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Abstract

Recently there has been much interest in studying monetary policy under model
uncertainty. We develop methods to analyze different sources of uncertainty in one
coherent structure useful for policy decisions. We show how to estimate the size of
the uncertainty based on time series data, and incorporate this uncertainty in policy
optimization. We propose two different approaches to modeling model uncertainty. The
first is model error modeling, which imposes additional structure on the errors of an
estimated model, and builds a statistical description of the uncertainty around a model.
The second is set membership identification, which uses a deterministic approach to
find a set of models consistent with data and prior assumptions. The center of this set
becomes a benchmark model, and the radius measures model uncertainty. Using both
approaches, we compute the robust monetary policy under different model uncertainty
specifications in a small model of the US economy.

JEL Classifications: E52, C32, D81.
Key words: Model uncertainty, estimation, monetary policy.
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Non-technical Summary

Uncertainty is pervasive in economics, and this uncertainty must be faced continually by
policy makers. In this paper we propose empirical methods to specify and measure uncer-
tainty associated with economic models, and we study the effects of uncertainty on monetary
policy decisions. Recently there has been a great deal of research activity on monetary policy
making under uncertainty. We add to this literature by developing new, coherent methods to
quantify uncertainty and to tailor decisions to the empirically relevant sources of uncertainty.
In particular, we will be concerned with four types of uncertainty: first, uncertainty about
parameters of a reference model (including uncertainty about the model’s order); second, un-
certainty about the spectral characteristics of noise; third, uncertainty about data quality;
and fourth, uncertainty about the reference model itself. We use a simple, empirically-based
macroeconomic model in order to analyze the implications of uncertainty for economic policy.

A common intuitive view is that the introduction of uncertainty should make policy
makers cautious. However, uncertainty need not result in cautiousness. Further, different
assumptions about the structure of uncertainty have drastically different implications for
policy activism. In our view, the most important message of the fragility of the robust rules
found in the literature is that to design a robust policy rule in practice, it is necessary to
combine different sources of uncertainty in a coherent structure and carefully estimate or
calibrate the size of the uncertainty. Further, the description and analysis of uncertainty
should reflect the use of the model for policy purposes. For these reasons, it is necessary to
model the model uncertainty.

In this paper we consider two particular ways to structure and estimate the model uncer-
tainty. First, we consider the Model Error Modeling (MEM) approach as in Ljung (1999).
The main idea of the approach is as follows. First, estimate a reference or nominal model.
Then take the reference model’s errors and try to fit them with a general set of explana-
tory variables (including some variables omitted from the original model). Finally, build the
model uncertainty set around the reference model which is consistent with all regressions for
the errors not rejected by formal statistical procedures.

The second approach exploits recent advances in the Set Membership (SM) identification
literature, due to Milanese and Taragna (2001). Set membership theory takes a deterministic
approach to model uncertainty. The uncertainty corresponds to an infinite number of linear
constraints on the model’s parameters and shocks. The model uncertainty set is represented
by those models that are not falsified by the data and the above linear restrictions. The SM
approach makes very few a priori assumptions about the model’s shocks and parameters.
While this generality is a benefit of the approach, it implies that the resulting uncertainty set
may be very large and complicated. To make it operational, it is modeled (approximated)
by a ball in the model space that covers the uncertainty set and has minimal radius among
all such balls. The center of this ball serves as the nominal model. Thus this approach
provides both an estimate of a nominal model and a description of the model uncertainty,
based entirely on the specified assumptions and the observed data.

After a model of the model uncertainty is built (under either approach), the robust
policy is formulated so that it works well for all models described by this model uncertainty



���������	
���
�������������������������/

model. In order to guarantee the uniform performance across the different models, following
much of the recent literature, we use a minimax approach to formulating robust policies.
The general message of our results is that there is substantial uncertainty in a class of
simple models used for monetary policy. Further, different ways of modeling uncertainty
can lead to quite different outcomes. In the MEM approach we find that, of the different
sources of uncertainty, model uncertainty has the largest effect on losses, the real-time data
uncertainty is less dangerous for policy making, whereas the effects of pure shock uncertainty
are relatively mild. While the full estimated model of uncertainty is too large to guarantee
finite losses for any Taylor-type rules, we are able to find the rules optimally robust against
specific blocks of the uncertainty model taken separately. We find that almost all computed
robust rules are relatively more aggressive than the optimal rule under no uncertainty.

Under the SM approach, we develop an estimation procedure that minimizes a measure of
model uncertainty. We analyze two sets of a priori assumptions, and find that the estimates
and the evaluation of uncertainty differ dramatically. In all cases, the amount of uncertainty
we estimate is substantial, and tends to be concentrated at high frequencies. Further, the
models we estimate imply substantially different inflation dynamics than a conventional OLS
estimate. We find that the resulting robust Taylor rules respond more aggressively to both
inflation and the output gap relative to the optimal Taylor rules under no uncertainty.

Under both of our approaches the most damaging perturbations of the reference model
result from very low frequency movements. Since we impose a vertical long run Phillips curve,
increases in the output gap lead to very persistent increases in inflation under relatively non-
aggressive interest rate rules. The size of this persistent component is poorly measured, but
has a huge impact on the losses sustained by the policy maker. We believe that for practical
purposes, it is prudent to downweight the importance of the low frequency movements. The
baseline model that we use, is essentially an aggregate demand-aggregate supply model. Such
models are not designed to capture long-run phenomena, but are instead most appropriately
viewed as short-run models of fluctuations.

To tailor our uncertainty description to more relevant worst scenarios, we reconsider our
results when restricting our attention to business cycle frequencies. For both MEM and SM
approaches, our aggressiveness result becomes reversed. Now, almost all optimally robust
Taylor rules are less aggressive than the optimal Taylor rules under no uncertainty. The worst
case scenarios across all frequencies correspond to cases when inflation gradually grows out
of control. Therefore the robust rules respond aggressively to any signs of inflation in order
to fight off this possibility. However when we introduce model uncertainty at business cycle
frequencies only, then the worst case scenarios occur at these frequencies, and the policy is
very responsive to these frequencies. This comes at the cost of downweighting low frequency
movements. Instead of fighting off any incipient inflation, policy becomes less aggressive,
and focuses more on counter-cyclical stabilization policy. This contrasts with policymakers
worried about low frequency perturbations, who would be very reluctant to try to stimulate
the economy in a recession.
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1 Introduction

Uncertainty is pervasive in economics, and this uncertainty must be faced continually by
policy makers. In this paper we propose empirical methods to specify and measure uncer-
tainty associated with economic models, and we study the effects of uncertainty on monetary
policy decisions. Recently there has been a great deal of research activity on monetary policy
making under uncertainty. We add to this literature by developing new, coherent methods to
quantify uncertainty and to tailor decisions to the empirically relevant sources of uncertainty.
In particular, we will be concerned with four types of uncertainty: first, uncertainty about
parameters of a reference model (including uncertainty about the model’s order); second, un-
certainty about the spectral characteristics of noise; third, uncertainty about data quality;
and fourth, uncertainty about the reference model itself. We use a simple, empirically-based
macroeconomic model in order to analyze the implications of uncertainty for economic policy.

A common intuitive view is that the introduction of uncertainty should make policy
makers cautious. This view reflects the results of Brainard (1967), which Blinder (1997)
summarizes as “Brainard’s conservatism principle: estimate what you should do, and then
do less.” However, as was argued by Chow (1975) from the theoretical point of view, uncer-
tainty need not result in cautiousness.1 Even the notion of aggressiveness of policy depends
on the policy instrument. An aggressive interest rate rule is compatible with an attenu-
ated money growth rule, and vice versa. However most recent studies on the robustness of
monetary policy under uncertainty have focused on interest rate rules, and have typically
found aggressive policy rules. The idea is that some types of uncertainty mean that policy
instruments may turn out to have weaker effects than expected, which can in turn lead to
large potential losses. In these cases, it is optimal to react more aggressively with uncer-
tainty than without. Despite these exceptions, the conservatism principle appeals to many,
perhaps not least because empirically estimated interest rate rules are typically found to be
less aggressive than theoretically optimal rules.

Different assumptions about the structure of uncertainty have drastically different impli-
cations for policy activism. For example, introduction of an extreme shock uncertainty into
the Ball (1999) model, so that the serial correlation structure of the shocks is not restricted
in any way (see Sargent (1999)), implies an aggressive robust Taylor rule.2 On the contrary,
Rudebusch (2001) shows that focusing on the real time data uncertainty in a conceptually
similar Rudebusch and Svensson (1999) model leads to attenuation of the parameters of
the optimal Taylor rule. Further, Craine (1979) and Söderström (2002) show that uncer-
tainty about the dynamics of inflation leads to aggressive policy rules. Finally, Onatski and
Stock (2002) find that uncertainty about the lag structure of the Rudebusch-Svensson model
requires a cautious reaction to inflation but an aggressive reaction to the output gap.

The fact that the robust policy rules are so fragile with respect to different assumptions

1Although the conservatism result is better known, Brainard (1967) also notes that a large enough co-
variance between the shocks and (random) parameters can lead policy to be more aggressive.

2The robust rule is defined as the policy rule that minimizes losses under the worst possible scenario
consistent with the uncertainty description.
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about the structure of uncertainty is not surprising by itself. In fact, fragility is a general
feature of optimizing models. As Carlson and Doyle (2002) state, “They are ‘robust, yet
fragile’, that is, robust to what is common or anticipated but potentially fragile to what is
rare or unanticipated.” Standard stochastic control methods are robust to realizations of
shocks, as long as the shocks come from the assumed distributions and feed through the
model in the specified way. But the optimal rules may perform poorly when faced with
a different shock distribution, or slight variation in the model. The Taylor policy rules
discussed above are each designed to be robust to a particular type of uncertainty, but may
perform poorly when faced with uncertainty of a different nature.

In our view, the most important message of the fragility of the robust rules found in the
literature is that to design a robust policy rule in practice, it is necessary to combine different
sources of uncertainty in a coherent structure and carefully estimate or calibrate the size of
the uncertainty. Further, the description and analysis of uncertainty should reflect the use
of the model for policy purposes. Model selection and evaluation should not be based only
on the statistical fit or predictive ability of the model, but should be tied to the ultimate
policy design objectives. For these reasons, it is necessary to model the model uncertainty.

