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Abstract

This paper shows how to compute a second-order accurate solution
of a non-linear rational expectation model using algorithms developed
for the solution of linear rational expectation models. The result is a
state-space representation for the realized values of the variables of the
model. This state-space representation can easily be used to compute
impulse responses as well as conditional and unconditional forecasts.

JEL classification: C63, EO.

Keywords Second order approximation; Solution method for rational
expectation models.
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Non-technical summary

Recently, the traditional application of the linearisation approach to the so-
lution of dynamic general equilibrium models has shown some important
limitations. Uncertainty and rational expectations are two of the most char-
acteristic assumptions adopted in modern macroeconomic models. These as-
sumptions have implications regarding the dynamics of the model economy
as well as regarding the average level around which the economic variables
are expected to fluctuate. The linearisation approach, by approximating
the non-linear structural model by linear equations, is not able to take fully
into account the role of uncertainty. The linearisation approach imposes cer-
tainty equivalence on a model so that some of the stochastic properties of
the non-linear model are lost. On the contrary, a non-linear (e.g. quadratic)
approximation of the model does not impose certainty equivalence on the
economic relationships and provides a better measure of the effects of un-
certainty on the economic variables. Furthermore, at least in some cases,
approximations of order larger than one could also improve the accuracy of
the solution.

In particular, recent developments in the analysis of monetary and fiscal
policy have shown that a better characterization of the policy problem can be
obtained by taking (at least) a second order expansion of the model around
some point of interest (e.g. the non-stochastic steady state of the model).

One major advantage of the linearisation approach is that it requires only
the use of linear algebra which makes it readily implementable on computers.
This paper shows that also a second-order expansion of the non-linear model
can be solved by using only linear algebra rules that are widely adopted in
economics and econometrics textbooks. We show, in particular, that the
same solution algorithms (and computer codes) that have been extensively
used to solve linear-rational-expectation models can be used to solve second-
order expansions of non-linear models. The result is the familiar state-space
representation that is commonly associated with linear-rational-expectation
models.
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1 Introduction

This paper shows how algorithms devised for the solution of linear rational
expectation models can be effectively employed to solve non-linear rational
expectation models that are approximated to the second order of accuracy.
Currently, researchers can choose from a number of algorithms for the so-
lution of linear rational expectation models, i.e. models approximated to
the first order of accuracy. An incomplete list would include direct methods
like Blanchard and Kahn (1980), Sims (2000a) and Klein (2000) and meth-
ods based on the undetermined coefficients technique like Uhlig (1999) and
Christiano (1998). At the same time a growing macroeconomic literature is
addressing issues that can be studied only by taking into account (at least)
the second-order terms of the rational expectation models. The welfare-based
monetary policy analysis in Woodford (2003) is emblematic of this new fo-
cus. A number of papers describe how to derive the second-order expansion
of rational expectation models and how to solve the approximated system.
A non-exhaustive list should include Schmitt-Grohé and Uribe (2004), Jin
and Judd (2002), Sims (2000b), Kim and Kim (2003), Kim et al (2003), Be-
nigno and Woodford (2004a, 2004b) and Sutherland (2002). Most of these
papers are associated with computer algorithms devised to solve the second-
order-approximated models.! Yet, these algorithms (with the exception of
Sutherland (2002)) are different from those used to solve linear rational ex-
pectation models. Furthermore, their description is often very heavy in terms
of notation (e.g. they make use of the “tensor” notation).

In this paper we show that second-order accurate state-space solutions
can be obtained simply by use of algorithms devised for linear rational ex-
pectations models. An important aspect of the method we propose is that
it can be described using standard linear algebra notation, of the same type
that would be used in linear rational expectations models (as described, for
instance, in Ljungqvist and Sargent (2000)).? The basic structure of the
solution technique employed in this paper follows the method suggested by
Sutherland (2002). Nevertheless, our paper makes two important extensions
to the results shown in Sutherland (2002). Firstly, we are able to derive

!Benigno and Woodford (2004a, 2004b) represent an exception since their aim is to
give an analytical solution to the model. Their approach is nevertheless very similar to
that followed by Sutherland (2002). The general method proposed by Sutherland (2002)
was developed independently but is similar to the procedure adopted by Canton (1996) in
the context of a specific model.

