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Abstract

This paper examines differences between risk-neutral and objective proba-
bility densities of future interest rates. The identification and quantification
of these differences are important when risk-neutral densities (RNDs), such as
option-implied RNDs, are used as indicators of actual beliefs of investors. We
employ a multi-factor essentially affine modeling framework applied to German
time-series and cross-section term structure data in order to identify both the
risk-neutral and the objective term structure dynamics. We find important dif-
ferences between risk-neutral and objective distributions due to risk premia in
bond prices. Moreover, the estimated premia vary over time in a quantitatively
significant way, which implies that the differences between the objective and the
risk-neutral distributions also vary over time. We conclude that one should be
cautious in interpreting RNDs as representing the true expectations of market
participants. The method used in this paper provides an alternative approach
to identifying objective probabilities of future interest rates.

JEL classification: G12, E43
Keywords: Risk-neutral densities, essentially affine term structure models, risk premia
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Non-technical summary

Prices of financial contracts, such as bonds and futures, are commonly used to extract in-
formation about market expectations of future asset prices. This information, in turn, is often
interpreted in terms of market participants’ expectations of monetary policy and future underlying
fundamentals, such as growth prospects and inflation. Central banks, for example, frequently use
measures implicit in financial asset prices to obtain estimates of market expectations. A large
number of techniques have been developed towards extracting information of this type, such as the
modelling of implied forward rates. Another approach that has been increasingly used to examine
measures of uncertainty, is to model the entire implied probability density of the price of a financial
contract for a future date of interest. Prices of options and other derivatives are frequently used
to derive such implied densities. This approach has the advantage of providing information not
only about expectations of the level of future variables, but also about the degree of uncertainty
associated with these expectations, as well as any possible asymmetries in terms of the range of
expected future outcomes.

A well-known problem with the extraction of information about expectations of future asset
price movements from market prices is that the existence of risk premia drives a wedge between
discounted expected future asset prices and currently observable asset prices. For example, the
current futures price of, say, an equity index in three months time is in general not equal to the
market’s expectation of that index three months ahead, because of the impact of risk premia.

Despite the fact that it is well-known that risk premia have this "distorting" impact, the specific
role of premia is often explicitly or implicitly disregarded when expectations about future asset
prices are extracted from observed prices. One example is the relatively common practice to
interpret implied forward rates as direct measures of expected future interest rates. This paper
examines the role of risk premia when examining and interpreting the information from financial
indicators in the context of interest rate-related markets. In particular, the paper focuses on the
impact of risk premia on implied probability densities of future interest rates.

Almost all available methods used to estimate implied densities deliver the so-called "risk-
neutral density" of the underlying price or interest rate at the time of expiration, rather than the
true "real-world" probability density. The reason why it is called the "risk-neutral density" is that
it would correspond to the real-world density only if investors were in fact risk neutral. Again, the

difference arises because of the existence of risk premia.

ECB » Working Paper No 274 « September 2003 5



The strength of this approach, where risk-neutral densities are modelled directly, is that it

avoids making explicit assumptions regarding the dynamic evolution of interest rates. However,
the weakness is that there is little scope to assess the risk premia issue within that framework.
To address this issue, we model the stochastic behavior of the term structure of interest rates by
linking it to a number of underlying factors with certain properties. Once the dynamics of the
underlying factors are specified, then we can derive the dynamics of interest rates for any maturity
using no-arbitrage principles, and the distributional properties can then be uniquely pinned down.
Moreover, given an assumption about the functional form of the risk premium in terms of the
factors, it is possible to transform risk-neutral densities into real-world densities, and vice versa,
once the parameters of the model have been estimated using term structure data. This allows us
to quantify the differences between these two types of probability densities. For example, we can
explore the differences in the means and the variances of the two densities for any combination of
maturity and horizon, and examine if and how these differences vary over time.

The empirical analysis is carried out on German term structure data, and the interpretation
of the results is focused on densities for 3-month interest rates and 10-year yields for horizons of
up to one year. The results we obtain indicate that risk premia considerations are important, in
the sense that there generally are non-negligible differences between risk-neutral and real-world
densities. More importantly, we find that the differences between these densities change over
time as a result of time-variation in risk premia. We therefore conclude that caution should be
exercised when interpreting risk neutral densities, such as option-implied densities, as representing
the true expectations of market participants. In addition, in an evaluation of the estimated real-
world densities with respect to actual future outcomes, we find that we do a good job in terms
of capturing the true densities of future interest rates. This indicates that the dynamics of risk
premia are modelled satisfactorily in the framework we use. The method used in this paper
therefore provides one alternative approach which can be used to identify risk premia and thereby

the real-world probabilities of future outcomes.
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1 Introduction

The interplay between financial markets and central banks provides rich opportunities for both
market participants and monetary policy makers to extract valuable information from financial
asset prices. Market participants monitor and forecast the policy decisions of central banks in
order to price interest-rate related contracts and other financial assets. Conversely, central banks
are interested in evaluating the markets expectations about its future interest-rate policy and
about future underlying fundamentals, such as growth prospects and inflation. Prices of financial
contracts (e.g. bonds, futures and options) are an obvious source for extracting this kind of
information and a large number of techniques have been developed towards achieving this end,
including the modelling of implied forward rates and implied volatilities. Another approach which
has been increasingly used to examine measures of uncertainty, is to model the entire implied
density of the price of a financial contract for a future date of interest.

This paper focuses on the role of risk premia when examining and interpreting the information
from such financial indicators in the context of interest rate-related markets. This issue has, in
practice, often been disregarded or, alternatively, an implicit assumption has often been made
that the impact of premia is negligible. One example is the relatively common practice to inter-
pret implied forward rates as direct measures of expected future interest rates, without explicitly
accounting for risk premia considerations.

In the context of implied densities, the existence of possible premia may in principle also have
important implications for the interpretation of the information from such densities. A common
approach when estimating implied densities is to assume some specific parametric specification for
the density, and then calibrate the parameters to minimize pricing errors with respect to a given
cross-section of observed derivatives prices with identical expiration. However, it is well-known
that this approach will deliver the so-called risk-neutral density of the underlying price or yield at
the time of expiration, and not the actual objective density. More precisely, the derivative pricing
framework largely relies on the absence of arbitrage, rather than on some ”objective” valuation
theory. The absence of arbitrage, in turn, (essentially) implies the existence of an equivalent mar-
tingale measure, often referred to as the ”risk neutral measure”, which is the relevant probability
measure to use when pricing derivatives as the discounted expected payoff. Heuristically, this ”risk-
neutral pricing framework” implies that the probability measure used to price assets is adjusted so
as to make the expected return on a risky asset equal to the risk free rate. It does not, however,
mean that agents are assumed to be risk neutral.

The fact that option-implied densities deliver the risk-neutral probabilities is not a problem if
the aim is to price other securities, because this is the relevant density for such purposes. It may,
however, be a problem if the aim is to interpret market expectations of uncertainty surrounding
future interest rates or asset prices, since the relevant distribution in this case of course is the
true, objective density. This paper aims at exploring the differences between these measures, in
order to find out whether one can safely ignore risk premia considerations when interpreting RNDs,

which largely seems to be current practice. Unfortunately, it turns out to be difficult to analyze
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the impact of risk premia when the RND is modelled directly. One possibility is to assume some
specific functional form for the utility function and then estimate the degree of risk aversion in
order to back out the true PDF from the RND, as in Bliss and Panigirtzoglou (2001). However,
an alternative approach is available, in that we can follow the pricing literature that models the
dynamic properties of the underlying asset. A few studies have taken a similar route in examining
risk-neutral vs. objective PDFs for equity indices, but these have focused on quite restrictive single-
factor specifications, as e.g. in the study by Ait-Sahalia, Wang and Yared (2001). In contrast, we
are mainly interested in examining these issues in connection with interest-bearing instruments,
for which a single-factor setup is likely to be even less realistic than in the case of equities. We
therefore turn to recently proposed dynamic multi-factor term structure models. Specifically, we
focus on the class of affine term structure models (ATSMs) of Duffie and Kan (1996) and Dai and
Singleton (2000), which have received increasing attention in the term structure literature due to
their flexibility and analytical tractability.

Obviously, once the dynamics are specified, the distributional properties can be uniquely pinned
down. Moreover, given that we specify the functional form of the risk premium, Girsanov’s theo-
rem allows us to quantify the differences between the risk-neutral and the real-world probability
measures. In particular, we can explore the differences in the means of the two distributions for
arbitrary combinations of maturities and horizons, and examine if and how these differences vary
over time. This is, for example, of interest from a classical expectations hypothesis point of view
when one is interested in expected future interest rates. In addition, our framework allows us to
investigate how various measures of dispersion differ between the risk-neutral and the objective
probability measures. This relates to the issue of interpreting the dispersion of implied densities
as a measure of the market’s perceived degree of uncertainty with respect to the future evolution
of the underlying. Apart from the impact on simple variance measures, we can also quantify the
differences between the measures in terms of the probabilities for various scenarios, such as ”the
probability that the 10-year yield will be lower than 2% in 6 months”. This is of interest because
implied distributions are often implicitly or explicitly used to get an idea of such probabilities.

We focus our analysis mainly on the results for distributions on 3-month interest rates and
10-year yields for horizons of up to one year, because these will be the most relevant cases in
practice. Specifically, the most liquid standardized interest rate options markets in the euro area
are the markets for options on three-month EURIBOR futures and for options on 10-year German
government bond futures (Bunds). The results from this exercise indicate that risk premia con-
siderations are important, in the sense that there generally are non-negligible differences between
risk-neutral and objective densities. More importantly, we find that the differences between these

densities change over time as a result of time-variation in risk premia.
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The remainder of the paper is organized as follows. Section 2 reviews the theoretical foundation
for the two alternative modelling strategies: the direct density modelling approach and the dynamic
process modelling approach. Section 3 illustrates the latter approach using the well-known and
simple Cox, Ingersoll and Ross (1985) model (CIR), while Section 4 considers more general affine

multi-factor models. Section 5 provides some density forecast evaluations, and section 6 concludes.