It is sometimes argued that model uncertainty can be adequately represented by suitable
restrictions on the joint distribution of shocks only. We argue that, if the model uncertainty
is used to formulate a robust policy rule, the distinction between restrictions on the vector of
model parameters and the distribution of shocks may be crucial. In particular, we develop
an example showing that the Hansen and Sargent (2002) approach to formulating model
uncertainty may lead to the design of robust policy rules that can be destabilized by small
parametric perturbations. This potential inconsistency between the robustness to shock
uncertainty and the robustness to parametric uncertainty results from the fact that the
magnitude of the shock uncertainty relevant for policy evaluation cannot be judged ex ante,
but depends on the policy being analyzed. For example, uncertainty about the slope of the
IS curve is equivalent to larger shocks under more aggressive interest rate rules.

In this paper we consider two particular ways to structure and estimate the model uncer-
tainty. Both draw upon the recent advances in the control system identification literature.
First, we consider the Model Error Modeling (MEM) approach as in Ljung (1999). The main
idea of the approach is as follows. First, estimate a reference or nominal model. Then take
the reference model’s errors and try to fit them with a general set of explanatory variables
(including some variables omitted from the original model). Finally, build the model uncer-
tainty set around the reference model which is consistent with all regressions for the errors
not rejected by formal statistical procedures.

The second approach exploits recent advances in the Set Membership (SM) identification
literature, due to Milanese and Taragna (2001). Set membership theory takes a deterministic
approach to model uncertainty. The uncertainty corresponds to an infinite number of linear
constraints on the model’s parameters and shocks. Typically, shocks are required to be
bounded in absolute value by a given positive number and the model impulse responses are
required to decay at a given exponential rate. The model uncertainty set is represented by
those models that are not falsified by the data and the above linear restrictions. The SM
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approach makes very few a priori assumptions about the model’s shocks and parameters.
While this generality is a benefit of the approach, it implies that the resulting uncertainty set
may be very large and complicated. To make it operational, it is modeled (approximated)
by a ball in the model space that covers the uncertainty set and has minimal radius among
all such balls. The center of this ball serves as the nominal model. Thus this approach
provides both an estimate of a nominal model and a description of the model uncertainty,
based entirely on the specified assumptions and the observed data.

After a model of the model uncertainty is built (under either approach), the robust policy
is formulated so that it works well for all models described by this model uncertainty model.
In order to guarantee the uniform performance across the different models, following much of
the recent literature, we use a minimax approach to formulating robust policies. Although
an alternative Bayesian approach has strong theoretical foundations, it is less tractable
computationally. Further, minimax policies have alternative theoretical foundations and
they are naturally related to some of our estimation methods.3 An interesting extension of
our results would be use our measures of model uncertainty as a basis for Bayesian optimal
control, and to compare Bayes and minimax policy rules.

Under both the model error modeling and set membership approaches, a certain level
of subjectivity exists at the stage of formulating the model of model uncertainty. In the
MEM approach, one has to choose a set of explanatory variables for the model of errors and
the level of statistical tests rejecting those models inconsistent with the data. In the SM
approach, it is necessary to specify a priori a bound on absolute value of the shocks and the
rate of exponential decay of the impulse responses. There are no clear guidelines in making
these subjective choices. If one wants to decrease subjectivity, one is forced to consider more
and more general models of the model errors or, in the set membership case, less and less
restrictive assumptions on the rate of decay and the shock bound. However, an effect of such
vagueness may be an enormous increase in the size of the uncertainty.

One possible way to judge the specification of model uncertainty models is to do some
ex-post analysis and examination. The end results of our procedures are robust Taylor-
type rules and guaranteed upper bounds on a quadratic loss function. One procedure for
assessing the specification of model uncertainty models would be to see if the bounds on the
loss function or the robust rules themselves satisfy some criterion of “reasonability.” Another
procedure which Sims (2001) suggests would be to examine in more detail the implied worst-
case model which results from the policy optimization, to see if it implies plausible prior
beliefs. By doing this ex-post analysis, the specifications could be tailored or the results
from different specifications could be weighted. Our results should prepare the reader to
carry out this task by incorporating his own subjective beliefs.

The general message of our results is that there is substantial uncertainty in a class of
simple models used for monetary policy. Further, different ways of modeling uncertainty
can lead to quite different outcomes. As an illustration of our methods, we analyze the
uncertainty in the Rudebusch and Svensson (1999) model. This provides an empirically

3Gilboa and Schmeidler (1989) provide an axiomatic foundation for max-min expected utility. While we
share a similar approach, their setting differs from ours.
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relevant, but technically simple laboratory to illustrate the important features of our analysis.
Further, we impose relatively few restrictions on the form of the model uncertainty. Much
more could be done to extend the baseline model we use (for example to consider forward-
looking behavior) and to use prior beliefs to further restrict the classes of models we consider
(for example by imposing sign restrictions on impulse responses). This paper is only a first
step in the analysis, but even by focusing on a simple case we find some interesting results.

We first assess the different sources of uncertainty in the Rudebusch and Svensson (1999)
model under our Model Error Modeling approach. We find that the famous Taylor (1993)
rule leads to extremely large losses for very small perturbations. Of the different sources
of uncertainty, model uncertainty has the largest effect on losses, the real-time data uncer-
tainty is less dangerous for policy making, whereas the effects of pure shock uncertainty
are relatively mild. While the full estimated model of uncertainty is too large to guarantee
finite losses for any Taylor-type rules, we are able to find the rules optimally robust against
specific blocks of the uncertainty model taken separately. We find that almost all computed
robust rules are relatively more aggressive than the optimal rule under no uncertainty. An
exception to this aggressiveness result is the rule robust to the real-time data uncertainty
about the output gap. This rule is substantially less aggressive than the optimal rule under
no uncertainty, which accords with results of Rudebusch (2001).

Under the Set Membership approach, we assess the uncertainty of different parametric
models, and develop an estimation procedure that minimizes a measure of model uncertainty.
We analyze two sets of a priori assumptions, and find that the estimates and the evaluation
of uncertainty differ dramatically. In all cases, the amount of uncertainty we estimate is
substantial, and tends to be concentrated at high frequencies. Further, the models we
estimate imply substantially different inflation dynamics than a conventional OLS estimate.
In order to obtain reasonable policy rules, for some specifications we must scale down the
model uncertainty in the different estimates. We find that the resulting robust Taylor rules
respond more aggressively to both inflation and the output gap relative to the optimal Taylor
rules under no uncertainty.4

Under both of our approaches the most damaging perturbations of the reference model
result from very low frequency movements. Since we impose a vertical long run Phillips
curve, increases in the output gap lead to very persistent increases in inflation under rel-
atively non-aggressive interest rate rules. The size of this persistent component is poorly
measured, but has a huge impact on the losses sustained by the policy maker. We believe
that for practical purposes, it is prudent to downweight the importance of the low frequency
movements. The baseline model that we use, due to Rudebusch and Svensson (1999), is
essentially an aggregate demand-aggregate supply model. Such models are not designed to
capture long-run phenomena, but are instead most appropriately viewed as short-run models
of fluctuations. By asking such a simple model to accommodate very low frequency pertur-
bations, we feel that we are pushing the model too far. A more fully developed model is

4Due to technical constraints spelled out in the paper, we analyze only uncertainty about the Phillips
curve under the SM approach. Neither the real-time data uncertainty, nor uncertainty about the IS curve
are considered.
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necessary to capture low frequency behavior.
To tailor our uncertainty description to more relevant worst scenarios, we reconsider our

results when restricting our attention to business cycle frequencies (corresponding to periods
from 6 to 32 quarters). For both MEM and SM approaches, our aggressiveness result becomes
reversed. Now, almost all optimally robust Taylor rules are less aggressive than the optimal
Taylor rules under no uncertainty. For the MEM approach, the least aggressive robust rule
corresponds to the uncertainty about the slope of the IS curve and not to the real-time data
uncertainty about the output gap. The full estimated uncertainty model is still too big to
allow for finite worst possible losses under any Taylor-type rule, however, when we scale
the size of all uncertainty downwards, the optimally robust Taylor rule has a coefficient on
inflation of 1.4 and a coefficient on the output gap of 0.7, which is surprisingly close to the
Taylor (1993) rule! For the SM approach, our estimated model can handle the full estimated
uncertainty, and it also leads to a relatively less aggressive policy rule.

These results can be interpreted as follows. Under no model uncertainty, the optimal
Taylor-type rules balance the performance of policy at all frequencies. When we introduce
model uncertainty which enters at all frequencies, the most damaging perturbations come at
low frequencies. Thus the robust optimal rules pay a lot of attention to these frequencies, at
the cost of paying less attention to other frequencies. The worst case scenarios correspond
to cases when inflation gradually grows out of control. Therefore the robust rules respond
aggressively to any signs of inflation in order to fight off this possibility. However when we
introduce model uncertainty at business cycle frequencies only, then the worst case scenarios
occur at these frequencies, and the policy is very responsive to these frequencies. This comes
at the cost of downweighting low frequency movements, even relative to the no uncertainty
case. Instead of fighting off any incipient inflation, policy becomes less aggressive, and focuses
more on counter-cyclical stabilization policy. This contrasts with policymakers worried about
low frequency perturbations, who would be very reluctant to try to stimulate the economy
in a recession.

Two recent studies are particularly relevant for the Model Error Modeling part of our
paper. Rudebusch (2001) analyzes optimal policy rules under different changes in specifica-
tion of the Rudebusch-Svensson model. In this paper, we find minimax, not Bayes optimal,
policy rules corresponding to different specifications of uncertainty. Further, the uncertainty
we consider is more general than in Rudebusch (2001). Onatski and Stock (2002) analyze
stability robustness of Taylor-type policy rules in the Rudebusch-Svensson model. Here we
extend their analysis in a number of important ways. First, we study robust performance
of the policy rules. We compute optimally robust policy rules and not just sets of the rules
not destabilizing the economy that were computed in Onatski and Stock. Moreover, our
more precise analysis makes it possible to study combined model, real-time data, and shock
uncertainty in one structure. Second, we carefully calibrate the magnitude of the uncertainty
about the Rudebusch-Svensson model using Bayesian estimation techniques.