2See Juillard (2003) for a “concise” formulation of the perturbation method that relies
more heavily on matrix algebra.
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second-order accurate solutions in state-space form. Secondly, we derive
second-order accurate solutions for the realized values of the variables (as
opposed to their conditional forecast). Thus, contrary to what is stated in
Sutherland (2002), the two-step solution method described here is as general
as any other second-order accurate solution method currently available in
the literature (including those described by Schmitt-Grohé and Uribe (2004)
and Sims (2000Db)).

This paper is organized as follows. In Section 2 we outline the basic
structure of the two-step solution procedure. In Section 3 the state-space
form of the solutions to each step are described in more detail. Section 4
applies the solution method to the simple neoclassical growth model. This
is a convenient benchmark which is used by both Sutherland (2002) and
Schmitt-Grohé and Uribe (2004). Section 5 concludes.

2 A Two-Step Solution Method

It is assumed that the second-order approximation of the equations of a model
can be written in the following matrix form?

A, [ St41 ] :| — A, l it :| + Aszy + AgN\, + ASE, [At+1} +0 (53) (1)

Ey[crpa i
e =Nwxi_1+ ¢ (2)
Ty
A, = vech S¢ [ Ty S¢ Ct } (3)
Ct
where s is a vector of predetermined variables (i.e. Ej[s;11] = s441), ¢ is a

vector of jump variables, x is a vector of exogenous forcing processes, € is a
vector of i.i.d. shocks. A; is a vector of all the squares and cross-products

3The second-order approximation of a model is generated by replacing each side of
each equation with a second-order Taylor series expansion around an appropriate point
of approximation. It is usually convenient to approximate around a non-stochastic steady
state. It is also usually convenient to measure variables as log-deviations from this non-
stochastic steady state.

It is important to note that, in taking second-order approximations, expectations oper-
ators should be preserved in the positions they arise in the non-approximated model. This
is because (unlike the case of first-order approximation) certainty equivalence can not be
assumed in the second-order approximated model.
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of the variables of the model.* A;.. A; are matrices of coefficients, F; is
the expectations operator conditional on information at time ¢ and O (%)
contains all terms which are of order three or higher in deviations from the
point of approximation.®

The objective is to use (1) to derive second-order accurate time paths of s
and c¢. The solution method described in this paper is based on the following
two observations: (i) second-order accurate solutions to (1) can be obtained
using purely linear methods if a second-order accurate solution for the time-
path of A is known; and (ii) a second-order accurate solution for the time
path of A can itself be obtained using purely linear solution methods.

The first observation is self-evidently true. If the time path of A is known
then (1) can be regarded as a linear rational expectations system with ex-
ogenous forcing processes A and x. Such a system can be solved using any
standard linear solution method.

The second observation is less obvious. To understand (ii) notice that
terms of order two and above in the behaviour of x, s and ¢ become terms
of order three and above in the squares and cross products of z, s and c¢. It
must therefore follow that the second-order accurate behaviour of A depends
only on the first-order accurate behaviour of x, s and c¢. Thus it is possible
to generate second-order accurate solutions for A by considering first-order
accurate solutions for x, s and c. First-order accurate solutions for x, s and
¢ can easily be obtained by solving the linear system

] g J=al v am 0@ "

which is derived from the first-order terms in (1). Here O (¢?) contains all
terms of order two and above in deviations from the non-stochastic steady

state of the model.
It is now simple to state the two-step solution process.

Step 1: Use the first-order dynamic system (4) to derive a second-
order accurate solution for A.

4The cross-products could involve variables with different time subscripts. By using
the state-space solution discussed below, these cross-products can be easily reduced to
products between contemporaneous realizations of the variables, i.e. A;. See the Appendix
for an explanation of the vech notation.

5Tt is assumed the distribution and dynamics of the exogenous driving processes in the
model are such that no x variable can ever deviate from its deterministic steady state by
more than e.
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Step 2: Use the solution for A derived in step 1 and the second-order
dynamic system (1) to drive second-order accurate solutions for s and
c.