2 Theory

In the absence of arbitrage opportunities it is possible to show, given technical conditions, that
the price of any contingent claim, IT at time ¢, based on an underlying asset Y at time 7', will be
given by

M(tY) = ER e 77050 (vy)] | 1

where ¢ (Yr) is the payoff of the claim and r (s) is the stochastic interest rate. This is the fun-
damental result on which both the option-implied approach and the dynamic process approach
relies. Equation (1) states that the price of the claim, say a European call option, will be given
by the discounted value of the payoff of the claim. The crucial thing to note is that the expected
value should be evaluated under an equivalent martingale measure, often denoted the risk-neutral
measure (Q). This is the source of the term risk-neutral density (RND).

This section reviews two ways of modelling this risk-neutral density. First, we examine the
case when the distribution is modelled directly. This line of work is represented by the Melick and
Thomas (1997) approach, which is widely used in central banks to infer interest rate distributions
from market prices. However, as argued above, central bankers are mainly interested in the objec-
tive probability measure, which differs from the risk-neutral measure due to risk premia. Therefore,
implicit in the interpretation of option-implied densities is an assumption that risk premia do not
matter "too much”. Alternatively, it is assumed that such premia remain fairly constant over time,
so that changes in the risk neutral density can be interpreted in terms of changes in the actual,
objective density. Of course, the main appeal of the direct approach is that it often is relatively
easy to implement in order to obtain some indication of the distribution of the underlying. On
the other hand, a weakness with the direct approach to modelling the distribution is that it is
impossible to assess the importance of risk premia, since the whole analysis is conducted under the
risk-neutral measure.

To evaluate the quantitative differences, we therefore introduce a second approach, i.e. the
modelling of the evolution of underlying state variables which drive the dynamics of the yield
curve. Specifically, we rely on the affine modelling approach of Duffie and Kan (1996) and Dai

and Singleton (2000), whereby the underlying state variables and the instantaneous short-term
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interest rate follow affine diffusion processes. An early and classical example of a model within this
framework is Cox, Ingersoll and Ross (1985). In the affine framework, it is possible to relatively
easily specify the relation between the risk-neutral and the objective probability measures, and to
use market data to estimate all parameters governing the dynamics under the different measures.
Thus, if both approaches properly capture the risk-neutral density, and the assumptions about
the functional form of the risk premium are correct, then we can examine the quantitative errors
associated with approximating the objective density with the risk-neutral one. We elaborate some
more on the two approaches mentioned above, in the following two sub-sections.

We start by introducing some definitions. Let P (¢,T) denote the price, at t, of a zero-coupon

bond maturing at T'. Correspondingly, y (¢,7") is the yield to maturity for such a bond,

yo,7) = 2T )

2.1 Modelling the distribution

A specific case of (1) which we will be interested in is European options. In this case, the price of

a call option at ¢t can be expressed as

C(t.T: K, P) = B |e” I 7O [P (1) - K" (3)
where P (T') is the value of the underlying contract (e.g. a bond) at the expiration date T of the
option, and K is the strike price. In the case of futures options with full margining, the discount

effect vanishes and the option price formula collapses to
. _ @ +
Ct,T;K,P)=Ez[P(T)—-K]".

This is relevant, because standardized interest rate options contracts are typically options on
futures, as in the case of EURIBOR and Bund futures options.

Now, if we are prepared to assume that the risk-neutral distribution of P (T') is given by f€ (),
then we can use market data to get hold of the parameters of the distribution. For example, assume
that f@ () is a mixture of two log-normal distributions, as suggested by Melick and Thomas (1997).
Then, the risk-neutral density is given by

207
i

fQ (m) :eL(x;ulaal)+(1_6)L(w;/’b2)02)3 (4)
where R
1 _ ln(:c\l;u,;, <

L Ty, M;yO04) = ———=E€
(. ) xo\/ 2w
Let C (t,T; K, pu,0) denote the theoretical call option price obtained by integrating the above

distribution for a given set of parameters, v = [uq, tia, 01, 01, 9}/. Specifically, the call prices are
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given by

C(.T:K.po) = EZ[P(T)~K]"
- /K (P(T) - K) f (P(T))dP (T)

= 96H1+%N(O’1 —di)+(1-9) e”2+n'_22N(d2 —03)
—K (0N (=d1) + (1 —0) N (—d2)),
where

_ log(K) —

g;

d; Li=1,2.

Next, assuming that we, for a given expiration date T, have market data on a set of option prices

with different strikes, indexed by 4, we can obtain estimates of the parameters by solving!
- 2
min y (c (t,T;K;, P) — C (t,T; Km)) . (5)
T

Further, if one is prepared to assume that the Q-measure coincides (or is approximately equal
to) the objective measure, the graph of f@ (z) can be interpreted in terms of the uncertainty
perceived by the market about the future price of the underlying, e.g. a bond. Taking the example
of a bond price density, with an appropriate density transformation, this can be converted into a
statement about the distribution of future yields.? Our interest is therefore to evaluate how large
the differences between the risk-neutral and the objective densities are. It is conceptually hard
to do this in the approach outlined above. Nevertheless, as the next section will show, there is a

natural relationship between the two measures when using an alternative modelling strategy.

2.2 Modelling the term structure

The vast majority of the pricing literature models the dynamic evolution of the state variables or
factors, X, that drive the prices of interest-related contracts. This is typically done by specifying
the functional form of the deterministic and the diffusion parts, together with initial conditions for

the state variables
dX () = p@tX@)dt+o(t, X (@)dW (t), (6)
X (t) = Xta

where W (t) is a vector-valued Brownian motion, specified under the objective probability-measure

P. For notational convenience we will from this point on use Xy, W; to denote X (t), W (¢), etc. It

IThe purist may note that if the assumed density shape is correct, the resulting errors will be zero. If not, which
in practice is the likely case, there will be errors. Current practice seems to minimize these errors by non-linear

least squares, although other criteria may be employed.
2More specifically, the Jacobian of the transformation is given by differentiating (2).
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can be shown (e.g. Chapter 7 in Duffie (2001)) that the following PDE must be satisfied in order

to rule out arbitrage opportunities:
1
Ft + ‘[L (t, Xt) F‘I(Ij + §trace (O' (t, Xt) g (t, Xt)T wa) - T‘tF == 0, (7)

where F(t, X;) is the price of an arbitrary claim, fi (¢, X}) is the drift under the risk-neutral measure
@, and subscripts denote partial derivatives with respect to the argument.

Using the representation theorem of Feynman-Kac, it is possible to derive (1). For reasons of
tractability, a particularly useful way of specifying (6) is to assume that zero-coupon bond prices

should be exponential-affine functions of the state variables, that is
P (t,T) — eA(t,T)+B(t,T)-X,,- (8)

It turns out that the requirements needed for this to apply is that (¢, X;) and o (¢, X;) o’ (¢, X3)
are affine functions of the state variables under the ()-measure. Once the objective dynamics are
specified, Girsanov’s theorem provides the link between the two measures. Specifically, if W is
a (potentially vector-valued) Wiener process under one measure, then it follows from Girsanov’s

theorem that W< is a Wiener process under a different measure, given the following transformation:
AWE = dW, — gydt, (9)

where g, is the kernel in the transformation. By substituting this into (6), we obtain the dynamics

of the state variables under @,
dX; = [ (t, Xo) + 0 (t, X)) g] dt + o (8, X)) AW,

By letting Ay = —g;¢ denote the so-called "market price of risk”, this can be shown to correspond
exactly to the Girsanov transformation necessary to apply the Feynman-Kac representation the-
orem on the partial differential equation to obtain the solution expressing the term structure of
interest rates. There is therefore a one-to-one relationship between the market price of risk and
the Girsanov kernel.

Restricting our attention to the affine class of models, by applying Ito’s formula on (8) and
using the term structure equation (7), it is possible to show that the Q-dynamics for the price of

a zero-coupon T-bond is given by
dP;, (t,T) =rP, (t,T)dt + B (¢t,T) o (t,Xy) P (t,T) thQ. (10)

The compensation for risk can be inferred from the instantaneous expected rate of return on a
zero-coupon bond under P, which can be obtained by substituting (9) into the above equation and

using that Ay = —g;, resulting in

dP, (t,T) = (re + AuB (t, T) o (t, X2)) P, (t, T) dt + B (, T) o (t, X,) P (, T) dW,.  (11)
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Hence, under the assumption of no arbitrage, the required local rate of return is equal to the short

rate plus a factor which is proportional to the local volatility of the bond,
py (P) =1y + Aoy (P,

where oy (P) = B(t,T) o (t,X:) P (¢t,T) denotes the volatility of the bond. From this relation, it
is easy to see intuitively why A; is commonly referred to as the market price of risk. Rearranging,
we see that A is the required rate of return in excess of the risk-free short rate, divided by the

volatility,
py (P) — 14
ANy = ————. 12
t oy (P) ( )

Moreover, it is clear that the market price of risk is required to be identical irrespective of the
maturity of the bond in order to preclude arbitrage opportunities.