To our knowledge, there are no previous attempts to estimate economic models with
a goal of minimizing model ambiguity. This is essentially what we do in the part of the
paper concerned with the Set Membership identification. Chamberlain (2000) uses max-min
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expected utility theory in estimation, but considers parametric estimation with a given set
of possible models. In contrast, a main task of our analysis is to construct an empirically
plausible model set. Other broadly related papers use the theory of information based com-
plexity, which is a general theory from which SM is derived. Information based complexity
theory has been used and extended in economics by Rust (1997) and Rust, Traub, and
Wozniakowski (2002) to study the numerical solution of dynamic programming problems.

In the next section of the paper we describe formulations of models of model uncertainty
at a formal level, and show that parametric and shock uncertainty must be considered
separately. Section 3 applies the Model Error Modeling approach to analyze robust monetary
policies under uncertainty about Rudebusch-Svensson model. Section 4 models the Phillips
curve and uncertainty associated with it using the Set Membership identification approach.
Section 5 concludes.

2 Consequences of Different Uncertainty Models

2.1 Overview

The general issue that we consider in this paper is decision making under uncertainty. In
particular, we focus on the policy-relevant problem of choosing interest rate rules when the
true model of the economy is unknown and may be subject to different sources of uncertainty.
The goal of the paper is to provide characterizations of the empirically relevant sources of
uncertainty, and to design policy rules which account for that uncertainty.

As we noted in the introduction, we distinguish between different sources of uncertainty,
each of which can lead to different implications for policy rules. To be concrete, it helps to
introduce a standard state-space model:

xt+1 = Axt + Bit + Cεt+1 (1)

yt = Dxt + Git + Fηt

zt = Hxt + Kit

Here xt is a vector state variables, it is a vector of controls, εt is a driving shock vector, yt is
a vector of observations, ηt is an observation noise and zt is a vector of target variables. In
the standard full information case, F = 0. By model uncertainty we mean uncertainty both
about the parameters of the model and the model specification. In (1) this means variations
in the A and B matrices (parametric uncertainty) as well as the makeup of the xt vector
(perhaps it omits relevant variables). By shock uncertainty we mean uncertainty about the
serial correlation properties of the noise εt. By data uncertainty we mean uncertainty about
the real-time data generating process. We capture this uncertainty by allowing variation in
matrices D and G and specifying a range of possible spectral characteristics of ηt. Each of
these sources of uncertainty enters the model (1) in a different way and can therefore lead
to different outcomes.

One approach to model uncertainty which has been widely used was developed by Hansen
and Sargent (2002). They absorb all sources of uncertainty into an additional shock to the
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system, and therefore collapse all uncertainty into shock uncertainty. Focusing on the full
information case, they suppose that the first line of (1) is replaced by:

xt+1 = Axt + Bit + C(εt+1 + wt+1). (2)

The decision maker then designs a control strategy that will be insensitive to sequences of
wt of a reasonable size (described in more detail below). While this approach seems quite
general and unrestrictive, in the next section we develop a simple example which shows that
the other sources of uncertainty cannot be collapsed to shock uncertainty.

To gain some intuition for the results, suppose that the decision maker uses a feedback
control rule it = kxt, and for simplicity assume C is the identity matrix. Then (2) becomes:

xt+1 = (A + Bk)xt + εt+1 + wt+1.

Next, suppose that the true data generating process was a purely parametric perturbation
of (1), so that A is replaced by A+ Â, and B by B + B̂. In this case we have that the model
uncertainty perturbation is wt+1 = (Â + B̂k)xt, which clearly varies with the control rule k.
Therefore in this setting it is impossible to evaluate the model uncertainty in the absence
of the control rule. Different control rules will lead to different magnitudes of uncertainty,
which cannot be judged ex-ante. This intuition is made more precise in the following section.

2.2 A Simple Example

In this section we build an example showing that two reasonable views of model uncertainty
in a small macroeconometric model of the US economy may lead to drastically different policy
implications. We consider a two-equation purely backward-looking model of the economy
proposed and estimated by Rudebusch and Svensson (1999). This model, henceforth referred
to as RS, will be the benchmark for the rest of the paper as well, and is given by:

πt+1 = .70
(.08)

πt − .10
(.10)

πt−1 + .28
(.10)

πt−2 + .12
(.08)

πt−3 + .14
(.03)

yt + επ,t+1 (3)

yt+1 = 1.16
(.08)

yt − .25
(.08)

yt−1 − .10
(.03)

(̄ıt − π̄t) + εy,t+1

The standard errors of the parameter estimates are given in parentheses. Here the variable
y stands for the gap between output and potential output, π is inflation and i is the federal
funds rate. All the variables are quarterly, measured in percentage points at an annual rate
and demeaned prior to estimation, so there are no constants in the equations. Variables π
and i stand for four-quarter averages of inflation and federal funds rate respectively.

The first equation is a simple version of the Phillips curve. The coefficients on the lags
of inflation in the right hand side of the equation sum to one, so that the Phillips curve is
vertical in the long run. The second equation is a variant of the IS curve. A policy maker
can control the federal funds rate and wants to do so in order to keep y and π close to their
target values (zero in this case).
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In general, the policy maker’s control may take the form of a contingency plan for her
future settings of the federal funds rate. We, however, will restrict attention to the Taylor-
type rules for the interest rate. As emphasized by McCallum (1988) and Taylor (1993),
simple rules have the advantage of being easy for policymakers to follow and also of being
easy to interpret. In this section, we will assume that the policy maker would like to choose
among the following rules:

it = gππ̄t−1 + gyyt−2 (4)

Here, the interest rate reacts to both inflation and the output gap with delay. The delay in
the reaction to the output gap is longer than that in the reaction to the inflation because it
takes more time to accurately estimate the gap.

Following Rudebusch and Svensson, we assume that a policy maker has the quadratic
loss:5

Lt = π̄2
t + y2

t +
1

2
(it − it−1)

2. (5)

Had the policy maker been sure that the model is correctly specified, she could have used
standard frequency-domain methods to estimate expected loss for any given policy rule (4).
Then she could find the optimal rule numerically. We will however assume that the policy
maker has some doubts about the model. She wants therefore to design her control so that
it works well for reasonable deviations from the original specification.

One of the most straightforward ways to represent her doubts is to assume that the model
parameters may deviate from their point estimates as, for example, is assumed in Brainard
(1967). It is also likely, that the policy maker would not rule out misspecifications of the
model’s lag structure. As Blinder (1997) states, “Failure to take proper account of lags is, I
believe, one of the main sources of central bank error.”

For the sake of illustration, we will assume that the policy maker is willing to contemplate
a possibility that one extra lag of the output gap in the Phillips curve and IS equations and
one extra lag of the real interest rate in the IS equation were wrongfully omitted in the
original model. She therefore re-estimates the RS model with the additional lags. The
re-estimated model has the following form:

πt+1 = .70
(.08)

πt − .10
(.10)

πt−1 + .28
(.10)

πt−2 + .12
(.09)

πt−3 + .14
(.10)

yt + .00
(.10)

yt−1 + επ,t+1 (6)

yt+1 = 1.13
(.08)

yt − .08
(.12)

yt−1 − .14
(.08)

yt−2 − .32
(.14)

(̄ıt − π̄t) + .24
(.14)

(̄ıt−1 − π̄t−1) + εy,t+1

Then she obtains the covariance matrix of the above point estimates and tries to design
her control so that it works well for reasonable deviations of the parameters from the point
estimates. For example, she may consider all parameter values inside the 90% confidence
ellipsoid around the point estimates.6

5Inclusion of the term (it − it−1)2 in the loss function is somewhat controversial. Our results will not
depend on whether this term is included in the loss function or not.

6In the later sections of the paper we will discuss a more systematic way of representing and estimating
the model uncertainty.
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Technically, the above control design problem may be hard (because of the large num-
ber of parameters), but conceptually, it is straightforward. We will soon return to this
problem, but for now let us assume that the policy maker considers a different, more
manageable, representation of the model uncertainty. Therefore she applies the Hansen
and Sargent (2002) approach described above. For our example, the elements of (1) are
xt = (πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−3)

′, yt = xt (the state of the economy is per-

fectly observable), εt =

(
επt√

V arεπt
, εyt√

V arεyt

)′
, and zt =

(
πt, yt,

it−it−1√
2

)′
.

As we note above, under this approach the policy maker wants to choose rules which are
insensitive to the distortion wt in (2). More precisely, the policy maker solves the following
problem:

min
F

max
{wt}

E

∞∑
t=0

βtz′tzt s.t. (2) and E

∞∑
t=0

βtw′
twt < η. (7)

The minimum is taken over all policies from the admissible set F (set of policy rules (4)
in our example), the parameter η regulates the size of the model uncertainty, and β is a
discount factor. Here we consider the case β → 1.

Problem (7) can be stated in an equivalent form

min
F

max
{wt}

E

∞∑
t=0

(
βtz′tzt − θβtw′

twt

)
s.t. (2), (8)

where θ is the Lagrange multiplier on the constraint in (7). A smaller value of θ corresponds
to stronger preference for robustness as described in Hansen and Sargent (2002). Giordani
and Söderlind (2002) explain how to solve this problem numerically for any given value of θ.

Anderson, Hansen, and Sargent (2000) propose to discipline the choice of θ by computing
the Bayesian probability of error in distinguishing between the reference model (1) and the
distorted model (2), both controlled by the robust rule corresponding to θ. If the detection
error probability is large, say larger than 0.1, the models are difficult to statistically distin-
guish from each other and the robustness parameter θ is said to correspond to a reasonable
degree of model uncertainty. We will not calibrate θ using the detection error probabilities,
but instead take θ to be the smallest robustness parameter such that there exists a rule from
F corresponding to a finite value of problem (8). In other words, we find a Taylor-type
policy rule that “works best” when the size of the model uncertainty, η, increases.