An important difference between the current paper and Sutherland (2002)
is that in Step 1 we are able to derive a linear state-space representation
of the realised behaviour of A. The combination of this linear state-space
representation of the dynamics of A and (1) yields an augmented system
where the dynamics of A are treated as an additional set of linear exogenous
forcing processes. Thus the non-linear system (1) is recast as a purely linear
system with linear forcing processes. The solution to Step 2 can therefore
also be written in a simple state-space form which can be used to generate
second-order accurate impulse responses or second-order accurate values for
conditional first and second moments at any horizon.

3 State-Space Solutions to Steps 1 and 2

In this section we describe the state-space solutions to Steps 1 and 2 in more
detail and show explicitly how the second-order (i.e. non-linear) problem
can be solved using purely linear solution methods. In this section we stress
that what matters is the state-space representation of the solutions, not
the particular algorithm used to derive the solutions. In the Appendix we
describe in more detail how the QZ decomposition (as described in Klein
(2000)) can be used to derive state-space solutions to each step. Matlab
codes which implement the solution algorithm described in the Appendix
are available from the authors.

3.1 Step1

The first-order representation of our system (4) can be solved using any stan-
dard linear rational expectations method to yield a state-space representation
of the following form

sl = Fiey_y + Fys] | (5)
c{ = Pz, + Pgs{ (6)
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where the superscript ‘f’ indicates that these are first-order accurate solu-
tions.% It is convenient to rewrite this solution in a more compact form as

=25 ] )
o s
)=o) e ®
where o
a=1|o0 1], @:{g %}, r:{é} ()
PP
Using the matrices L¢ and L" such that”
vech(+) = Lvec(-)
L"vech(-) = vec(-)
it is easy to see that
Ay = RV, (10)
V=0V, +T& + Vg (11)

where R = L (Q®@Q) LM, & = L¢(®@®)L", T = L*T®I)L", and
g, = vech(g; £}), and where

vimean| 5 | [ o/ ])

U=L[(®®D) + (I ®®) P

om0 ]4)

(See the Appendix for a definition of the ® operator and also a discussion of
the derivation of the ‘permutation’ matrix P.) Thus a second-order accurate
representation of the dynamics of A can be written as a self-contained system
in state-space form.

6Henceforth to simplify notation the term representing the approximation residual is
omitted from all equations.

"Note that L" L¢ = I. See Hamilton (1996, p 300-302). Note also that the use of
these matrices is not necessary in order to solve the model. Indeed one could simply
vectorize the variance covariance dynamic system (use vec instead of vech). The suggested
representation is clearly dictated by efficiency reasons.
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3.2 Step 2

We can now use equation (10) to substitute out A; and Ay in equation (1).
This gives a new augmented form for the second-order accurate representa-
tion of the model as follows

A, { Ets[t;;l] 1 — A, { Z ] + Ayzy + GV, + HY (12)
Vi=®V,, +1& + \ijgt (13)
Ty = Nﬁt_l + & (14)
s{ = Fioe + Fos]_, (15)
where® ) )
G = <A4R + A5R<I>) . H=AsRD, ¥ =FEén (16)

The important point to notice is that this new representation of the second-
order approximation of the model can now be solved in state-space form
using any linear rational expectations solution method.? A state-space rep-
resentation of the solution to this system is the following

st = Fixg 1 + Fasgy + F3Viqg + FuX (17)
¢ = Pixy + Paysy + PV, + PyX (18)
V=0V, + T8 + V¢, (19)
T = Nxp_1 + & (20)
s{ = Fimyq + Fos]_, (21)

For any given initial conditions for s, V' and x, this state-space system can
be used to generate second-order accurate impulse responses to the exogenous
shocks.!? It can also be used to generate second-order accurate stochastic
simulations for computer generated random realisations of the innovations.

Furthermore, the state-space representation provides a convenient way
to calculate second-order accurate solutions for conditional first and second

8Note that Et [ét+1] =0.

9This is despite the presence of the cross-product term ét. The cross-product term
is zero in expectation and therefore does not affect the forward-looking dynamics of the
model. The forward-looking dynamics of the model are therefore entirely linear.

10Notice that, in this case, the cross product term 5} is zero in all periods because
;1 and 5{71 are zero in the first period of the impulse response simulation and ¢, is zero
in all periods other than the first period of the impulse response simulation. Equation
(21) is therefore not relevant for generating an impulse response solution.
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moments for the time-paths for the variables of the model. By simply apply-
ing the conditional expectation operator through all the equations in (17) to
(21) we can compute first and second conditional moments at all horizons.!!

