be written as an n2th degree moving average:

x2t = p (L) ζ2t, (B17)

where

p (L) =
n2X
k=0

(s22L)
k , (B18)

is a polynomial in the lag operator of degree, at most, n2 (the number of zero

roots of Γ̃).

Now we use Definition (B12) and Equation (B17) to find an expression

for X2t in terms of X1t, and p (L) ζ2t:

z21X1t + z22X2t = p (L) ζ2t, (B19)

or more compactly,

X2t = N1X1t +N2 (L) ζ2t, (B20)

where the terms N1 and N2 (L) are defined as:

N1 = −
¡
z22
¢−1

z21, (B21)

N2 (L) =
¡
z22
¢−1

p (L) . (B22)

Turning to the first block of (B14) we can use (B17) to write:

x1t = s11x1t−1 + s12p (L) ζ2t−1 + ζ1t. (B23)

Equation (B23) can be expanded using Definition (B12) to give:

z11X1t + z12X2t = s11
¡
z11X1t−1 + z12X2t−1

¢
+ s12p (L) ζ2t−1 + ζ1t. (B24)

Using Equations (B20) and (B24), noting that p (L) = z22N2 (L), (from B22),

where N2 (L) is a degree k polynomial in L, we can find a representation for

X1t as an ARMA(1, k):

z11X1t+z
12 (N1X1t +N2 (L) ζ2t) = s11

¡
z11X1t−1 + z12

¡
N1X1t−1 +N2 (L) ζ2t−1

¢¢
+ s12z

22N2 (L) ζ2t−1 + ζ1t. (B25)
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Collecting terms and writing the system more compactly leads to the expres-

sion:⎡⎣ X1t

X2t

⎤⎦ =
⎡⎣ M1 0

N1M1 0

⎤⎦⎡⎣ X1t−1

X2t−1

⎤⎦
+

⎡⎣ M2

N1M2

⎤⎦ ζ1t +
⎡⎣ M3 (L)

M4 (L)

⎤⎦ ζ2t, (B26)

where the following definitions apply:

N1 = −
¡
z22
¢−1

z21, (B27)

N2 (L) =
¡
z22
¢−1 nX

k=0

sk22L
k, (B28)

M1 =
¡
z11 + z12N1

¢−1
s11
¡
z11 + z12N1

¢
, (B29)

M2 =
¡
z11 + z12N1

¢−1
, (B30)

M3 (L) =
¡
z11 + z12N1

¢−1 ¡−z12 + ¡s11z12 + s12z
22
¢
L
¢
N2 (L) , (B31)

M4 (L) = N1M3 (L) +N2 (L) . (B32)

To obtain Equation (B3) notice that since n1 ≤ 2n, we can choose Y1t = X1t

to be a subset of the observables {Yt, Yt−1}. In the determinate case, Y1t = Yt

In the indeterminate case Yt must be augmented by one or more lags. The

constant term in Equation (B3) is equal to

C∗1 =M2C̃1 +M3 (1) C̃2, (B33)

and expressions for the coefficients of the lag polynomial Ψ∗j (L) can be com-

puted from the definitions of η1t and η2t (Equation B13) and the constants

and lag polynomials Mi and Ni defined in Equations (B27—B32).
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Appendix C
This Appendix shows that the estimator of Ω proposed in Section 3 is

consistent. Taking probability limits of (10) and (11), making use of Equation

(8), the consistency of Γ̂∗1 and Ĉ
∗
1 and the assumption that ηt is uncorrelated

with its own lags leads to the following expressions:

p lim
T→∞

Ŝ0T =
TX
t=2

³Pk
q=0Ψ

∗
qηt−q

´³Pk
q=0Ψ

∗
qηt−q

´0
T

= p lim
T→∞

¡
Ψ∗0ηt +Ψ∗1ηt−1 + . . .Ψ∗kηt−k

¢ ¡
Ψ∗0ηt +Ψ∗1ηt−1 + . . .Ψ∗kηt−k

¢
T

= (Ψ∗0)Ω (Ψ
∗
0)
0 + (Ψ∗1)Ω (Ψ

∗
1)
0 + . . . (Ψ∗k)Ω (Ψ

∗
k)
0 ,

or

p lim
T→∞

Ŝ0T =
kX

q=0

Ψ∗qΩΨ
∗0
q . (C1)

p lim
T→∞

ŜjT =
TX

t=j+2

³Pk
q=0Ψ

∗
qηt−q

´³Pk
q=0Ψ

∗
qηt−q−j

´
T

= p lim
T→∞

¡
Ψ∗0ηt +Ψ∗1ηt−1 + . . .Ψ∗kηt−k

¢ ¡
Ψ∗0ηt−j +Ψ∗1ηt−j−1 + . . .Ψ∗kηt−j−k

¢
T

=
¡
Ψ∗j
¢
Ω (Ψ∗0)

0 +
¡
Ψ∗j+1

¢
Ω (Ψ∗1)

0 + . . . (Ψ∗k)Ω
¡
Ψ∗k−j

¢0
,

or,

p lim
T→∞

ŜjT =
kX

q=j

¡
Ψ∗q
¢
Ω
¡
Ψ∗j−q

¢0
. (C2)

Now form the sum

ŜT = Ŝ0T +
kX

j=1

³
ŜjT + Ŝ0jT

´
. (C3)
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Taking probability limits of (C3), using (C1) and (C2) gives

p lim
T→∞

ŜT =
kX

j=0

¡
Ψ∗jT

¢
Ω

kX
j=0

¡
Ψ∗jT

¢0
. (C4)

Now replace Ψ∗j by consistent estimates Ψ̂
∗
jT obtained from passing the GMM

estimates of the structural parameters through SysSolve and Arrange to

obtain the following system of n2 equations in the (n+ r)2 unknown elements

of the variance-covariance matrix Ω.

ŜT
n×n

= Ψ̂T Ω̂T
(n+r)×(n+r)

Ψ̂0
T , (C5)

where

Ψ̂T =
kX

j=0

Ψ̂∗jT . (C6)

Since ŜT and Ω̂T are symmetric this system reduces to n (n+ 1) /2 equations

in (n+ r) (n+ r + 1) /2 unknowns which we write as

vech
³
ŜT
´
= B

³
Ψ̂T

´
vech

³
Ω̂T

´
, (C7)

where vech is the operator that stacks the lower triangular elements of a

symmetric matrix into a row vector. For r > 1 Equation system (C7) will

have multiple solutions and we are free to choose r (n+ r + 1) /2 linear com-

binations. We identify a solution by adding an arbitrary [r (n+ r + 1) /2]

× [(n+ r) (n+ r + 1) /2] matrix R such that.

vech
³
ŜT
´
= Rvech

³
Ω̂T

´
. (C8)

Our estimator of Ω̂T is given by

vech
³
Ω̂T

´
=

⎡⎣ B
³
Ψ̂T

´
R

⎤⎦−1 vech³ŜT´ . (C9)
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Consistency follows for arbitrary R from the properties of probability limits

and the fact that

vech (ST ) =

⎡⎣ B (Ψ)

R

⎤⎦ vech (Ω) . (C10)
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