It can be shown that the robust policy rule corresponding to the “smallest possible” θ
minimizes the so-called H∞ norm of the closed loop system transforming the noise ε into
the target variables z (see Hansen and Sargent (2002)). It is therefore easy to find such
an “extremely robust” rule numerically using, for example, commercially available Matlab
codes to compute the H∞ norm. Our computations give the following rule:

it = 3.10π̄t−1 + 1.41yt−2. (9)

Now let us return to our initial formulation of the problem. Recall that originally we
wanted to find a policy rule that works well for all deviations of the parameters of the re-
estimated model (6) inside a 90% confidence ellipsoid around the point estimates. Somewhat
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surprisingly, the above “extremely robust” rule does not satisfy our original criterion for
robustness. In fact, it destabilizes the economy for deviations from the parameters’ point
estimates inside as small as a 20% confidence ellipsoid. More precisely, policy rule (9) results
in infinite expected loss for the following perturbation of the RS model:

πt+1 = .68πt − .13πt−1 + .35πt−2 + .10πt−3 + .30yt − .15yt−1 + επ,t+1 (10)

yt+1 = 1.15yt − .07yt−1 − .18yt−2 − .51 (̄ıt − π̄t) + .41 (̄ıt−1 − π̄t−1) + εy,t+1.

Let us denote the independent coefficients7 of the above model, the re-estimated the RS
model (6), and the original RS model as c, c1, and c0 respectively.8 Denote the covariance
matrix of the coefficients in the re-estimated model (6) as V . Then we have:

(c − c1)
′V −1(c − c1) = 6.15

(c0 − c1)
′V −1(c0 − c1) = 5.34.

Both numbers are smaller than the 20% critical value of the chi-squared distribution with
10 degrees of freedom. This may be interpreted as saying that both the original Rudebusch-
Svensson model and the perturbed model are statistically close to the encompassing re-
estimated model.

Why does our “extremely robust” rule perform so poorly? It is not because other rules
work even worse. For example, we numerically checked that the famous Taylor rule it =
1.5π̄t−1 + 0.5yt−2 guarantees stability of the economy at least for all deviations inside a
60% confidence ellipsoid. Rule (9) works so bad simply because it was not designed to
work well in such a situation. To see this, note that our original description of the model
uncertainty allowed deviations of the slope of the IS curve from its point estimate. Therefore
our ignorance about this parameter will be particularly influential if we were to use a very
aggressive control rule. It may even be consistent with instability under such an aggressive
rule. No effects of this kind are allowed under the Hansen and Sargent (2002) description of
the model uncertainty. Under this description, ignorance is equally influential for any policy
rules. The specific interaction between the aggressiveness of policy rules and uncertainty
about the slope of the IS curve is not taken into account. This lack of structure in the
uncertainty description turns out to be dangerous because the resulting robust rule happens
to be quite aggressive.

The example just considered should not be interpreted in favor of a particular description
of uncertainty. Its message should rather be understood as follows. When designing robust
policy rules we must carefully specify and thoroughly understand the model uncertainty that
we are trying to deal with. Robust policy rules may be fragile with respect to reasonable
changes in the model uncertainty specification. In the next sections therefore we try to
rigorously approach the specification of the model uncertainty. We first use an approach

7Recall that the sum of coefficients on inflation in the Phillips curve is restricted to be equal to 1. We
therefore exclude the coefficient on the first lag of inflation from the vector of independent coefficients.

8That is, c = (−.13, .35, .10, .30,−.15, 1.15,−.07,−.18,−.51, .41)′, c1 =
(−.10, .28, .12, .14, .00, 1.13,−.08,−.14,−.32, .24)′, c0 = (−.10, .28, .12, .14, 0, 1.16,−.25, 0,−.10, 0)′.
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based on model error modeling to estimate the uncertainty about the Rudebusch-Svensson
model introduced above. Later we consider a set membership approach to joint model
estimation and uncertainty evaluation.

3 Bayesian Model Error Modeling

Looking ahead, we will use frequency domain methods to evaluate the robustness of policy
rules, so it is useful to reformulate our general setting of Section 2 using the language of lag
polynomials. Suppose that a reference model of the economy has the following ARX form:

xt = A0(L)xt−1 + B0(L)it + εt (11)

where xt is a vector of economic variables, it is a policy instrument, εt are white noise
shocks, and the coefficients of matrix lag polynomials A0(L) and B0(L) satisfy a number
of constraints reflecting specific features of the reference model. Note that the majority of
purely backward-looking models of the economy can be represented in the above reduced
form. In particular, the Rudebusch-Svensson model that we work with in the numerical part
of this section can be viewed as a constrained ARX. An important question of how to choose
a reference model of the economy is not considered until the next section of the paper.

Suppose further that a reference model of the observable economic data, yt, has the form
of the following noisy linear filter of the process xt:

yt = D0(L)xt + ηt.

For example, the reference model of the observable data may describe the real time data
as n-period lagged actual data, that is yt = xt−n. In this case the white noise ηt has zero
variance. We assume that policy makers use observed data to form a policy rule from an
admissible class:

it = f(yt, yt−1, ..., it−1, it−2, ...).

For example, a possible class of admissible rules may consist of all linear rules it = kyt.
Model (11) can be estimated using, say, OLS. The obtained estimate can then be used to

formulate the optimal policy rule from the admissible class, where the criterion of optimality
is based on a quadratic loss function. The quality of the policy rule obtained in this way
will depend on the accuracy of the reference models for the economic dynamics and the
observable data. In general, these models will not be completely accurate. We assume that
the true models of the economy and the real time data encompass the reference models as
follows:

xt = (A0(L) + A(L))xt−1 + (B0(L) + B(L))it + (1 + C(L))εt (12)

yt = (D0(L) + D(L))xt + (1 + F (L))ηt (13)

Here A,B,C,D, and F are relatively unconstrained matrix lag polynomials.
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Let us assume that the central bank wants to design a policy rule that works well not
only for the reference models but also for statistically plausible deviations from the reference
models having the form (12) and (13). The set of deviations will be defined by a set of
restrictions on the matrix lag polynomials A,B,C,D, and F. The restrictions on A(L) and
B(L) will describe the economic model uncertainty. This uncertainty includes econometric
uncertainty about point estimates of A0(L) and B0(L), and uncertainty about restrictions
on the coefficients of A0(L) and B0(L) introduced by the reference model. The restrictions
on C(L) will describe economic shock uncertainty. Models with non-zero C(L) characterize
economic shock processes as non-white stochastic processes. Finally, the restrictions on D(L)
and F (L) will describe uncertainty about the real time data generating process.

We define the restrictions on A,B,C,D, and F as follows. For the i, j-th entry of the
matrix polynomial A(L) let:

Aij(L) ∈ {
WAij

(L)∆Aij
(L) :

∣∣∣∣∆Aij
(L)

∣∣∣∣
∞ ≤ 1

}
where WAij

(L) is a scalar lag polynomial weight and ∆Aij
(L) is an uncertain scalar linear

filter with gain less than or equal to unity. For the polynomials B,C,D, and F the restrictions
are defined similarly, that is, for example:

Bij(L) ∈ {
WBij

(L)∆Bij
(L) :

∣∣∣∣∆Bij
(L)

∣∣∣∣
∞ ≤ 1

}
.

If all weights W(·)ij(L) are zero, then the set of plausible deviations from the reference
models is empty and the central bank pays attention only to the reference models. In
general, the spectral characteristics of the weighting lag polynomials may be chosen so that
the resulting set of models includes relatively more plausible deviations from the reference
models. The question of how to choose the weights in practice will be discussed below.

Our final goal is to find a policy rule to minimize the loss for the worst possible model (12)
and (13) subject to restrictions defined above. As explained in Onatski (2001), it is possible
to find an upper bound on such a worst possible loss numerically. We will therefore look for
the policy rules that minimize the upper bound on the worst possible loss. Unfortunately,
there are no theoretical guarantees that the upper bound is tight. However, the bound
has an appealing interpretation of the exact worst possible loss under slowly time-varying
uncertainty (see Paganini (1996)). Some of our numerical calculations suggest that the bound
may be very tight for relatively simple dynamic models and uncertainty characterizations.

3.1 Bayesian Calibration of Uncertainty

How should we choose weights W(·)ij(L) so that the corresponding restrictions on A,B,C,D,
and F describe a statistically plausible model uncertainty set? In this section we approach
this question using the Model Error Modeling (MEM) methodology recently developed in
the system identification literature (see Ljung (1999)).

Let us denote the true errors of the reference models for economic dynamics and the real
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time data as et and ed
t . From (12) and (13) we have:

et = A(L)xt−1 + B(L)it + (1 + C(L))εt (14)

ed
t = D(L)xt + (1 + F (L))ηt. (15)

That is, the true models for the real time data and the economic dynamics imply the above
models for the errors of the reference models. Knowing the reference model parameters
A0(L), B0(L), and D0(L), we can obtain the data on et, e

d
t from the real time data yt and

the (final) data on xt and it. Then we can estimate model error models (14) and (15). As
we mentioned before, the matrix lag polynomials in the true model should be relatively
unrestricted. However, some restrictions may still be plausible a priori. For example, we
might want to see the coefficients of the lag polynomials A,B,C,D and F exponentially
decaying because we believe that the described economic and real-time data generating
processes have relatively short memory.

To incorporate some a priori restrictions on the parameters of the model error models, we
will estimate the models using Bayesian methods. After the estimation the whole posterior
distribution of the parameters will be available. In particular, we will obtain the posterior
distribution of the coefficients of Aij(L), Bij(L), ..., Fij(L). Therefore, we will know the
posterior distribution of the filter gains |Aij(e

iω)| , |Bij(e
iω)| , ..., |Fij(e

iω)| at each frequency
ω. Let us define aij(ω), bij(ω), ..., fij(ω) so that

Pr
(∣∣Aij(e

iω)
∣∣ ≤ aij(ω)|data

)
= 95%

...

Pr
(∣∣Fij(e

iω)
∣∣ ≤ fij(ω)|data

)
= 95%

We can then choose an ARMA weight WAij
(L) so that its gain

∣∣WAij
(eiω)

∣∣ approximates
aij(ω) well at each frequency point. We can choose the other weights W(·)ij

(L) similarly.
Our procedure of choosing weights still leaves a possibility that some statistically im-

plausible models will be included in the model uncertainty set. This happens because we
define the weights frequency-by-frequency so that the weights are essentially a 95% envelope
of gains of different filters drawn from posterior distribution for Aij(L), Bij(L), ..., Fij(L).
Such an envelope may be very different from the sampled gain functions.

3.2 A Numerical Example

In this section we analyze the robustness of Taylor-type policy rules for model, data, and
shock uncertainty about the RS model given in (3) above, with the same quadratic loss (5).