Once the functional form of p, o and A have been specified, and the parameters are estimated
using market (panel) data, we can in principle solve (6) and calculate the distributions of future
interest rates. Two things can be noted. First, if the model is affine under @), it is possible to easily
calculate prices of bonds and contingent claims. Second, if the model is affine under P, estimation
of the model using time-series data is facilitated. Current practice in the literature is to assume
that the functional form of the market price of risk is such that both these properties hold. Dai
and Singleton (2000) provide an overview of this affine framework, whereas Duffee (2002) suggests
an ”essentially affine model”, meaning that while the factor dynamics are affine under both P and
@, the variance of the state price deflator is not affine. This latter approach has proven to be
important with respect to the forecasting abilities of the model. We will return to this issue in
some more detail in Section 4.

It is interesting to compare the framework discussed above to the situation in the Black and
Scholes (1973) model for equity options. In that model, there is a unique transformation between
P and @ because markets are complete. In our case, this is no longer true. From a mathematical
perspective, markets are incomplete in the sense that the exogenously specified risk sources are not
traded assets and bonds can therefore not be replicated by taking positions in those assets (in clear
contrast to the Black and Scholes model). However, once the functional form of the risk premium
has been chosen, the correspondence between the martingale measure and the objective measure is
uniquely pinned down. At least in principle, all that is required to completely identify the measure
is time series observations on the same number of bonds as there are risk sources in the model.
With long enough time series, it should be possible to identify the correct functional form of the
risk premium. Thus, in a sense, markets are (informationally) complete from the perspective of

the econometrician.
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We conclude the discussion of measures by noting that yet another probability measure is
of some interest in this context. The forward-T measure (or forward neutral measure) is by
construction such that it creates independence between the history of variables up to time 7" and
the variables at T. This is very useful if we are interested in pricing assets where the payoff is
potentially correlated with the discount factor, since the two can be separated under this measure.
Another interesting feature is that the unbiased expectations hypotheses actually holds under the
forward-T" measure. That is, the expected future short rate under the T-measure, is equal to
the instantaneous forward rate for the relevant horizon (e.g. Chapter 19 in Bjork (1998)). Thus,
the difference between T' and P captures the error made by interpreting forward rates as future
short rates. The relationship between the Wiener processes under the ) measure and under the

forward-T" measure is given by

dW® =B (t,T)o (t, X;)dt +dw™.

3 The Cox, Ingersoll and Ross Model

In order to take a closer look at the issues discussed in previous sections, and at the same time
keep the discussion at a relatively intuitive level, we first provide an illustration based on a simple

affine one-factor model, namely the well-known Cox, Ingersoll and Ross (CIR, 1985) model.

3.1 The CIR interest rate process

In contrast to models based on no-arbitrage arguments, the CIR model is developed within an in-
tertemporal general equilibrium setting. This allows a consistent characterization of the functional
from of the risk premium. The assumptions underlying the CIR economy imply that the term
structure is completely determined by the dynamic behavior of one state variable which, in turn,

can be expressed in terms of the dynamics of the short-term interest rate,

dry = k(0 —r}) dt + o\/rdWV, (13)

where dW; is a standard Brownian motion increment. This equation describes the interest rate
dynamics under the objective probability measure P. It is clear from this specification that the
short rate r will revert towards a constant level 6 at an adjustment rate determined by x, and that

the variance of the short rate is proportional to the interest rate level.

3.2 Risk premia in the CIR model

Given the assumptions underlying their model, CIR obtain closed-form solutions for bond prices

(P) of any given maturity. These prices depend on the current value of the state variable (the
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instantaneous interest rate), the parameters of the model, the time to maturity of the bond, and
the market’s required compensation for bearing risk. In the CIR case, the local expected return
can be shown to be equal to r + M\ P,./P, where P, denotes the partial derivative of the bond
price with respect to the short rate r, and Ar is the covariance of changes in the interest rate
with changes in optimally invested wealth (see CIR (1985), p. 393). The compensation for risk is
therefore ArP,./P, which will be positive if A is negative, since P, < 0. Based on the discussion in
the previous section, we know that the market price of risk must satisfy the following condition

for bonds of any maturity:
A b)) —r
o (P)

By substituting for the local expected rate of return and the volatility in the CIR model, we can
identify the specific form for the market price of risk in the CIR model. Specifically, we know that
according to the model the local volatility of a zero-coupon bond is (see Appendix C)

_ Po(r)  Poyr

o (P) Iz iz

(14)

and that the market price of risk therefore is

AT
Norp = 2T (15)
o
Equipped with the market price of risk, we can now obtain the dynamics of the instanta-
neous interest rate r under the risk-neutral, or equivalent martingale, measure @, using Girsanov’s
theorem, whereby

dry = & (9 - rt) dt + o\ /rid W, (16)

where dWW; is a Brownian motion increment under ), and

R = K+ A (17)
6 = (HTA)’ (18)

are the speed and level of mean reversion under the risk-neutral measure (). Hence, given a fixed set
of parameters for the interest rate process under P, a larger negative value for the risk parameter
A will imply a higher level 6 towards which the short rate will revert under Q, as well as a slower
speed of adjustment than under the actual probability measure. In contrast, we see that the
instantaneous volatility of » remains unchanged after the change of probability measure. However,
this does not mean that the volatility over a discrete time interval will be unchanged, since it will

be dependent on the parameters in the drift specification as well. This is easily seen from the
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analytical expression for the variance of r (s) conditional on 7 (¢), s > t, in the CIR model®,
o2
Var[r(s) |r(t)] = r(¢) <?) (exp[—k (s —t)] —exp[—2k (s —t)])
0'2 2
+0(52) (- exolonts ), (19)

The impact on the conditional variance of a change in the risk parameter can be divided into two
components. First, a larger (negative) A leads to a slower speed of mean-reversion under @, (17),
which in turn results in a higher variance because the short rate r is pulled back towards the long
run mean at a slower pace relative to P. Second, a larger (negative) X increases the risk neutral
mean-reversion level, (18), thereby raising the variance (since it is increasing in the level of the

short rate).

3.3 Interest rate and bond yield densities

Given the differences between the short-term interest rate processes under the real-world prob-
ability measure P and the risk-neutral measure @), it is of interest to examine what they imply
for the distribution of bond yields under P and (). The conditional density of the short term
interest rate is available in closed form, as is the corresponding conditional distribution function,
which is non-central chi-square (see CIR (1985), pp. 391-392). Moreover, since bond yields, y, for

maturities longer than instantaneous simply are affine functions of the short rate,
y(m)=a(r)+b(m)r(), (20)

their conditional densities are easily obtained through a transformation of the analytical short-rate
density. The functions a (7) and b (7) depend on time to maturity (7) as well as on the parameters
of the interest rate process and the market price of risk (see CIR (1985) for the explicit formulae).

In order to illustrate, we use the parameter values in Table 1 to calculate densities under P
and under ). The values in Table 1 were obtained by estimating the model with the methods used
by Ait-Sahalia (1996) on German weekly term structure data between January 1996 and March
2002.

3See Cox et al. (1985), p. 392.
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Table 1: GMM estimates of CIR parame-
ters under the objective probability mea-
sure P, and fitted value of A

Discretized CIR model:
ATt =K (0 - Tt) At + O'\/'I”_tAWt

Parameter Estimate st.err.
K 0.523 0.257
0 0.031 0.005
o 0.027 0.003
A —0.295 —

Standard errors are asymptotic, based
on the optimal weighting matrix of
Hansen (1982).

Chart 1 displays the distribution of the short rate r (s) conditional on r (¢) for the case when

the horizon (s —t) is one year, and when the initial short rate is equal to 3.4%.* From the chart,

a couple of observations can immediately be made. First, the risk-neutral density lies to the right
of the actual density. This follows from the previously mentioned fact that for a negative value
of the risk parameter A, the short-term interest rate will revert towards a higher level under Q

than under the actual probability measure P. Second, the risk-neutral densities are more dispersed

compared to the actual ones, as discussed above.

Chart 1: Short-term interest rate distribution
under P and @, 1 year ahead, for initial state
variable r(t) = 3.4%

Under P
— — Under Q

~

. . . .
0.00 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08

13.4% is the level of the shortest interest rate at the end of the data sample. The resulting densities could

therefore be seen as the densities implied by the CIR model at the end of March 2002.
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The CIR model and our set of estimated parameters seem to generate substantial differences
between conditional instantaneous interest rate densities under the risk-neutral measure and the
corresponding densities under the actual probability measure, as displayed in Chart 1. An inter-
esting issue is how this result carries over to the impact on conditional densities of yields on bonds
with maturities longer than instantaneous when changing the probability measure. Particularly
interesting, when considering our original problem of examining option-implied densities, would be
to investigate the distributions of three-month and ten-year yields, since the most traded options
in the euro area are based on underlying instruments of these maturities.

Since yields are affine in the instantaneous interest rate, (20), the yield densities will retain
the functional form of the short rate density in Chart 1. The specific shape of a density for a
given maturity 7 will, apart from the value of the state variable, depend on the function b(7),
which in turn depends on the parameters governing the risk-neutral dynamics, as well as on time
to maturity itself. Moreover, the differences between the P and () densities for any given horizon
will depend on the differences between the physical and risk-neutral dynamics of r, and on the
forecast horizon. In the simple setting of the CIR model, the price of risk parameter A will, apart

from a Jensen’s inequality term, determine how big these differences turn out to be.