4 An Example: The Neoclassical Growth Model

As an example of the use of the above algorithm consider the simple neoclas-
sical growth model consisting of three equations: an Euler consumption (c)
equation, a capital (k) accumulation equation and an i.i.d. process for the
(log) of the productivity shock (a).'? That is

¢ ' = aBE [aaki o] (22)
ktJrl = atkf‘ — Ct (23)
&t = log Ay = &¢ (24)

The equation-by-equation second-order Taylor expansion of this simple
model is as follows (where hats indicate log-deviations from a non-stochastic
steady state).

—vé + (1/2)7°¢ = —vEée1 + (o — 1>i€t+1+

(1/2)E, {(am e + (o — 1)’%1)2}

(25)

Okpyy + (1/2)0k2, = a; + ak, — ¢, — (1/2)péi+
(1/2)0?k? + (1/2)a2 + adyk, (26)
ay = & (27)

1 An increasing number of macroeconomic papers make use of second-order approxima-
tion methods in order to analyze the welfare effects of fiscal and monetary policies as well
as in order to derive optimal policies. This requires solutions for first and second moments
rather than solutions for realised values. This is in fact the main focus of Sutherland
(2002) and Benigno and Woodford (2004a, 2004b). Notice that the cross-product term,
&, is irrelevant for generating expected paths because it is zero in expectation. Equation
(21) is therefore also irrelevant in this case.

12This model corresponds to one of the examples used by Schmitt-Grohé and Uribe
(2004). The assumption of zero persistence in the productivity shock and no depreciation
in the capital stock are also made in Schmitt-Grohé and Uribe (2004). These assumptions
are made for simplicity only and are not required for the application of the solution
algorithm.
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where ¢ = ——, 0 = Cgﬁrﬁ The approximation-error term is not shown
for simplicity.”® Equations (22), (23) and (24) are obtained by replacing
each side of equations (25), (26) and (27) with a second-order (logarithmic)
Taylor series expansion around the non-stochastic steady state. Notice that
the conditional expectations operator which appears in (22) is preserved in
equation (25).'

Next, we cast the model in matrix notation as follows

~

Ay [ ktfl } = A { lft ] + Asay + AgA\y + A5 By [At+1] (28)
By [C41] Ct

where
No=1a? ake k2 aw, ke, & ]

B 0 0 | a —9¢ |1
e R e L e 1
A — 1/2 a a?/2 0 0 —¢/2
Y10 0 0 00 —2)2

10 0 0/2 0 0 0
B [ 1/2 a1 (a=12/2 4 ~la—1) 72/21

The following parameter values are used: v = 2, a = 0.3, § = 0.95,
0 = 0.285, ¢ = 0.715.

We are now ready to use the two-step algorithm outlined above. Step 1 of
the algorithm yields the following state-space representation for the evolution

As

I3Nevertheless, it is useful to recall that this is a local approximation and hence the
error term might be large for large departures from the approximation point (the steady
state in our case) (see Jin and Judd (2002) for a discussion of the importance of the local
perspective in this kind of exercises).

14Note that, by deﬁnition, Et [kt+1] = kt+1 and Et [at+1] =0.
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of A; (i.e. equations (10) and (11)):'

a 1 0 0
acki 0 1 0 .2
(k)2 | _ 0 0 1 ot
ael | T | 08174 025252 0 CZJ’ftQ (29)
ifel 0 084174 025252 | L (K0)
(@2 | 0.70853 0.42512 0.063768 |
(a1 [ o 0 0 a2, 1
aki | = 0 0 0 aakl |+ 0[]
(B2 | | 1.9517 1.171 0.17565 (k)2 0
0 0 .
a¢—1
+ | 1.397 0.41911 [Af }gt (30)
0 0 Fia
a| | 0O 0 a1 1
L%tf} - {1.397 0.41911] [z;tf_l} i { 0 ] & (31)

Step 2 of the algorithm yields the following state-space representation of
the second-order accurate solution of the model:

ko] _ [ 1397 0.41911] [a
& | |0.84174 0.25252| |k,

11-0.077802 —0.046681 —0.0070022
2 |—0.056866 —0.034120 —0.005118

a;
iy kel (32)
(k/)?
1 { 0.4820 } 9
g

2 1—0.1921

These numbers are identical to those reported in Schmitt-Grohé and Uribe
(2004) for the same model.