The real-time data on the output gap and inflation was kindly provided to us by Athana-
sios Orphanides from his 2001 paper. The data is relatively short, starting at 1987:1 and
ending at 1993:04. In this sample, the lagged data turns out to be a better predictor of the
real time data than the current actual (final) data. We therefore use as our reference model
for the real-time generating process the following:

π∗
t = πt−1, y∗

t = yt−1.
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Figure 1: Posterior distribution for the parameters b0 and b1.

That is, our reference assumption is that the real time data on inflation and the output gap
are equal to the lagged data on inflation and the output gap.

Using the Rudebusch and Svensson (1999) data set kindly provided to us by Glenn
Rudebusch, we compute the errors of the RS Phillips curve, eπ

t+1, and the IS curve, ey
t+1. We

then compute the errors of our reference model for the real time data on inflation, eπ,data
t ,

and the output gap ey,data
t . We model the reference models’ errors as follows:9

eπ
t+1 =

4∑
i=0

aiL
i(πt − πt−1) +

4∑
i=0

biL
iyt +

(
1 +

4∑
i=1

ciL
i

)
επ

t+1

ey
t+1 =

4∑
i=0

diL
iyt +

4∑
i=0

fiL
i (it − πt) +

(
1 +

4∑
i=1

giL
i

)
εy

t+1

eπ,data
t =

3∑
i=0

hiL
iπt +

(
1 +

2∑
i=1

kiL
i

)
ηπ

t

ey,data
t =

3∑
i=0

liL
iyt +

(
1 +

2∑
i=1

miL
i

)
ηy

t

Note that this allows for rich dynamics in the omitted variables and rich serial correlation in
the shocks. An interesting extension of our analysis would be to include additional omitted
variables in the model errors, reflecting other variables policymakers may consider.

9Our model for the real-time data errors has fewer lags than that for the RS model errors because our
sample of the real-time data is much shorter than our sample of the final data
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Assuming diffuse priors for all parameters, we sampled from the posterior distributions
of the coefficients a, b, c, ...,m and the posterior distributions of the shock variances using the
algorithm of Chib and Greenberg (1994) based on Markov Chain Monte Carlo simulations.
We obtained six thousand draws from the distribution, dropping the first thousand draws
to ensure convergence. In Figure 1 we provide a contour plot of the estimate of the joint
posterior density of the parameters b0 and b1. These parameters can roughly be interpreted as
measuring the error of the RS model’s estimates of the effect of the output gap on inflation.
The picture demonstrates that the RS model does a fairly good job in assessing the size of
the effect of a one time change in the output gap on inflation. However, there exist some
chances that the effect is either more spread out over the time or, vice versa, that the initial
response of inflation overshoots its long run level.

Using our sample of the posterior distribution for the parameters a, b, . . . ,m we simu-
lated posterior distributions of

∑4
t=0 ate

itω,
∑4

t=0 bte
itω, ldots, 1 +

∑2
t=1 mte

itω on a grid over
the unit circle in the complex plain. For each frequency in the grid, we found thresholds
a(ω), b(ω), . . . ,m(ω) such that 95% of the draws from the above posterior distribution had
absolute value less than the thresholds.10 We then define weights Wa(L),Wb(L), ..., and
Wm(L) as rational functions of L with numerators and denominators of fifth degree whose
absolute values approximate a(ω), b(ω), ...,m(ω) well in the sense of maximizing the least
squares fit on our grid in the frequency domain.

In Figure 2 we plot the thresholds b(ω), f(ω), h(ω), and l(ω) together with the absolute
values of the corresponding weights. For the three out of the four reported thresholds more
uncertainty is concentrated at high frequencies. However, for f(ω) which corresponds to
uncertainty about effect of the real interest rate on the output gap, there exists a lot of
uncertainty at low frequencies.

We then tried to compute an upper bound on the worst possible loss of the Taylor rule:

it = 1.5π̄∗
t + 0.5y∗

t

where π̄∗
t is a four quarter average of the real-time data on inflation and y∗

t is the real time
data on the output gap. However this policy rule resulted in infinite loss. Our description
of uncertainty turns out to include some models that are unstable under the Taylor rule.

We then analyzed smaller perturbations to the reference model. We redefine a(ω), ...,m(ω)
as the envelopes for the posterior distribution of uncertain gains corresponding to lower than
95% confidence level. The graph of the upper bound on the worst possible loss for the Taylor
rule for different confidence levels is shown in Figure 3. We see that the worst possible loss
becomes ten times higher than the loss under no uncertainty for the confidence levels as
small as 1%! This roughly means that even among the 50 draws from the posterior distri-
bution which are closest to zero (out of 5000 draws) we can find such parameters a, b, ...,m

10We define k(ω) and m(ω) as the numbers such that 95% of the draws from the posterior for 1+
∑2

t=1 kte
itω

and 1 +
∑2

t=1 mte
itω lie closer to the posterior mean of 1 +

∑2
t=1 kte

itω and 1 +
∑2

t=1 mte
itω than k(ω) and

m(ω) respectively. As Orphanides (2001) notes, the noise in real time data may be highly serially correlated.
By centering the real time data uncertainty description around the posterior mean for k and m (instead of
zero) we essentially improve our reference model for the real time data generating process.
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Figure 2: 95% envelopes of the sampled gains of different uncertainty channels. Dotted lines correspond
to rational approximations to the envelopes.

Figure 3: Upper bound on the worst possible loss for the Taylor rule.
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Figure 4: Upper bound on the worst possible loss. The solid line corresponds to pure model uncertainty,
the dashed line corresponds to real time data uncertainty, and the dash-dot line corresponds to pure shock
uncertainty.

that correspond to an economic disaster if the Taylor rule were mechanically followed by the
central bank.

Recall that according to our classification, the posterior distributions for a, b, d, and
f describe pure model uncertainty, the posterior distributions for c and g describe shock
uncertainty, and the posterior distribution for the rest of the parameters describe real time
data uncertainty. How do different kinds of uncertainty contribute to the miserable worst
scenario performance of the Taylor rule? To answer this question, we increased the size of the
specific uncertainty, keeping the coefficients corresponding to all other sources of uncertainty
equal to the values closest to zero that were ever drawn in our simulations. The graph with
contributions of different forms of uncertainty to the worst possible loss is given in Figure 4.

We see that the pure model uncertainty has a huge input into the worst possible sce-
nario for the Taylor rule. This result supports the common belief that under the existing
amount of model uncertainty, mechanically following any Taylor-type rule specification is an
extremely dangerous adventure. Alternatively, it may be indicating that policy makers have
strong priors about the parameters of the true model. The pure shock uncertainty is the
least important source of uncertainty. Clearly, changing the spectral characteristics of the
shock process cannot make the model unstable under the Taylor rule. Even for very broad
confidence regions for the spectrum of the shock processes, the worst possible loss is only
about 5 times larger than the loss under no uncertainty. The real time data uncertainty
significantly contributes to the worst possible scenario for the Taylor rule. It is possible to
design a linear filter procedure for generating real-time data from the actual data that will
mimic the historical relationship between the real time data and the final data quite well
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Figure 5: Optimally robust Taylor-type rules under different levels of prior informativeness. Labels on the
graph show the worst possible losses corresponding to the robust rules. Solid line: pure model uncertainty.
Dash line: pure real time data uncertainty. Dash-dot line: pure shock uncertainty.

and will lead to instability under the Taylor rule.
As we mentioned above, the poor performance of the Taylor rule under the uncertainty

may be caused by our assumption of diffuse priors for the parameters of the true model. It
may turn out that, contrary to our assumption, policy makers’ priors are very informative.
To see how informativeness of the priors affects the optimally robust Taylor-type rule, we do
the following exercise. We start from a very informative prior which puts a lot of weight on
very small values of the model error parameters. The optimally robust Taylor rule for such an
extremely informative prior is essentially the optimal Taylor-type rule under no uncertainty.
Then we decrease the informativeness of priors monotonically. We do this separately for
the pure model, real data, and shock uncertainty parameters. We plot the corresponding
optimally robust Taylor-type rules in Figure 5.

When the informativeness of the prior on the model uncertainty parameters falls, the
optimally robust Taylor-type rules become less active in the inflation response and somewhat
more active in the response to the output gap. This is in accordance with the results
of Onatski and Stock (2002). Contrary to our expectations, when the informativeness of
the prior for the real time data uncertainty falls, the optimally robust rule become more
aggressive both in its response to the output and in its response to inflation. This result
is caused by the fact that we allow a possibility that the real-time data on inflation is
systematically underestimating the actual inflation. In such a case, an active reaction on
both changes in the real-time inflation data and changes in the real-time output gap data
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Figure 6: Worst possible loss for Taylor-type rules under model uncertainty only. Informative prior cali-
brated so that the worst possible loss under the Taylor rule is about 80.

are needed to prevent inflation from permanently going out of control. Finally, the Taylor-
type rules optimally robust against pure shock uncertainty are very close to the optimal
Taylor-type rule under no uncertainty.

The level of the optimal worst possible loss (given on the graph) rises when the infor-
mativeness of priors falls. This happens because the size of the corresponding uncertainty
increases. These levels supply a potentially useful piece of information on the plausibil-
ity of the corresponding prior. In our view, the levels of the worst possible loss less than
about 80 correspond to plausible model uncertainty sets, and therefore to plausible priors
on uncertainty parameters. Our computations show that the loss under no uncertainty for
the benchmark Taylor rule is about 20. Therefore, a loss equal to 80 roughly corresponds
to standard deviations for inflation and the output gap twice as large as those historically
observed. Hence, it is not unreasonable to assume that the worst possible models implying
such losses must be considered seriously by policy makers.