Chart 2: Three-month interest rate distribution

under P and @, 1 year ahead, for initial state
variable r(t) = 3.4%

Under P
L — — Under Q

. . . . . . .
0.00 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08

Chart 2 displays the one-year ahead distribution of the three-month interest rate conditional
on an initial short rate of 3.4%. It is not surprising that the three-month densities resemble
the instantaneous densities in Chart 1, given the relative similarity of the maturities. Greater

differences are visible for the corresponding one-year ahead densities of ten-year bond yields in
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Chart 3. First, the densities are centered around higher levels than the densities in Carts 1 and
2, reflecting the upward-sloping tendency of the yield curve. Second, the long-term yield densities
are substantially less dispersed than the shorter-rate densities. This result is due to the fact that
the term structure of yield volatilities tends to be downward-sloping; i.e. long-term yields tend
to be less volatile than short-term rates (on an annualized basis). In terms of holding returns,
however, densities based on long-term bonds would be more dispersed than return densities based

on short-term bonds.

Chart 3: Ten-year yield distribution under P
and @, 1 year ahead, for initial state variable r(t)
= 3.4%

Under P
— — Under Q

4 Three-factor essentially affine models

Moving away from the one-factor CIR case, we now turn to multi-factor models which provide
more flexibility in capturing various features of term structure data over time. To this end, we
focus on the affine class of dynamic term structure models which has attracted increasing attention
by researchers as well as practitioners, in particular following Duffie and Kan’s (1996) presentation
of a generalized affine modelling framework. Empirical research has shown that three factors
seem sufficiently flexible to capture important aspects of the dynamics of term structure data
(e.g. De Jong (2000), Dai and Singleton (2002), Duffee (2002)). While more factors in theory
should provide additional flexibility, practical considerations tend to rule out estimation of high-
dimensional dynamic term structure models. We therefore focus on three-factor affine models
in this section, in the hope that these will provide a reasonable trade-off between flexibility and

analytical tractability.
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Given our choice to use a three-factor affine specification to model the term structure, a large
number of different variants are available within this class, depending on how we choose to parame-
terize the model. Recently, Dai and Singleton (2000) has proposed a classification of multi-factor
ATSMs into subfamilies of admissible models depending on the choice of variance specification.’
Specifically, each N-factor ATSM can be categorized into N + 1 subfamilies, according to the
number of factors that drive the conditional factor variances.

Consider a general N-factor ATSM where the instantaneous short-term interest rate is an affine

function of the factors Xy,

Ty = 50 + 5lxXta (21)
and where X; follows an affine diffusion,
dX, = K(© —X;)dt+ 3+/SdB; (22)
= p(X)dt+o(X)dB,

where dBy is an N-dimensional vector of independent standard Brownian motions under the ob-
jective probability measure P, while K and ¥ are N x N parameter matrices, and © is an N-vector

of parameters. The N x N matrix S; is diagonal, with diagonal elements given by
[Sthi =a; + ngta (23)

where «; is a scalar and ; is N x 1. For future reference, we let o denote the N-vector consisting

of the individual «;:s, and

35(51 Ba 53)

denote the N x N matrix of coefficients on X;. By imposing restrictions on the matrix 3, we can
obtain different versions of the N-factor model with respect to the degree of dependence of the
conditional variances on the factors. The categorization by Dai and Singleton (2000) identifies
N + 1 general subfamilies in this regard, where the variance o (X) is driven by m factors and m
can take values from 0 to N. Specifically, letting m = rank (B), Dai and Singleton use A,, (N)
to denote the set of admissible N-factor ATSMs with m factors determining the factor variance
matrix.

For any given specification of an N-factor ATSM, a number of invariant transformations can be
made, in which the state and parameter vectors undergo various transformations and rescalings,

while resulting in an unchanged instantaneous short rate and unchanged bond prices (see Appendix

®Dai and Singleton (2000) refer to an ATSM as admissible if it ensures positive factor variances, or, more
precisely, if if it ensures that [S¢];; (see below) is strictly positive for each ¢ (see their Appendix B for further
details). Their classification scheme imposes the minimal known sufficient conditions for admissibility and and the

minimal normalizations for econometric identification.
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A in Dai and Singleton (2000)). In order to facilitate the task of checking whether some given model
specification is admissible, they propose a specific invariant transformation, the so-called canonical
representation of admissible ATSMs, which imposes minimum constraints to ensure admissibility
and econometric identification.. Basically, the canonical representation partitions the factors into
a vector consisting of the m factors (if any) which drive the conditional variances, and the N —m
other factors, so that X' = <X£’X1,X %_m)ﬂ). The parameter matrices and vectors are then

partitioned accordingly, and the following normalizations are imposed:

KBS O (N—
K= { pB "™ pp” N ] ; (24)
’C(me)Xm K:(me)X(me)

if m > 0, and with I triangular otherwise,

o= (o ), -

O(N—m)x1

Y =1, (26)
OTn><1
_ ’ 27
“ <1(N—m)><1> 27)
and

BD

B= { Lo Binsx(y—m) ] (28)
ON—m)yxm  O(N—m)x(N=m)

Furthermore, a number of parameter restrictions are imposed in order to assure admissibility and

econometric identification.(see Dai and Singleton (2000) for details).

4.1 A Gaussian three-factor ATSM: A4, (3)

Starting off with the simplest three-factor canonical ATSM, consider the case where none of the
factors affect the volatility of X;,.i.e. an Ap (3) model. In this case, the canonical representation
sets a equal to a 3 x 1 vector of ones, while B is set to zero, so that o (X) = I3. Hence, we are
left with a homoskedastic model, where the factors follow a Gaussian diffusion. Clearly, interest
rates and bond yields do not have constant variances, but this model can nevertheless serve as a
simple initial point of departure. Moreover, as shown by Duffee (2002), it turns out that there
is a trade-off between the flexibility of the variance specification and the possibility to specify a
flexible market price of risk. Furthermore, the flexibility of the market price of risk specification
has proved crucial for improving interest rate forecasts and for capturing important features in the
data (Duffee (2002), Dai and Singleton (2002)). Consequently, the ”simple” Gaussian model may
not necessarily fare as badly as one could fear a priori.

The key to the arguments above regarding the trade-off between the flexibility of the variance

specification and the market price of risk, is that one moves away from the ”standard” assumption
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for the market price of risk specification, which has that

A(t) = /S, (29)

where A is a vector of constants. In this setup, compensation for risk will be proportional to
the variance of the risk factors. The advantage of this simple specification is that it preserves the
affine structure when changing measure from the objective to the risk-neutral probability measure.5
Duffee (2002), on the other hand, proposes a specification for the market price of risk which breaks
the link between compensation for risk and the variance.” The resulting class of models, denoted
the "essentially affine” class, allows not only the variance of the factors to determine the risk
compensation, but also lets the factors themselves influence the compensation for risk. It turns
out that the essentially affine specification also preserves the affine features of the model under

both the objective and the risk-neutral measure (see Appendix D).

In more detail, the essentially affine class defines the market price of risk vector as

Ay = /SiA+ /S X, (30)

where /S, is defined as the following diagonal matrix

\/ST o { éai + B;Xt)_l/Q if inf (Oéi + B;Xt) >0 (31)

tw) otherwise,

while ¢ is a 3 x 3 parameter matrix. Given the canonical representation as specified in (24)-(28),
it is easy to see why there is a trade-off between the flexibility of o (X) and that of A. Clearly, in
the As (3) case, where by (27) o = 0 and by (28) B is non-zero, (a; + 3;X;) can reach zero for
each of the three factors ¢, if X; were to reach zero. The matrix \/% is therefore defined to
be zero according to (31), and A collapses to the completely affine specification (29). In contrast,
in the Gaussian Ay (3) model, a; = 1 and §; = 0 for all i, which means that \/S; = v/S; = I,
and X therefore fully impacts on the market price of risk. In between these two extreme cases,
m = 1 or 2 will imply models with more flexible variance specifications and less flexible A than in
the Ap (3) case, but still more flexible risk prices than in the As (3) specification.

As mentioned above, the degree of flexibility in the risk price has proven essential with respect

to the ability of ATSMs to predict future interest rates. However, while the Ag (3) model allows

6 ATSMSs with this type of market price of risk are therefore sometimes referred to as ”completely affine”.
"Duarte (2003) proposes an alternative specification (”semi-affine”) which also provides added flexibility in the

market price of risk. However, this specification does not in general allow greater flexibility than that of Duffee
(2002). Moreover, the semi-affine class is not affine under the objective probability measure, thereby making it

computationally more burdensome to handle in practice.

®The label ”essentially affine” refers to the fact that while the factor processes remain affine under a change of
measure, the variance of the state price deflator, AA’, is not affine. This is, however, inconsequential since this

variance does not affect bond prices.
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the most flexible specification of A, it remains to be seen how successful it is in pricing derivative
contracts, since the accurate pricing of such contracts typically require that the model is able to
successfully capture the dynamics of the term structure of volatilities.

In order to evaluate the performance of the Ag (3) model, and anticipating future applications
to German Bund futures options, we estimate the parameters of the model using German term
structure data from January 1983 to March 2002. Specifically, we obtain a monthly time-series
of parameter estimates for Svensson’s (1994) extension of the Nelson and Siegel (1987) model
from the BIS. These parameters, in turn, have been obtained by fitting the model to the prevailing
German yield curve at the end of each month, i.e. to available money market and government bond
data. These parameters allows us to obtain zero-coupon bond prices and yields for any maturity
every month during the sample period, i.e. a time-series of German term structures. Since the
introduction of the euro in January 1999, we can also view these as proxies for the euro area term

structures.

Chart 4: Yield data used in the estimations of multi-factor

ATSMs
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The estimation of ATSMs is based on a Kalman filter technique, where the data used consists
of zero-coupon yields for the maturities 3, 6, 9, and 12 months, as well as 2, 3, 5, 7, and 10 years.
Based on the parameter estimates obtained from the BIS, the estimated Nelson-Siegel-Svensson
yield curves at times display a somewhat erratic behavior at the very short end of the curve, in

particular in the early part of the sample. We have therefore substituted the model-based 3-month
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rates with a series of actual observed 3-month DEM (EUR after December 1998) interbank interest

rates. Figure 4 displays the data used in the estimations.