Schmitt-Grohé and Uribe (2004) report results relating to two other mod-
els. We have applied our algorithm to both these other examples and have
confirmed that it generates identical results to those reported by Schmitt-
Grohé and Uribe (2004).

15Tn what follows kf and ¢/ denote first-order accurate solutions for capital and con-
sumption while k£ and ¢ denote second-order accurate solutions for capital and consump-
tion.
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5 Conclusion

In this paper we have shown how a non-linear rational expectation model,
approximated to the second order of accuracy, can be recast as a linear struc-
ture which can be solved in state-space form by means of standard algorithms
developed for the solution of linear rational expectation models. This state-
space form can be used to produce second-order accurate impulse responses
as well as conditional and unconditional forecasts. We suggest that our al-
gorithm is a convenient alternative to other second-order accurate solution
methods proposed in recent literature. Compared to other methods, our al-
gorithm seem to require a much more modest departure from the existing
techniques used in dynamic-rational-expectations macroeconomics.

Appendix

Glossary of Matrix Algebra Notation and Rules

1. vec(X):  Vectorization. All columns of the m x n matrix X are stacked
one under the other (starting with the first column).

2. wech(X): As above except that only the upper triangular part of X
is considered. Note that it is possible to construct a matrix L such that
Lvech = vec. Then, (L' L)™' L' vec(X) = vech(X).

3. ®: Kronecker product. E.g. Z = X ® Y. The elements of Z are the
product of each element of X with the matrix Y.

4. Vectorization of a product of matrices: vec(XY Z) = (Z/'®
X)vec(Y)

5. The permutation matrix P Here we show how to construct the
permutation matrix P such that vec(Z) = Pvec(Z'). We start by noticing
that the element z; ; of the generic matrix Z of dimension m x n will coincide
with the element 2 tm(j—1) 10 the vector z¥ = vec (Z), while it will coincide
with the element zj ., , in the vector 2 = vec(Z’). This information
can be used to generate the matrix P. Generate an m x n matrix S such
that S = vec ' ([1,2...(m-n)]’), and an identity matrix I of dimension
mn X mn. Finally, the permutation matrix P is given by P = I (:,vec (5’)).
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State-Space Solution to the First-Order System

Consider the first-order system

A, E, l as } = A, { ot 1 + Asz (33)
Ct4+1 Ct
Ty = N.ft_l + & (34)

By applying the QZ decomposition (Generalized Schur Decomposition) we
can factorize the matrices A; and A, into

. a1 a2 o bll b12
quz—{ 0 Cm}, quZ—{ 0 bm]

where matrix z has the property zz’ = I. Hence
aip a2 Yit+1 bir D12 Y, Ch
E ’ = T+ x 35
[0 a22] t[?/Z,t+1:| [0 b2z}[y2,t} [Cz}t (35)
where
yie | _ | Zn Z; St
Yot 21y 2o Ct

|
2]

Without loss of generality we can assume that the system (35) has been
ordered so that by, ags has roots inside the unit circle. Then the lower part
of system (35) can be isolated and solved forward to get (absent bubbles)

and

Jot = — [b3y Co + Tbyy CoN + T?byy CoN* + .. (36)

where
—1

As long as the series converges we can solve for the endogenous variables as
Yo = —Muz,

where

vec(M) = [I — (N' @ T)] " vec (byy Cs)
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See the Glossary at the start of this Appendix for a general statement of the

rule used to derive this expression.!®
Finally we have
Yot = 2195t + 2990 = — M,
so that
Ct = PlfL‘t + PQSt (37)
where
Pi=—2'M, Py=— 25520,

As for the state variables, solving for the upper part of (35) yields

£a113§1 + al2z§2) PllEtCUtH +£(a11211 + @12212) + (allzél + a123§2) P2l Eisiy1 =

Ry Ry
[(bu129) + biaziy) Pr 4 Ci] e + [(buizyy + bialy) + (brizdy + bizzgy) Pl s
Dy Dy
Thus
Ey [Rixip1 + Rospp1] = Dixy + Dasy
or