Figure 6 shows a contour plot of the worst possible losses for a broad range of the Taylor-
type rules computed under an informative prior for pure model uncertainty. The level of
informativeness of the prior was calibrated so that the worst possible loss under the Taylor
rule was about 80. The optimally robust rule under such a prior is not very different from
the optimal policy rule under no model uncertainty (denoted by a star at the graph). The
level of robustness deteriorates quickly when one deviates from the optimally robust rule.
We obtained qualitatively similar results, which we do not report here, for the real time data



���������	
���
��������������������������/

Uncertainty Coefficient Coefficient Worst Possible
Channel on Inflation on Output Gap Loss
No uncertainty 2.4 1.5 13.1
Own dynamics of π 2.3 1.6 20.3
Effect of y on π 2.9 2.6 76.0
Own dynamics of y 2.2 2.0 29.6
Effect of r on y 2.1 1.7 146.1
News in the real-time 2.0 1.1 22.1
output gap error
Noise in the real-time 2.3 1.4 16.1
output gap error
News in the real-time 3.4 2.7 46.8
inflation error
Noise in the real-time 2.3 1.5 16.2
inflation error

Table 1: The coefficients of the robust optimal Taylor rules and corresponding worst possible losses for
diffuse priors on different uncertainty channels.

uncertainty and pure shock uncertainty.
So far, we combined uncertainty about the own dynamics of inflation in the Phillips

curve, uncertainty about the dynamic effect of the output gap on inflation, uncertainty about
the own dynamics of the output gap in the IS curve, and uncertainty about the dynamic
effect of the real interest rate on the output gap into what we called the model uncertainty.
Similarly, we combined uncertainty about news and noise in the error of the real-time data
on the output gap and uncertainty about news and noise in the error of the real-time data
on inflation into what we called the real-time data uncertainty.11

To gain insight on the relative importance of the different blocks of model uncertainty
and the real-time data uncertainty, we computed the optimally robust Taylor-type rules
corresponding to a very informative (zero) prior on all channels of uncertainty except one,
such as for example, uncertainty about the own dynamics of inflation in the Phillips curve.
For each channel of uncertainty we consider a relatively uninformative prior so that only this
specific channel matters for the robust decision maker. Our results are reported in Table 1.

We see that the most dangerous block is represented by the uncertainty about the slope
of the IS curve. The worst possible loss for the optimally robust rule corresponding to
such uncertainty is an order of magnitude larger than the optimal loss under no uncertainty
whatsoever. The least dangerous among uncertainty blocks representing model uncertainty
is the uncertainty about the own dynamics of inflation. This result, however, is an artifact of

11Uncertainty about the coefficients li can be thought of as uncertainty about news in the error of the
real-time data on the output gap. It is because the part of the real-time data error described with the help
of li is correlated with the final data on the output gap. Similarly, uncertainty about the coefficients mi can
be thought of as uncertainty about noise in the error of the real-time data on the output gap.
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Uncertainty Coefficient Coefficient Worst Possible
Channel on Inflation on Output Gap Loss
No uncertainty 2.4 1.5 13.1
Own dynamics of π 2.3 1.5 17.2
Effect of y on π 2.2 1.6 20.8
Own dynamics of y 2.2 1.6 20.7
Effect of r on y 1.9 1.0 24.4
News in the real-time 2.1 1.2 17.8
output gap error
Noise in the real-time 2.4 1.4 15.3
output gap error
News in the real-time 2.4 1.8 21.2
inflation error
Noise in the real-time 2.3 1.5 15.4
inflation error

Table 2: The coefficients of the robust optimal Taylor rules and corresponding worst possible losses for
diffuse priors on different uncertainty channels. Business cycle frequencies only.

our maintaining a vertical long-run Phillips curve. Had we allowed for a non-vertical Phillips
curve in the long-run, the importance of uncertainty about the own dynamics of inflation
would have been much higher.

Among all optimally robust rules reported in Table 1, only the rules corresponding to
uncertainty about real-time data on the output gap are less aggressive than the optimal
rule under no uncertainty. In fact, for the uncertainty about the coefficients li (which we
interpret as uncertainty about news in the error of the real-time data on the output gap),
the optimally robust Taylor-type rule has the coefficient on inflation 2, and the coefficient
on the output gap 1.1. This is not far from the Taylor-type rule that best matches the
Fed’s historical behavior (see Rudebusch (2001)). On the contrary, the optimally robust rule
corresponding to the uncertainty about news in the error of the real-time data on inflation
is extremely aggressive. This finding supports our explanation (given above) of the fact that
the combined real-time data uncertainty implies aggressive robust policy.

We can further improve our analysis by focusing on specific frequency bands of the
uncertainty. For example, we may be most interested in the uncertain effects of business
cycle frequency movements in inflation and the output gap on the economy. Table 2 reports
the coefficients of the optimally robust Taylor-type rules for different uncertainty blocks
truncated so that the uncertainty is concentrated at frequencies corresponding to cycles
with periods from 6 quarters to 32 quarters.12 In contrast to Table 1, Table 2 does not
contain very aggressive robust policy rules. Now most of the robust policy rules reported are
less aggressive than the optimal rule under no uncertainty. As before, the most dangerous

12Technically, we multiply thresholds a(ω), b(ω), ...,m(ω) by zero for frequencies outside the range
[2π/32, 2π/6].
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Uncertainty Coefficient Coefficient Worst Possible
Channel on Inflation on Output Gap Loss
No uncertainty 2.4 1.5 13.1
Own dynamics of π 2.5 1.7 18.3
Effect of y on π 3.6 3.0 82.7
Own dynamics of y 2.7 2.4 23.0
Effect of r on y 2.9 3.1 53.4
News in the real-time 2.3 1.6 19.6
output gap error
Noise in the real-time 2.4 1.5 15.4
output gap error
News in the real-time 3.8 2.9 37.8
inflation error
Noise in the real-time 2.4 1.6 15.6
inflation error

Table 3: The coefficients of the robust optimal Taylor rules and corresponding worst possible losses for
diffuse priors on different uncertainty channels. Low frequencies only.

uncertainty is the uncertainty about the slope of the IS curve. Now however, the worst
possible loss corresponding to this uncertainty is only 86% higher than the optimal loss under
no uncertainty. Moreover, the corresponding optimally robust rule is the least aggressive of
all the rules and pretty much consistent with the historical estimates of the Taylor-type rules.

The drastic change of results in Table 2 relative to the results reported in Table 1 is caused
by the fact that the worst possible perturbations of the reference model are concentrated at
very low frequencies. To see this, we computed the optimally robust Taylor rules for low
frequency uncertainty (only cycles with periods longer than 32 quarters were allowed). The
computed rules, reported in Table 3, are very aggressive and the corresponding worst possible
losses are uniformly worse than those reported for business cycle frequencies uncertainty.13

Since the optimally robust rules reported in Table 2 have relatively small worst possible
losses, we might hope that the combined uncertainty (estimated with the diffuse prior on
all uncertainty blocks) truncated to business cycles frequencies would allow decent robust
performance for at least some of the Taylor-type rules. Unfortunately, this is not so. Infinite
worst possible losses result for all policy rules in the plausible range. Finite losses become
possible only when we redefine a(ω), b(ω), . . . ,m(ω) so that the uncertainty is represented by
less than 20% of the draws closest to zero from the posterior distribution. Interestingly, the
optimally robust Taylor-type rule for the uncertainty corresponding to 10% of the “smallest”
draws from the posterior distribution has the coefficient on inflation 1.4 and the coefficient

13The worst possible loss for the uncertainty about effect of y on π is larger than that reported in Table
1. A possible reason for this is that the rational weight approximating the threshold b(ω) multiplied by zero
for ω > 2π/32 is slightly larger (at very low frequencies) than the rational weight approximating b(ω) at all
frequencies.
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on the output gap 0.7 which is surprisingly close to the Taylor (1993) rule.
The interpretation of these results was discussed in the introduction. The worst case

scenarios among all frequencies correspond to very low frequency perturbations in which
inflation grows out of control. The aggressiveness of policy rules essentially varies with how
much weight they put on low frequencies. The optimal rule weights all frequencies equally,
while the robust rule considering model uncertainty at all frequencies pays a lot of attention
to the potentially damaging low frequencies. However the rule robust to business cycle model
uncertainty increases the attention paid to cyclical fluctuations, and so downweights the low
frequencies. The robust rules at business cycle frequencies give a large role to providing
counter-cyclical stabilization, and are thus less aggressive in their responses.

4 Set Membership Estimation

In the previous section we analyzed the uncertainty associated with a given model, the
Rudebusch and Svensson (1999) model. In this section, we analyze how to estimate a nominal
model as well. We want to build in fewer a priori assumptions than in the MEM approach,
to use measures of model uncertainty as a basis for estimation, and to link the choice of
model to our ultimate control objectives. In summary, our goal in this section is to use
time series data to construct (1) a set of models which could have generated the data and
a description of the “size” of this set, (2) a baseline or nominal model which serves as an
estimate of the data generating process, (3) a control policy which is optimal (in some sense)
and reflects the model uncertainty.

4.1 Set Membership and Information Based Complexity

In their formulation of robust control theory, Hansen and Sargent (2002) consider, “a de-
cision maker who regards his model as a good approximation in the sense that he believes
that the data will come from an unknown member of a set of unspecified models near his
approximating model.” However, they are silent on where the “good approximating model,”
which we will refer to as the nominal model, comes from. The same applies to the other
applications of robustness in economics, and to our specifications above. The nominal model
typically follows from theory or is a simple empirical model, and it is typically estimated
using standard statistical methods. However if agents do not trust their models, why should
they trust their statistical procedures, which make explicit or implicit assumptions that the
model is correctly specified? In this section we address the question of how to use observed
data in order to simultaneously identify the nominal model and a class of alternative models.

We use a completely deterministic approach to model identification and estimation, which
is known as set membership (SM) identification theory. These methods provide bounds on
the model set which can be naturally integrated into the choice of a control rule. While the
unified treatment of estimation and control is the main benefit of the approach, an important
drawback is that existing methods in set membership theory are limited to single-input single-
output models. Therefore in this section we focus exclusively on the Phillips curve, and so
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suppose that policymakers directly control the output gap, or that the IS equation linking
interest rates and the output gap is known and not subject to shocks. While this is limiting,
our estimation results are of interest in their own right, and the Phillips curve provides a
simple laboratory for illustrating our results.

The basic concepts of set membership identification theory are derived from information
based complexity (IBC), which is a general theory which considers the solutions of continuous
problems with discrete observations and potentially noisy data (see Traub, Wasilkowski, and
Wozniakowski (1988)). The most widely used formulations consider deterministic problems
with a worst-case criterion. IBC has been used and extended in economics by Rust (1997)
and Rust, Traub, and Wozniakowski (2002) in the context of numerical solutions of dynamic
programming problems. Set membership theory can be viewed as an extension of IBC to
the estimation of dynamic control processes with noisy observations. The general idea of
SM is to consider a set of models that could have generated the data and satisfy a number
of weak a priori restrictions, and then to approximate this relatively complex set by a ball
covering it in the model space. Then the center of the ball becomes the nominal model, and
the radius of the ball provides an upper bound on the size of the set of relevant models. Of
course, the approximation can be done in a number of different ways. Good approximation
algorithms make the approximating ball as small as possible.