4.2 Estimation using the Kalman Filter

The estimation of multi-factor ATSMs is complicated by the fact that there is typically no closed-
form solution available for the density of discretely sampled yields or bond prices which could
be used in maximum likelihood (ML) estimation. However, for Gaussian models, the conditional
density is known, and we can therefore proceed with ML estimation in the Ag (3) case. Typically
in empirical applications, the number of maturities used in the estimation is set equal to the
number of factors (e.g. Dai and Singleton (2000)), or, alternatively, it is assumed that yields
for N maturities are observed without any error whereas some error structure is imposed on any
additional maturities included in the estimation (e.g. Duffee (2002)). In this way, the unobservable
factors can be inverted for using the assumed perfectly observable yields. One problem with this
approach is that is that it is not entirely clear why the yields for some more or less arbitrarily chosen
maturities should be observed perfectly, whereas other yields are observed with some measurement
€rTor.

Instead, we follow among others Lund (1997), de Jong (2000), and Duffee and Stanton (2001)
in assuming that all yields are observed imperfectly, and applying the Kalman filter technique to
estimate the underlying unobservable factors. In principle, these ”measurement errors” can be
seen as reflecting e.g. bid-ask spreads, non-synchronous data, or other market-specific influences.
In this state-space setup, the evolution of the factors over discrete time intervals determines the
transition equation, while the measurement equation is taken to be the relation between yields of
different maturities and the factors. Moreover, the prediction errors from the Kalman filter and
their associated covariances can be used to obtain the exact log-likelihood function in the Gaussian
case, or to construct a quasi log-likelihood function in more general cases.

Assume that the data set consists of a time series of length 1" of M zero-coupon bond yields

with constant maturities, ¥z = (y¢ (71), ...,y (Ta1)) , where

In Py
Yit = — y
Ti

and 7; is the time to maturity of bond <. Let the observed yields be equally spaced over time, at
intervals of length h. Furthermore, in line with the arguments above, assume that the observed
yields consist of the theoretical yields obtained from some chosen model and a measurement error.

This provides us with the measurement equation,

Yi=d(¢)+ Z () Xy + &4, (32)
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where the measurement error €; is assumed to be normally distributed,

e~ N(0,H (9)), (33)

and ¢ denotes the vector of parameters in the model. In practice, we assume that H (¢) is
diagonal, and include the diagonal elements of this matrix in the set of parameters to be estimated.
Comparing the measurement equation (32) with the theoretical expression for the yield on a zero-

coupon bond with maturity 7 in the affine framework,

poir) =20 a1y X)),
we see that
a() = -20) (34)
and
z(p--2L, (35)

As mentioned before, the functions A (7) and B (7) are solutions to a system of ODEs. Specifically,

in the A (3) case, we have

di‘;) — B (1) A+ %B’ (1) B(r), (36)
diﬁ” — 5, ~Y'B(r) - K'B(r). (37)

Here, we can note that since A (1) and B (1) are functions of, among other things, the A and
parameter matrices in the market price of risk (30), we are able to estimate these parameters and
thereby recover the risk-neutral dynamics.
Next, the transition equation describes the evolution of the state vector from one observation
time to the next,
X =9 (o) X¢p + uy, (38)
where

® (¢) = exp[-Kh], (39)

and exp [—K (h)] refers to the matrix exponential function, defined as
o
exp[-Kh] =) o (—Kh)*.
k=0
The transition equation (38) does not contain any constant in the Ay (3) case since the normaliza-

tion (25) in the canonical representation sets © = 0. Because the model is Gaussian, the innovation

in the transition equation is normally distributed,

ue ~ N0,V (4)) (40)
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where the covariance matrix is given by (see e.g. Lund (1997) or Duffee (2002))

Vi) = [ exploK (= s)]exp K (1 3))ds (41)

Given the specification of the measurement and the transition equations, the Kalman filter
algorithm can be implemented to provide a sequence of predictions and updates of the state vector
and its variance. Furthermore, the likelihood function is obtained as a result of the Kalman filter
recursions, thereby enabling parameter estimation. Appendix E contains some further technical

details on the implementation of the Kalman filter in this setting.”

Table 2: QML parameter estimates for the Essen-
tially Affine Ag (3) model

Parameter Estimate Standard error

do 0.052 0.002
51 x 102 0.037 0.178
82 x 102 0.554 0.085
853 x 102 0.926 0.079
K11 0.196 0.140
K21 —0.415 0.116
K22 1.363 0.204
K31 —-0.314 0.334
K32 1.344 0.494
K33 0.151 0.080
A1 —0.405 0.219
A2 —0.052 0.032
A3 —1.469 0.267
o —0.191 0.102
Vo 0.765 0.365
Wys 0.009 0.019
Yoy 0.185 0.169
Vo ~0.151 0.186
Y3 —0.059 0.021
sy 0.431 0.162
Wbo 0.374 0.451
- 0.026 0.021

The standard errors are based on the asymptotic
variance-covariance matrix of White (1982). The esti-
mates of the measurement error variances in H (¢) are
not reported.

Applying the estimation procedure outlined above, we obtain parameter estimates for the Ag (3)
model, as reported in Table 2. Since we are able to estimate the price of risk parameters, we have
effectively identified both the objective real-world dynamics and the risk-neutral dynamics of the

underlying factors, as postulated by the Ag (3) specification. This enables us to fully characterize

9See also e.g. Lund (1997) or de Jong (2000) for further details on implementing the Kalman filter to estimate
ATSMs.
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the features of the short-term interest rate or zero-coupon bond yields of any maturity, including
the conditional distribution of these variables under both probability measures. Hence, assuming
that the specification of the model is correct, we now have a way of examining the discrepancies
between risk-neutral interest rate distributions, which is what an option-implied approach would
deliver, and objective interest rate distributions, which is what policymakers are interested in.
The Ag (3) specification allows us to recover yield distributions very easily, since we know
that the conditional yield distribution will be normally distributed. Specifically, the mean of the
distribution of a 7-maturity zero-coupon yield at time ¢t + h conditional on information at time ¢

will be

Bl (7)1 x) = A0 E g x
= *@ — %T)/ exp [—KCh] X, (42)

where the second equality follows from (38) and (39). Moreover, the corresponding conditional

variance will be given by

Var [yen (1) | Xo] = = S_T) Var [Xein | Xe B(7)
- 20 (l exp [ (¢ — )] exp [ K (¢ 3] ds) £,

(43)

Hence, the conditional objective (P) distribution of y¢1 (7) will be Gaussian, with mean given by
(42) and variance (43). The corresponding risk-neutral (Q) distribution can be found by using the

risk-neutral dynamics when evaluating the conditional expectation and variance of X :

E9[Xypn | X)) = (I—exp [—ICQh]) 09 + exp [—ICQh] X, (44)

t+h
Var® [Xon | Xi] = l exp [fICQ (t— s)] exp [fICQ’ (t— s)] ds, (45)

where K9 = (K +v), and ©9 = — (K + ) X follow from Girsanov’s theorem.

To illustrate the distinction between the objective and the risk-neutral distributions, consider
the one-year ahead conditional distributions of the 3-month and the 10-year zero-coupon yields.
Charts 5 and 6 display these distributions for each of the two probability measures, as implied by

the parameter estimates and the filtered factors at the end of our sample (end-March 2002).
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Chart 5: One-year ahead conditional distribution of
the 3-month interest rate, as implied by the Aqg (3)-
model, end-March 2002.
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Chart 6: One-year ahead conditional distribution
of the 10-year zero-coupon bond yield, as implied by
the Ap (3)-model, end-March 2002.
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While the differences in the case of the 3-month rate seem relatively small for the particular
factor values in this example, there are non-negligible differences between the risk-neutral and
the objective densities in the case of the 10-year yield. In the example shown, the mean of the

objective distribution is about 25 basis points higher than in the risk-neutral one, while the yield
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standard deviation is about 0.7% in the P-distribution, and around 0.85% in the Q-distribution.'”
More importantly, the implied probabilities for different yield outcomes can differ substantially.
For example, in the example above, the risk-neutral probability that the 10-year yield would be
below 5.0% one year ahead is approximately 18.6%, whereas the actual P-probability for the same
outcome is only around 7.8%. Hence, by relying on e.g. option-implied densities, which deliver
the risk-neutral probabilities, to infer the market’s expectations about future outcomes, there is a
considerable risk that incorrect conclusions will be drawn, at least if the assumed specification is
the correct one.

In addition, the conditional means of the yield distributions will change over time, as the
factors evolve. The relation between the objective and the risk-neutral means will also change,
and therefore the relation between the probabilities for different outcomes will change. In fact,
depending on the evolution of the factors, the difference between the means of the distributions
may change sign during some periods. However, it is easy to see from (41) that the variances of
the P and @ distributions will remain constant over time, despite variation in the factors. In order
to allow greater flexibility in the conditional variance specification, we turn to the A; (3) model in

the next section.

4.3 The A, (3) essentially affine model

In the A; (3) model, only one of the three factors affect the volatility of X;. In accordance with
the canonical representation, this factor is assumed to be the first one, and the parameter vectors
and matrices are adjusted according to (24)-(28). Notably, the first element of the vector of long-
run means, O, is no longer zero, whereas oy = 0, and the first row of B is different from zero.
We impose suitable parameter restrictions to ensure admissibility and identification (see Dai and
Singleton (2000)).