St41 = (R2_1D1 - Rg_lRlN) Ty + R;lDz Sy

(. >

~\~

Fy Iy

where we have made use of the fact that F; s, = s,411 (because s is a vector
of predetermined variables).
To sum up, the solution to the dynamic system (33) is

s = Fixy_q + Fasi (38)
Cy = Plﬂft + P2St (39)
Ty = Nﬂft_l + &¢ (40)

This is the solution given in (5) and (6) in the main text.

16Klein (referring to King and Watson (2002)) describes a computationally more efficient
method to compute M.
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State-Space Solution to the Second-Order System

Consider now the augmented second-order system

A [ Ej[t;l] } = A, [ Z } + Azzy + GV, + HY (41)
V, =0V, +T & + V¢, (42)
=Nz + & (43)
s] = Fioyy + Fosl | (44)

Define V = (I — ®)~'T then
BV =V + 0"V, - V)

Applying the QZ decomposition yields

a11 Q12 Y1,t+1 b1 bio U1t O
E ’ = - +
[ 0 ag } ! [ Yo,t41 } [ 0 Do } [ Yot } [ Csy } ot

where the matrices a, b, ¢ and z are all identical to those defined in the

previous section and
Gy i,
A = qG, . =qH
{ G } ! { Hy } !

Again the lower part of system (45) can be isolated and solved forward to

yield
Yo = — [byy Co + Tbyy CoN + T?byy CoN? + ..
= [122 G + Thg Go® + T G202 4| (v~ V)
— [T+ T+ T+ ..] by (GoV + Hy)X (46)
where
T = b521a22

As long as the series converges we can solve for the endogenous variables as

Yo = —Mizy — Ma(V, — VE) — M;%

Working Paper Series No. 487



where
vee (My) = [I — (N' @ T)] " vec (b3 Cs)
- -1 .
vec (My) = [I - <(I>’ ®T ] vec <b2_21G2>
Ms = [I —T) " 03,1 (GoV + Hy)
Finally we have

Yot = Zigst + ZéQCt = —Mll't — MQ(‘/t — ‘_/Z) — Mgz

so that
¢t = Pixy + Posy + PV, + P2 (47)
where
Py = —25, M,y
P = — 251212
Py = —z2p,' My

P4 = —Zégl[Mg - MQV]

The solution for the state variables can be obtained by solving for the
upper part of (45). This yields

(@112 + a1225y) P Eywn + [(a1121) + a1221) + (@112 + a12299) Po] Eiseia

Ry Ra
+ \(CLHZ;l + CL122;2) P3 Etv;g_H + SCLHZél + algzéz) P4 Y=
Rs Ra
[(bi123) + biaziy) Pr 4+ Ch] e + [(buzyy + biazly) + (b2 + binzy) Pl s
Dy D»
=+ (bllzél + b122;2) P3 + GAl} V% + [(bllzél + 612z§2) P4 + ]:]1 Z
Ds Dy

Thus
RiNz_1+ Rysy+ Ry(®V,1 +I'S) + R4S = Dywy_1 4 Dasy—1+ D3Vi_1 + Dy S
or

St — R2_1 (Dl — RlN) Ti_q + R2_1D2 St—1
——

i

-~

Fy F>
+ Ry (D3 — R3) Viy + Ry (Dy — Ry — RyT) X
D e — N ~ v

F3 Fy
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To sum up, the solution to the second-order system (41) is

sp = Fixy_q + Fospq + F3Vio + FyX (48)
¢ = Pixy + Pysy + PV, + PY (49)
T =Nxi_1 + & (50)
Vi=0V,, +T& + ‘i’ét (51)
sl = Fizyy + Fysl | (52)

This is the state-space form of the second-order solution given in equations
(17) to (22) in the main text.

Notice that the QZ decomposition only needs to be applied once in the
two-step procedure. The matrices a, b, g and z are the same in both steps, as
are the solutions for Fy, Fy, P, and P,.17

170Only in cases where the realised and expected dynamics differ would it be necessary
to compute the QZ decomposition twice.
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