Following Milanese and Taragna (1999) and Milanese and Taragna (2001) we now describe
the SM formulation of the estimation problem. As noted above, we focus on the Phillips
curve. We suppose that policymakers control the output gap yt directly in order to influence
inflation πt.

14 Inflation is typically estimated to have a unit root, as in the RS model, and
this has some theoretical support (at least in backward looking models such as ours). Since
below we need to impose the counterparts of stationarity assumptions, we therefore focus on
the changes of inflation xt = ∆πt as the output (and later deduce the implied responses of
levels of inflation).

Let S be the set of all possible causal linear time-invariant systems linking the out-
put gap to changes in inflation. We identify any S ∈ S with its impulse response hS =
{hS

0 , hS
1 , hS

2 , . . .}. We suppose that the unknown true model of the Phillips curve is some
M0 ∈ S. The true model is thus not (necessarily) finitely parameterized, but we suppose
that it is known a priori to belong to a subset of all possible models. Below we identify this
subset by restrictions on the impulse responses of the models. The observed time series are
thus noise-corrupted samples of the true model:

xt =
t∑

s=0

hM0

s yt−s + et, (16)

where et is an additive noise corrupting the exact linear relationship. Here, for simplicity, we
suppose that the economy was in the steady state prior to date 0, so that xs = ys = 0, s < 0.

The classical statistical approach to estimation assumes that the true model M 0 belongs
to a finitely parameterized class of models M(p) where p ∈ R

n, and further that e is a

14In our discussion of policy rules below, we augment the model with an exact IS equation.
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stochastic noise with known distribution. In this case the estimation problem reduces to
determining the parameter vector p. For example, a common specification is an ARX(j, k)
model of the form:

xt =

j∑
s=1

aixt−i +
k∑

j=0

biyt−i + et. (17)

Note that this can be reformulated as in (16), where now the impulse responses are parame-
terized by p = [a1, . . . , as, b0, . . . , bk]

′ ∈ R
j+k+1. Under the standard orthogonality condition

on the errors et, the parameters can be consistently estimated by OLS.
Clearly, under the classical approach, the only model uncertainty is in the value of the

parameters. However it is more likely to be the case that the true model does not belong
to the parametric model class M(p), in which case we also need to consider unmodeled
dynamics represented by an unknown causal linear time-invariant operator ∆. In this case,
(16) can be modeled as:

xt =
t∑

s=0

hM(p)
s yt−s + ∆(yt, yt−1, . . .) + et (18)

In this section we use set membership methods in order to jointly identify a nominal
model and to obtain bounds on the size of the unmodeled dynamics. Our methods here are
completely deterministic and based on a worst-case criterion, just as in our robust control
formulations. Further, the norm of ∆ is a direct input into robust control problems, so the
approach here naturally links robust estimation and control. One goal of this section is to
analyze parametric nominal models such as (17). The best ARX model will be that which
comes with the smallest estimated size of the unmodeled dynamics ∆. However our focus is
on a more general approach which directly estimates the impulse response of the output to
the input. While economists working with VARs typically analyze the impulse responses of
variables to shocks, note that here we deal with the impulse response of the output (changes
in inflation) to the controlled input (the output gap). By estimating the impulse responses
directly we allow for a range of dynamics which may be difficult to capture in an ARX model.

Let us rewrite (16) in the following form:

x = Y hM0

+ e (19)

where x is a vector of the N available observations of the change in inflation, e is a N × 1
vector of the shocks and Y is a matrix with N rows and an infinite number of columns
composed of the observations of the output gap,:

Y =




y0 0 . . . 0 0 . . .
y1 y0 . . . 0 0 . . .
...

...
. . .

...
...

...
yN−1 yN−2 . . . y0 0 . . .


 . (20)
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The key assumptions of set membership theory consist of (1) specifying a compact set H
of models that is presumed to contain the true model M 0 and (2) specifying a bounded set
B for the noise e. These assumptions are relatively minimal, and are necessary in order to
identify the system. Assumption (2) is relatively straightforward, and is commonly known
as “unknown but bounded” noise. We assume that at each date t, et is bounded in absolute
value by a constant ε:

B(ε) =

{
e = [e0, . . . , eN−1]

′ ∈ R
N : ||e||∞ = max

0≤k≤N−1
|ek| < ε

}
.

In particular, we will not make any correlation assumptions on the noise.15 There are different
options for the norm on B, with �1, �2, and �∞ being the most common. The �∞ bound that
we use naturally matches with some specifications of robust control. Concerning assumption
(1), recall that we identify a model with its impulse response. Therefore we assume that the
impulse responses lie in the following infinite dimensional compact set:

H(L, ρ) =
{
h ∈ R

∞ : |ht| ≤ Lρt, ∀t ≥ 0
}

.

We associate with H all models in which the immediate effect of the input on the output is
bounded by L, and the impulse responses decay geometrically with factor ρ.

Combining our assumptions on the noise and the system, we can derive the set of all
models which could have generated the observed data. This fundamental set is known as
the feasible systems set (FSS):

FSS(L, ρ, ε) =
{
S ∈ S : hS ∈ H(L, ρ), ||x − Y hS||∞ ≤ ε

}
. (21)

Describing the FSS is the main task of set membership theory, because under the maintained
assumptions it is guaranteed to contain the true system, and any other model set which
contains the true system also contains the FSS. We next need to define a norm on the space
of systems S, which we take to be the H∞ norm:

||S||∞ = sup
0≤ω≤2π

|S(ω)|,

where S(ω) =
∑∞

t=0 hS
t exp(−iωt), which is the z-transform of hS evaluated at frequency ω.

In this setting, we can view an identification algorithm φ as mapping from the observa-
tions and assumptions into a nominal model M̂ :

φ(y, x, L, ρ, ε) = M̂ ∈ S.

Then the identification error E of the algorithm or the nominal model is defined as the
maximal error over the FSS, given the data:

E(φ) = E(M̂) = sup
S∈FSS

||S − M̂ ||∞.

15If correlation properties of the shocks are known a priori they can be imposed. Similarly, the observations
could be weighted to reflect time-varying noise bounds. See Milanese and Taragna (2001).
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Then we associate with each algorithm an additive model set M̂ consisting of the nominal
model and the unmodeled dynamics:

M̂ =
{

M̂ + ∆ : ||∆||∞ ≤ E(M̂)
}

. (22)

An optimal algorithm φ∗ is one that has the lowest identification error, and it produces as a
nominal model the Chebicheff center M c of the FSS:

φ∗(y, x, L, ρ, ε) = M c = arg inf
M∈S

sup
S∈FSS

||S − M ||∞.

Computing the Chebicheff center is a difficult problem with no known general solution.
In the next section we describe a “nearly optimal” algorithm that is guaranteed to have
identification error at most

√
2 times as large as the theoretical minimum, but the actual

extent of suboptimality is often much lower than the guaranteed bound.
It is worth emphasizing what the estimation procedure delivers. Below we describe an

algorithm which maps observed data into a nominal model M̂ and a model class M̂ as in
(22). This is precisely what is needed for robust control problems, and so SM theory provides
a natural formulation to link estimation and control.

4.2 The Set Membership Estimation Procedure

We now describe in more detail the SM estimation procedure, due to Milanese and Taragna
(2001) (henceforth MT), that we use. As we noted above, the analysis of the FSS is a key
part of the identification algorithm. Recall that the FSS depends on three parameters which
must be specified, L which bounds the immediate impact of the input on the output, ρ which
gives the decay rate of the impulse responses, and ε which bounds the additive noise. While
we cannot “test” these assumptions, we can see if they are violated by the observed data.
For a given specification of (L, ρ, ε), if the FSS is non-empty, then the prior assumptions are
not violated by the data, and we say that the assumptions are validated.

In particular, there are clear tradeoffs in the specifications of the different parameters.
Higher values of L allow for larger responses and higher values of ρ allow for more persistent
responses. In either case, more variation in the impulse responses is attributed to the model,
and therefore both are consistent with lower bounds on the noise ε. For given values of (L, ρ),
MT describe how to find an estimate of the minimum value of ε that is consistent with the
data. This gives rise to a surface ε(L, ρ) which depicts the tradeoffs we just mentioned. In
Figure 7, we plot ε(L, ρ) from our estimation problem as a function of L for different values
of ρ. Here we clearly see that attributing more of the variation in the data to the immediate
responses is consistent with lower values of the noise, but that the noise levels decline at a
decreasing rate. In Figure 8 we plot the other slice, showing ε(L, ρ) as a function of ρ for
different ε. Here again we see that attributing more variation in the data to more persistent
responses is consistent with less noise, although the levels decline fairly slowly until ρ is very
close to 1.
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Figure 7: Minimum validated noise bound ε versus the immediate impact L for different values of the
decay rate ρ. The selected assumptions are (L, ρ, ε) = (0.25, 0.9, 0.33) and (0.325, 0.77, 0.36).
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Figure 8: Minimum validated noise bound ε versus the decay rate ρ for different values of the immediate
impact L. The selected assumptions are (L, ρ, ε) = (0.25, 0.9, 0.33) and (0.325, 0.77, 0.36).
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Figure 9: Impulse responses of different ARX models estimated by OLS. The bounds shown correspond to
(L, ρ) = (0.25, 0.9) (dashed line) and (0.325,0.77) (dotted line).