The implications of the 4, (3) specification on the conditional variance can easily be seen by
comparing with the Ag (3) model. According to the latter model, S; is equal to I in the diffusion
term of the factor process dX; = K (© — X;) dt + /SidB;. In contrast, the S-matrix in the A; (3)

model is given by

X1 0 0
Sy = 0 1+ ,612X1t 0 . (46)
0 0 1+ 613X

The first factor, Xy, therefore enters as a stochastic volatility factor in each of the three factors.
However, as argued above, this added flexibility in the variance specification comes at a cost in

terms of the flexibility of the price of risk in the ”essentially affine” framework. Specifically, because

10T put the mean difference in perspective, over the entire sample between 1983 and 2002 the estimated average

difference in the absolute value of the difference between the means is 34 basis points.
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inf (a1 + ,6'1Xt) is no longer greater than zero, (31) requires that Sin) =0, resulting in

0 0 0
VS =0 (1+ 612X1t)_1/2 0 . (47)
0 0 (1+ By3X1) " "2

Since the first column of \/f is zero, the first row of ¥ does not impact on the market price of
risk and we therefore set this row to zero.

As in the Ap (3) case, we estimate the A3 (3) model using the Kalman filter technique. How-
ever, in contrast to the Gaussian case, there is no longer a closed-form solution available for the
conditional density of bond yields, and we can therefore not use exact ML estimation. A number of
alternative approaches have been suggested in the literature, including Simulated Method of Mo-
ments (Duffie and Singleton (1993)), Efficient Method of Moments (Gallant and Tauchen (1996)),
and estimation based on the conditional characteristic function (Singleton (2000)). However, these
approaches often turn out to be quite computationally burdensome to implement, in particular for
multi-factor ATSMs. We therefore proceed with the use of the Kalman filter and assume a normal
distribution for the innovations in the transition equation in order to implement a quasi-maximum
likelihood (QML) estimation approach, as in Lund (1997), De Jong (2000), and Duffee and Stanton
(2000), among others. In this context, it is interesting to note that Duffee and Stanton (2000) find
in a Monte Carlo study of the EMM and the Kalman filter/QML estimation techniques that the
latter performed substantially better than the former in small samples.

Compared with the Ag (3) case, the implementation of the estimation procedure for the A; (3)
model requires a few adjustments. The measurement equation (32) of the state space model will
remain unchanged, but the functions A (7) and B (7) will now be solutions to a different system
of ODEs (not shown), reflecting the new dynamics and risk prices of the factors. The numerical
Runge-Kutta method can be used to provide fast and accurate solutions. The transition equation,

however, will be different because © no longer has all elements equal to zero. Specifically, we get
Xe=c(P) + (F) Xen + ue, (48)

where it can be shown that (see e.g. Lund (1997) or Duffee (2002))

c(p) = /t exp [-K (t — )] KOds

—h
= (I —exp[-K(n)])6, (49)
while @ (¢) is defined as in (39). Next, we assume that the innovations in the transition equation are
multivariate normally distributed in order to implement the QML estimation procedure. Because

the factor variances now are time-varying, the covariance matrix of the innovations is given by

Vi (¢) = /t exp K (t — 5)] Sy exp [k (£ — s)] ds. (50)

—h
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Table 3: QML parameter estimates for the Essen-
tially Affine A; (3) model

Parameter Estimate Standard error

do 0.037 0.001
51 x 102 0.102 0.006
5o x 102 0.585 0.010
83 x 102 0.139 0.043
01 7.351 0.054
K11 0.050 0.001
K21 —0.028 0.003
K929 0.284 0.019
Ko3 0.731 0.337
K31 X 102 —0.075 0.367
K3z X 102 —0.044 1.683
K33 1.252 0.085
Bis 0.221 0.006
B13 1.046 0.061
A1 —0.018 0.003
A2 —0.278 0.006
A3 —0.006 0.002
Wb 0.042 0.018
Voo 0.005 0.013
Pos3 0.381 0.382
Wy 0.212 0.028
- —0.118 0.016
Pas —0.201 0.129

The standard errors are based on the asymptotic
variance-covariance matrix of White (1982). The esti-
mates of the measurement error variances in H (¢) are
not reported.

Equipped with parameter estimates obtained as outlined above, and as reported in Table 3,
we can again go back and examine the differences between the risk-neutral and the objective yield
distributions. Unfortunately, in contrast with the Gaussian case, these distributions are not known
in closed form, as already mentioned. One alternative option would therefore be to approximate
the conditional densities by the use of Monte Carlo techniques. However, a more exact and less
computationally burdensome approach is available by relying on Fourier transform analysis, as
suggested by Duffie, Pan, and Singleton (2000). From their results, one can find an expression for
the conditional probability that the yield on a zero-coupon bond at some future date is greater
than some specific value. To be precise, the probability - under some probability measure, say Q

- at time t that, at the future time T, the yield of zero-coupon bond maturing at T+ 7 will be
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greater than x can be written

e D
= Prf (—@IXT > 2+ @) :

Now, because the conditional characteristic function of X is known in closed form, this probability
can, given technical regularity conditions, be expressed as (see Appendix C in Duffie, Pan, and

Singleton (2000))

11
2wy v

be? (g (1) 2 - L 1 /oo Im [wQ <_Z~UB§T>, Xt,t,T) exp(—iv <z+A(TT>))}dv7 o

where ¢ is the imaginary unit /—1, and
B B
Y@ (ivﬂyxt,t,T> = EX [exp (w (7) XT)] (52)
T T

denotes the conditional characteristic function. As shown by Duffie et al. (2000) and Singleton

(2001), this characteristic function is for the affine case (under technical conditions) conveniently

given by

B
o (<0 X, T) —exp (o) +5(1)- X)), (53)
where o (t) and § () satisfy a system of complex-valued ODEs with suitable boundary conditions
(see Appendix A).

Chart 7: One-year ahead conditional distribution of
the 3-month interest rate, as implied by the A; (3)-
model, end-March 2002.
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Chart 8: One-year ahead conditional distribution
of the 10-year zero-coupon bond yield, as implied by
the A; (3)-model, end-March 2002.
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Charts 7 and 8 display the results obtained using the estimation procedure described above for
the 3-month and 10-year zero-coupon yields at the one year horizon, as at end-March 2002. As
in the case of the Gaussian specification, the results indicate that there are substantial differences
between the risk-neutral and the objective yield densities. In the examples shown in Charts 7
and 8, the differences between the means of the one-year ahead () and P distributions are 55
basis points for the 3-month rate, and 22 basis points for the 10-year yield. Moreover, also the
standard deviations differ between the two probability measures, with the () distributions having
around 5-10% larger standard deviations than the P distributions. Perhaps more important than
these differences in the moments of the distributions, are the differences between the implied
probabilities of specific outcomes, since this type of information is typically what analysts focus
on when interpreting densities implied by observed option prices. Given the estimates obtained
for the A; (3) model, our results show that these conditional probabilities can differ substantially
between the two probability measures. For example, in the case of the one-year ahead 3-month rate
in Chart 7, the risk-neutral probability of an outcome above 5.00% is around 25%, while the true
objective probability for this outcome is only 8%. Also in the case of the one-year ahead 10-year
yield we find large differences: in the example above, the Q-probability of an outcome above 5.50%
is 34%, whereas the corresponding P-probability is 18%. These differences in the moments of the
distributions and in the implied probabilities of future outcomes are by no means extreme. Table 4

summarizes some of the statistics regarding the differences in the moments over the entire sample
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period, as estimated by the .4; (3) model.

Table 4: Differences between () and P means and
standard deviations for one-year ahead 3-month and
10-year yields, as implied by the Essentially Affine
Aj (3) model, January 1983 - March 2002.

Average Minimum Maximum

Mean 3-m. rate 53 bps 11 bps 105 bps
Mean 10-yr. yield 25 bps 9 bps 42 bps
St.dev. 3-m. rate 8.4% 6.0% 8.5%
St.dev. 10-yr. yield 4.6% 2.2% 4.7%

Mean figures refer to the level difference (@ - P) in basis
points; standard deviation figures refer to the relative
difference in percent of the P-distribution volatility.

Comparing with the results obtained from the Ag (3)-model, a few similarities and some dif-
ferences are worth pointing out. First, focusing on the 10-year densities in Charts 6 and 8, the
Ap (3) model implies that the risk-neutral density is centered somewhat to the left of the objective
density, while the A4; (3) model produces the opposite result. A closer look at the relation between
the estimated @ and P densities from the two models shows that the Gaussian model produces
frequent shifts in the relative positioning of the two distributions, whereas for the A; (3) model,
the risk-neutral density is always centered to the right of the objective density (see Charts 9 and
10). While we have not examined the specific reasons for these discrepancies, we conjecture that it
is the imposed constant-variance assumption in the Gaussian model that drives the swings in the
relationship between the two distributions. Clearly, further analysis is needed to investigate this
issue. In the meantime, the fact that two different A (3)-specifications can produce such different
results points to the need for extensive specification testing when choosing a specific model to be
used in empirical applications.

Second, in the example above which relates to end-March 2002, we see that the densities are
more dispersed in the Ag (3) case than in the A; (3) case. This is due to the fact that while the
yield variance appeared to be relatively low in early 2002, the former model imposes a constant
yield variance for any given maturity. Hence, in order to get the average variance right, the Ag (3)
model overstates the variance in times of relatively low volatility, whereas the A; (3) model is better
equipped to capture swings in the volatility. The estimated time series of A; (3)-variances for the
one-year ahead densities, displayed in Charts 11 and 12 for the 3-month and the 10-year cases

respectively, show a significant degree of variability over time. This would tend to suggest that
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stochastic volatility should be an important feature for term structure models aimed at capturing
salient features of actual observed data.

Third, in both cases, the dispersion of the 3-month PDFs is greater than for the 10-year
counterparts. This is due to the typically downward-sloping term structure of yield volatilities
observed in actual yield curve data. If a term structure model is successful in capturing this
feature, one would expect to see a higher variance in short-rate densities than in long-term yield
densities.

Leaving aside the results from the Gaussian model and focusing on the A; (3) results, one can
conclude that there seem to be relatively substantial differences between estimated risk-neutral and
objective yield densities at the one-year horizon. As could be expected, the differences between
the risk-neutral and the objective densities tend to decline as the horizon is reduced. This can
be seen, for example, by comparing the plots of the means of the one-year ahead densities from
the Aj; (3) model in Chart 9 and 10 with the corresponding 6-month and 3-month ahead PDFs
displayed in Charts 13 and 14, respectively. At times, however, non-negligible differences remain
even for relatively short horizons. Moreover, the results show that not only the differences between
the means of the distributions can vary substantially over time, but that there also seems to be
considerable time-variation in the estimated variances of the @@ and P densities. These findings
therefore point to the need for a high degree of caution when interpreting risk-neutral densities

such as option-implied PDF's in terms of actual objective probabilities.

ECB » Working Paper No 274 « September 2003 35



36

Chart 9: The mean of the one-year ahead condi-
tional distribution of the 3-month interest rate, as
implied by the A; (3)-model, January 1983 - March
2002.
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Chart 10: The mean of the one-year ahead condi-
tional distribution of the 10-year zero-coupon bond
yield, as implied by the 4 (3)-model, January 1983
- March 2002.
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Chart 11: The square-root of the variance of the
one-year ahead conditional distribution of the 3-
month interest rate, as implied by the A; (3)-model,
January 1983 - March 2002.
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Chart 12: The square-root of the variance of the
one-year ahead conditional distribution of the 10-
year zero-coupon bond yield, as implied by the
A; (3)-model, January 1983 - March 2002.
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Chart 13: The mean of the 6-month ahead conditional distribution of the 3-
month interest rate (panel A) and of the 10-year zero-coupon bond yield (panel
B), as implied by the A; (3)-model, January 1983 - March 2002.
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Chart 13: The mean of the 3-month ahead conditional distribution of the 3-
month interest rate (panel A) and of the 10-year zero-coupon bond yield (panel
B), as implied by the A; (3)-model, January 1983 - March 2002.
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5 Density evaluation

The previous section presented estimates of both risk-neutral and objective interest rate PDF's,

and provided some illustrative evidence that these densities differed in important ways, as well as
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in a time-varying manner. A natural question to ask at this point is how reasonable these estimates
are. This section aims at shedding some light on this question.

Starting with the question whether the risk-neutral densities have been estimated reasonably
well, we merely conclude that the estimated ()-densities are consistent with the bond-pricing equa-
tions used in the estimation process, and that these in turn do a good job in terms of pricing
the bonds. For example, the maximum average yield error among the 9 yield series used in the
estimation was 3.3 basis points for the Ay (3) model and 2.4 basis points for the A; (3) model.
Moreover, for both models, the root-mean-squared-errors ranged between 22 and 30 basis points
across the 9 maturities. An alternative way to evaluate the accuracy of the risk-neutral densities
would be to examine how well they would be able to price traded interest rate derivatives. We
leave this for future research.

Turning to the accuracy of the estimated physical densities, we employ a recently proposed
density forecast evaluation methodology to investigate this issue. Tests of this kind can help us
determine whether the estimated objective interest rate densities for any given forecast horizon
work well in terms of describing the distribution of realized interest rates at that horizon. Building
on the results of Rosenblatt (1952), Diebold et al. (1998) proposed a method for evaluating a
sequence of density forecasts using a probability integral transform of the realized outcomes of the
forecasted variable. Specifically, denoting the outcome r; and the ex-ante density forecast f; (),

the proposed transformation is defined as

- /_ " w)du (54)
= Ft (Tt).

Diebold et al. (1998) show that if a sequence of density forecasts, {f; (r:)};~, coincides with the
true density sequence, then the sequence of probability integral transforms of {r;};", with respect

to {fi (re)}~, is IID with uniform distribution,
m  IID
{weh 2y ~ U(0,1).

Diebold et al. (1998) did not focus on formal testing procedures, but instead suggested the use
of simple visual tools such as histograms and correlograms to ascertain whether the transformed
series z is IID U (0, 1).

More recently, Berkowitz (2001) extended the Diebold et al. (1998) approach to allow for formal
testing of the density forecasts. This new approach relies on a simple transformation of the z-series

in (54) into a normal distribution (under the null). More precisely, if x; is IID U (0, 1), then the
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transformed series

R [ /_oo ft(u)du] (55)
Q7 ()

1($

will be IID N (0,1), which, as Berkowitz (2001) notes, can be tested using e.g. LR tests. We
implement this testing methodology for objective densities obtained from the estimated Ap (3) and
A; (3) models. Specifically, we consider the same maturities discussed in previous sections (3-month
and 10-year rates) and we focus on two forecast horizons: 3 months ahead and 12 months ahead.
For each combination of model, horizon and maturity, the null hypothesis that the transformed
series z is normally distributed with zero mean, unit variance, and zero first-order autocorrelation

(, =0,0, =1,p, =0) is tested against four different alternatives as follows:

Test H.

1 N’z:ﬂzaoZ:l?pz:O

2 p,=0,0,=0,p,=0

3 Poo=fbzy 02 =02, p, =0
4 /’LZ:[L:’UZ:&?vp::p:

We implement the tests by obtaining the log-likelihood values under the null hypothesis and
the various alternatives, and then calculate the corresponding likelihood ratio statistics. All tests
are in-sample tests, in the sense that the density forecasts at a given forecast date are conditional
on the information available about the term structure and the state variables at that time, given
the parameter values for the model obtained using the entire sample.!!

Table 5 displays the results for both the Ag (3) and A; (3) models. Starting with the Gaussian
model in Panel A, the test results show that this model does not perform very well at the 12-month
forecast horizon: in 7 out of 8 cases, the null hypothesis can be rejected. In other words, objective
densities estimated with the Ap (3) model do not seem to coincide with the true densities at the
12-month horizon. For the 3-month ahead forecast horizon, the results are more mixed, since we
we reject in half of the cases, for both maturities. The critical element in these rejections seems
to be that p, differs significantly from zero, meaning that the conditional means of the estimated

densities differ systematically from the realizations.

HIdeally, an out-of-sample testing approach would have been preferable. However, the limited sample period and
the need for a relatively large number of realizations to obtain meaningful test results meant that an out-of-sample

approach had to be ruled out in practice.
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Table 5: Berkowitz (2001) density forecast evaluation tests

PANEL A: Evaluation of Ag (3) densities

3-month forecast horizon
LRy LR» LR3 LRy
3m. rate / P-measure 13.24* 0.13 12.93* 7.31
10y. rate / P-measure  4.38*  3.30 7.06*  6.89

12-month forecast horizon
LR, LRo LR3 LR4
3m. rate / P-measure  4.81* 38.76* 41.62*  7.27
10y. rate / P-measure 15.79* 26.12* 36.69* 11.43*

PANEL B: Evaluation of A; (3) densities

3-month forecast horizon
LR,y LR» LRs LR4
3m. rate / P-measure 1.66 1.03 2.86 8.21%
10y. rate / P-measure  0.03 4.19*  4.22 4.38

12-month forecast horizon
LR; LRy LR3 LR4
3m. rate / P-measure  1.80  25.49* 26.65*  6.57
10y. rate / P-measure  3.82 1.49 491 6.97

The test statistics are chi-squared distibuted with 1 degree of free-
dom for tests 1 and 2, 2 degrees of freedom for test 3, and 3 degrees
of freedom for test 4. * denotes statistical significance at the 5%
level. Monthly density forecasts are used in all tests, except in
test 4, where non-overlapping observations are used, since these
tests include the autocorrelation coefficient p .

Next, we turn to Panel B in Table 5, which shows the results for the .4; (3) model. Starting
again with the 12-month forecast horizon, we find that the .4; (3) model does considerably better
than the Gaussian model. In 6 out of 8 cases we cannot reject the null hypothesis for the estimated
objective densities. In particular, for the 10-year bond yield densities, the null is not rejected in
any of the four cases. The two rejections appear to be due to a failure in capturing the conditional
volatility of the 3-month interest rate. For the 3-month forecast horizon, the estimated objective
densities again seem to do a relatively good job in terms of capturing the behavior of the outcomes.
As is the case of the longer forecast horizon, we fail to reject the null in 6 out of 8 cases. This time
the rejections seem to be due to correlated forecast errors for the 3-month rate, and to differences
between the modelled and the actual volatility of the 10-year yield at the 3-month horizon. It
is worthwhile pointing out that in none of the cases do we obtain any rejection as a result of
significant deviations of p, from zero. This indicate that the A; (3) model seems to do a good job

in terms of capturing the time-varying level of risk premia at both horizons and for both maturities.
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Overall, we conclude from these tests that the A; (3) model is able to capture objective forward-
looking densities in a much more satisfactory way than the Gaussian model, although some room

for improvement still remains.'?

6 Conclusions

A commonly used approach to extract information on market expectations and the perceived
degree of uncertainty about some asset price is to estimate the implied density using observed
prices of options written on the asset of interest. However, it is well known that this approach
produces the risk-neutral density, rather than the true objective density. This paper examines
the differences between risk-neutral and objective probability densities for interest rates and bond
yields. This kind of analysis may be of interest for e.g. central banks, since RNDs are commonly
employed by central banks as indicators of market expectations for underlying macroeconomic
fundamentals as well as future monetary policy. Instead of modeling the terminal distribution
directly, the approach taken here is to model the dynamics of the underlying state variables.
Specifically, a multi-factor essentially affine modeling framework is applied to German time-series
and cross-section term structure data in order to identify both the risk-neutral and the objective
term structure dynamics.

In general, the results show that there are important differences between risk-neutral and ob-
jective distributions as a result of risk premia in bond prices. For example, the one-year ahead
distributions for the three-month interest rate and the ten-year bond yield display substantial dif-
ferences in both the means and the variances of the two types of distributions. While the magnitude
of these differences diminish as the forecast horizon is shortened, important differences remain for
horizons that are commonly used in practice. The results also indicate that the differences be-
tween the objective and the risk-neutral distributions vary over time, as a result of time-varying
risk premia. Moreover, density forecasts performed on estimated objective densities show that
the proposed approach does reasonably well in terms of capturing the true realized densities (for
the A; (3) model). We therefore conclude that one should be cautious in interpreting risk neutral
densities, such as option-implied densities, as representing the true expectations of market partic-
ipants. The method used in this paper provides one alternative approach which can be used to

identify risk premia and thereby the objective probabilities of future outcomes.

12We also performed similar test on the estimated Q-densities’ ability to capture the distribution of the realizations
(results not shown). As could be expected, the risk-neutral densities did not perform very well in this regard, in
particular at the one-year ahead horizon where we rejected the null in all 16 cases. This again highlights the dangers

associated with relying on RNDs as measures of true expectations.
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A Derivation of the ODEs for transform analysis

By definition, the characteristic function is

T
o7 (u, Xy, t,T) = E* <exp (/ R(Xs)ds> ei“’YT|Xt> ,
t

where w € R"™. In Duffie, Pan and Singleton (2000), this is seen in (2.3) p. 1351 where the above
equation is defined without ¢ but where v € C™.However, as will be clear from the derivation of

the set of ODE:s, Re (u) = 0. In Singleton (2001), the special case of the above function is
b1 (u, i1, T) = B (7Y, (56)

The main thing that these papers prove is that if we are willing to impose an affine form for the
evolution of the state variables (Chacko (1999) generalizes this to be affine in r, and exponential

separable in the other variables), the characteristic function will take the form
(bt (uy Xt, t, T) = eo‘(t)"‘ﬁ(t)-z

where « (1), 5 (t) are complex valued functions that solve a set of differential equations. Examining
(56), we see that if we fix u and T, ¢, will be a stochastic process where the dynamic properties
will be determined by the behavior of Y;. We see that when ¢ = T', there is no random element and
the definition reduces to €Y7, In order for our candidate function to be correct, it must satisfy
two properties. First, by the law of iterated expectations, the expected change must be equal to

zero. Second, to comply with the deterministic terminal condition, we must have

ea(t)—i—@(t)-YT _ eiu’YT

)

and therefore

To explicitly show the dependence of « (t), 3 (t) on u, we write
oy (u).

By applying Ito’s formula to the candidate function we get

O, O,
ot oy

102,
20Y?2

dy; + dy?

By assumption,

dYy = pdt + odWy,
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where p and o2 are affine functions of the state variables. Further (illustrating for simplicity the

scalar case),

9 .

& = [wt By o
9

3_(;); = By

90

v - Bid

Thus,
(0 + BY2) dudt + By + 5676,dY?
(0 + 5,2) byt + B, [ -+ oaWVi] + 5 620,02t
G+ BYick B 55307 e+ 5,000,
By inserting the linear structure of p and o, we get
[at +BYa B, (ko + knYi) + 562 (ho + hlm] dudt + B,00,dW,
[(at + Biko + %m?) + </’3t + Bikr + %ﬂ%hl) Yt] dudt + B0 dydWi.
By integrating this we get
| (0 suto e gh0st) + (B Ak + gim ) 2] ondo s [ 0,0

Finally, by using that FE fts %dv = 0 by the law of iterated expectations, as well as the fact
that dW is a Wiener process, we get

E [ / | [(a 4 Bk + %wﬁ) + (Bv 4 Bkt %/3%) Y} mdlet] ~0
t

In order for this to hold, we must have

|
o

. 1
&y + Beko + Qhoﬁg

. 1
,6t+,8tk1+§,6’fh1 = 0.

B The link between r— and P—distributions in a one-factor
setting

In the scalar affine model, the link between prices and the states can be written

P (S,T; 'I"S) — e(A(SyT)—B(S7T)r).
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Thus, standing at ¢, looking forward towards s, at a bond expiring at T, this is a random variable.
However, given that we can find the distribution of x; conditional on information at ¢, we can

obtain the distribution of P (s,T; xs) trough the relation

o (P) = o (P (0) |95
1 _ A(s,T)—InP
PR = TRen
r -1
dP ~ B(s,T)P’

thus,

o0 = £ (Y5 5|

When the bond price is expressed as
P(s,T;rs) =A(s,T) e Bl

as in CIR (1985), we get

In b )
_ A(s,T)
Pl(rs):_BsT),
a1
P~ B(s,T)P’
and
ln(—AP )
B (s,T) -1
fr (P) = fr, B(s,T) ‘B(S,T)P"

To obtain the distribution of the zero-coupon yield associated with fp (P) we need an analogous

transformation. Letting f,_ (y.) denote the distribution of the 7-horizon yield to maturity, we get

dP
)= -1 PT _
i (o) = o (7 (P) | 51|

where

y_l (PT) = exp (_TyT)v
and

L = e (~7y.)

gy~ e Ty,
so that

fyr (r) = fp, (exp(—7y;)) |—Texp (—7y.)|.

We can rewrite this as a function of the distribution of the short rate r in the following way:

In (J—Mp —TYr ) ‘

A(s,T) -1

fyq— (yT) = f’f's - |—7'exp(—7'y7)\

B(s,T) B (s, T)exp (—7yr)
= fr (TyT ;l(r;:{}()s’T)) ‘B(;—, T)"
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C The bond price process in CIR

In the CIR model, the process for the only factor, the short-term interest rate, is given by the

following affine diffusion:

dr = p(r)dt+o(r)dW

k(0 —r)dt+ o\/rdW,

and the price of a zero coupon bond price of maturity 7 is a function of the short rate and

maturity-specific functions A (1) and B (1) according to
P(r)=A(r)exp[-B(71)r].
The process for the bond price obeys
dP = p(P) dt + o (P)dW,
where the functions p (P) and o (P) can be determined by applying Ito’s lemma:

1
—P; +Prp('r') + 502 (T) P,

=
3
I

o(P) = Po(r),

where subscripts denote partial derivatives. Solving for the derivatives (notationally suppressing

T as an argument) gives

P, = A,exp[—Br|— AB,rexp|[—DBr]
A
= <77 — BT’I‘) P,
P. = —ABexp|—Br]
= —BP,
Prr - szy
so that
AT 1 2 _2
w(P)=P|(B;r—=)—-Bk(0—1)+ =B%c°r|,
A 2
and

o (P) = —BPo/r.

We can evaluate the T-derivatives of the functions A and B using the closed-form expressions

for these functions:

B b1 exp [poT] b
AN = | Gl -Dial
B (T) _ exp [0517} -1

by (exp [y 7] — 1) + ¢y’
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where

by = \/(k+ M) +202
A
by HT—%’
2k0

q53 = %7

obtaining :
A — Agyps [ (1 — exp [p17]) + ¢o (exp [¢17] — 1)]
" P (exp [Py 7] — 1) + ¢y 7

and

05% exp [(7517] _
[fa (exp ¢y 7] — 1) + ¢,]?

D Risk-neutral dynamics of Y; in the A, (3) case

Given an assumed market price of risk vector, we can express the dynamics of Y; under the risk-

neutral probability measure @) as
dY; = K(© = Y;) dt — $+/S;Avdt + 2\/S:dBE.
For the essentially affine Ay (3) model, the Q-dynamics are given by

Y, = [K(©—-Y:) — Adt+%\/S;dBY
= [K(©-Y) —A—9Yi]dt+5/SdBY
= [(K& =)\ — (K+v)Y]dt+ £/S;dBE
= [-A— (K+¢)Yi]dt +%/5dB2,

since KO = 0. Defining K?OF = —\ and K% = (K + ¢), we can write
dy; = (K909 — K9V;) dt + £/S,dBy?,

and we see that the risk neutral dynamics of Y remain affine.

E The Kalman filter in the A (3) case

Given the state-space specification for the Ag (3) model, the prediction step follows from the

transition equation, resulting in (suppressing dependence on ¢)

Yoo = E[Yi| R

= BV, (57)
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and an associated MSE matrix,

~ “ . !
Qe = E {(Yt ~Yien) (Y= Taen) | Rth}

= 0, @ +V,.

(58)

Next, the observed yields R; are used in the update step, to provide the filtered estimator of Y :

Y, = E[Y;| R
= )A/t|t7h + Qt\tth/FflUt’
where v is the vector of prediction errors,
vy =Ry — <d + Zf/;f\t—h) )

and F} is the covariance matrix of the prediction errors,

F, = cov(Ry| Ry p) = E v | R4

= ZQuu-nZ' + H.
The update of the MSE matrix 2 is given by

Q, E[(Yth) (Ytift)/lRt]

= Qt|t7h - Qt|t7hZ/Ft71ZQt|t7h

= <I - Qtlt_hZ/Ftilz) Qt‘t—h'

(59)

(62)

The prediction errors and their covariance matrix serves as input into the log-likelihood function

of the Gaussian state-space model, resulting in the following likelihood function:

T
InL = ZlnLt,
t=1
1 1 1
In Lt = *5 In (27T) — 5 ln|Ft| — EU;Ft_l’Ut.
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