Based on these minimum error surfaces, we arbitrarily choose two cases (L, ρ) = (0.25, 0.9)
and (0.325, 0.77). The first set of assumed values falls roughly in the middle of the reasonable
range for these parameters, while the second assumes a faster decay of the impulse responses.
These specifications are critical, and we show below that the different assumptions give rather
different results. Given these choices, the minimum values of the noise bound are calculated
to be 0.31 and 0.35, and so we choose the slightly higher values of ε = 0.33 and 0.36. These
configurations of parameters are shown in Figures 7 and 8. To gain some further insight
into the plausibility of these parameter values, we estimate a number of conventional ARX
models using OLS and compare their impulse responses. These are plotted in Figure 9,
which shows the impulse responses of all ARX models up to order 11 in the state and order
4 in the input. The bounds on the impulse responses (±Lρt) are also shown for comparison.
Here we see that our assumptions seem quite reasonable, as all of the impulse responses are
within or just barely reach the bounds. When we estimated ARX models of even higher
order, we found cycles of increasing magnitude for the first several quarters, but these rather
implausible results were driven by poorly estimated parameters. Finally, note that the im-
pulse responses of the ARX models all decay to essentially zero well before the end of the
40 quarters shown. As our estimation procedure will rely on finite-length impulse responses,
Figure 9 suggests that examining the impact of the output gap on changes in inflation over
a ten year horizon should be more than sufficient.

With the a priori assumptions on the model set and the noise determined, we now turn
to identification of the model. Given the specification of the FSS in (21), we can define the
value set V (ω) at a given frequency ω as the set (in the complex plane) of z-transforms of
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Figure 10: Approximations of the value set V (ω) for different frequencies. Shown are the inner and outer
approximations to the upper and lower bounds, and their corresponding centers.

all feasible responses evaluated at ω:

V (ω) =

{
(s1, s2) ∈ R

2 : s =
∞∑

t=0

hS
t exp(−iωt), s1 = Real(s), s2 = Imag(s), S ∈ FSS

}
,

(23)
where Real(·) and Imag(·) respectively denote the real and imaginary parts of a complex
number. The identification procedure is based on approximating the value sets, and then
using these approximations to obtain bounds on the identification error of any algorithm.
The best algorithm in this case, known as the “nearly optimal” algorithm, minimizes the
upper bound on the identification error.

The first step in the approximation is to truncate the impulse responses to a finite length
ν, leading to truncated models denoted Sν . Based on our discussion above we choose ν = 40.
We then define the following approximations of the FSS:

FSS =
{
Sν ∈ S : hSν ∈ H, ||x − Y hSν ||∞ ≤ ε

}
,

FSS =

{
Sν ∈ S : hSν ∈ H, ||x − Y hSν ||∞ ≤ ε +

Lρν

1 − ρ

}
.

MT show that by substituting FSS and FSS instead of the FSS into (23) we obtain lower
and upper bounds on V (ω) respectively. By truncating the impulse responses, the bounds
on the value sets are now described by a finite number of inequalities, and thus are polytopes
in R

2. MT further describe a convenient numerical method for calculating inner and outer
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approximations for the polytopes. We refer to the outer approximation to the upper bound
(which is clearly a further upper bound) on the value set as V (ω).

Figure 10 shows the inner and outer approximations to the upper and lower bounds on
the value sets at two selected frequencies, as well as the Chebicheff centers of the upper
and lower bounds. The figure shows the case of L = 0.25 and ρ = 0.9. First note that the
inner and outer approximations are quite close, so the numerical error is small. However
the upper and lower bounds differ by a noticeable amount, even though their centers are
relatively close. The distance between the bounds is due to the relatively slow decay in the
impulse responses. Further, even the lower bounds on the value sets contain a fair amount
of area at each frequency, suggesting that there is quite a bit of model uncertainty.

From the approximations to the value set, we can determine a bound on the identification
error for any given nominal model M̂ . In particular, we define the following:

E(M̂, ω) = ||V (ω) − M̂(ω)||2 +
Lρν

1 − ρ
, (24)

E(M̂) = sup
0≤ω≤2π

E(M̂, ω).

Then we have the bound E(M̂) ≤ E(M̂). For any nominal model, from (24) we can thus
evaluate the identification error and frequency-shaped uncertainty sets.

Similarly, we can choose a nominal model in order to minimize the bound on the identifi-
cation error. If we restrict ourselves to models of a specific structure, such as ARX models of
a given order n, we can optimize over the parameters to determine the optimal model from
the given class. We analyze some of these suboptimal models below, which provide models
of the form:

M(p∗) =
{
M(p∗) + ∆ : |∆(ω)| ≤ E(M(p∗), ω)

}
(25)

where p∗ = arg minE(M(p)). Note that the frequency-weighted uncertainty sets provide a
tighter bound on the unmodeled dynamics than the constant bound ||∆||∞ ≤ E(M̂) that
was assumed in (22) above. While ARX models are tractable and commonly used, there is no
need to restrict our attention to this case. We achieve a lower identification error by choosing
each of the ν values of the impulse responses hν in order to minimize the identification error.
MT describe a simple linear programming algorithm which produces such a “nearly optimal”
model. The identification error of this algorithm is guaranteed to be within a factor of

√
2

of the theoretical minimum, but in practice is often substantially lower.
Table 4 reports the upper bound on the identification error E(M̂) for different nominal

models under our two sets of assumptions. In particular, we report the error bounds for the
nearly optimal model, the RS model, ARX models estimated by OLS, and optimal ARX
models whose parameters have been chosen to minimize the identification error. For the
optimal ARX and OLS ARX models, we consider ARX(i, j) models for different orders i in
the state, reporting the model with j ≤ i that gives the lowest identification error. For the
OLS case, we also allowed for the possibility of a delay of one period, as in the RS model.
The RS model and OLS ARX models are the same under both sets of assumptions, but their
uncertainty is evaluated differently. (The OLS models shown differ with the assumptions
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Model Upper Bound on Identification Error
L = 0.25, ρ = 0.9 L = 0.325, ρ = 0.77

Frequencies All All Business Cycle
Nearly Optimal 1.515 0.632 0.392
Rudebusch-Svensson 1.755 0.762 0.476
OLS ARX(1) 1.700 0.752 0.472
OLS ARX(2) 1.695 0.757 0.474
OLS ARX(4) 1.694 0.762 0.471
Optimal ARX(1) 1.638 0.719 0.468
Optimal ARX(2) 1.625 0.718 0.468
Optimal ARX(4) 1.621 0.718 0.466

Table 4: Upper bound on the identification error for different models under different assumptions. For the
ARX models, the number in parentheses refers to the number of lags the changes in inflation.

since we pick the best model of a given class.) However the nearly optimal models and
optimal ARX models differ, as they are tuned to the a priori assumptions. Under our
second set of assumptions, the table also reports the results when we restrict our estimation
procedure to business cycle frequencies (which are defined as above).

Notice that, as expected, the nearly optimal model gives the lowest identification error out
of all of the models considered. However the range of variation is not that substantial. Under
both sets of assumptions the RS model has the largest identification error, but that its error
is only 16-20% larger than the nearly optimal model. Further, the ARX models all performed
nearly equally well, with slight improvements possible by optimizing over the parameters,
and only very slight decreases in identification error obtained by increasing the model order.
Restricting attention to business cycle frequencies also helps in reducing identification error,
since (as we show below) the model uncertainty is largest at high frequencies. We defer
further discussion of the business cycle frequency results until the end of the section.

The nearly optimal models that we estimate provide noticeable, if modest, reductions in
identification error relative to the RS model. However they also imply some substantially
different dynamics in the Phillips curve. In Figure 11 we plot the impulse responses of the
nearly optimal model, the RS model, and the optimal ARX(4,4) model, along with our a
priori assumed bounds ±Lρt. Recall that these are the impulse responses of changes in
inflation to the output gap, not the usual impulse responses to shocks. In the RS model,
a one percentage point increase in the output gap leads to an increase in inflation of 0.16
percentage points in the following period, then some slight damped oscillations which decay
to nearly zero around quarter 10. Under our first set of assumptions, the nearly optimal
model shows that a unit increase in the output gap leads to a simultaneous increase in
inflation of 0.05 percentage points, followed by more prolonged and irregular oscillations.
The optimal ARX(4,4) model has a much larger simultaneous increase in inflation than the
other two, and more prolonged oscillations than the RS model. Under the second set of
assumptions, the impulse responses of the models shown have similar qualitative features,
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Figure 11: Impulse responses of different models under different assumptions. Shown are the nearly optimal
model, the Rudebusch-Svensson model, and the optimal 4th order ARX model, along with the bounds given
by ±Lρt.
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Figure 12: Impulse responses of changes in the output gap to levels of inflation for the nearly optimal and
Rudebusch-Svensson models.
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Figure 13: Upper bound on uncertainty as a function of frequency for different models under different as-
sumptions. Shown are the nearly optimal model, the Rudebusch-Svensson model, and the optimal ARX(4,4)
model.

but differ greatly in magnitudes. The nearly optimal model is associated with a larger
immediate effect and a slower decay than the RS model, while the optimal ARX model has
large and persistent oscillations. The implications of the nearly optimal and RS models for
levels of inflation are shown in Figure 12. There we see that under both sets of assumptions
the nearly optimal model associates increases in the output gap with inflation rates that
are much higher than the RS model for a sustained period of time. Under our first set of
assumptions the permanent increase in inflation is lower than in the RS model, while under
the second set the permanent increase is much larger.

In order to gauge how model uncertainty varies at different frequencies, Figure 13 shows
the frequency-dependent uncertainty bounds E(M̂, ω). Under both sets of assumptions, we
show the bounds for the nearly optimal model, the RS model, and the optimal ARX(4,4)
model. Here we see that in all cases, the model uncertainty is smallest at low frequencies,
and peaks at very high frequencies. Moreover, the performance of the nearly optimal model
is substantially better over the middle range of frequencies, where the ARX models perform
worse. Under the first set of assumptions, the optimal ARX model is very close to the RS
model over the whole range, with the improvement in the identification error from the optimal
ARX model only coming at very high frequencies. Under the second set of assumptions, the
RS model outperforms at both relatively low frequencies and very high frequencies.

As in Section 3, we also consider our results when we restrict attention to business cycle
frequencies. For this exercise, we only consider the second set of a priori assumptions. For
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the RS model, this involves simply setting the identification error to zero outside the business
cycle frequency band. For the nearly optimal and optimized ARX models, we now choose the
parameters of the models so that they minimize the identification error over this frequency
region. We have already reported the estimation results in Table 4 above, where we see that
the identification error falls by roughly 40%. While the model uncertainty is greatest at high
frequencies, we saw in Section 3 that the low frequency uncertainty has the largest effect on
losses in the optimization problem. We return to this point in the next section.

4.3 Policy Rules

In this section we use the Phillips curve models identified in the previous section in order to
derive robust optimal Taylor rules. From our estimation results above we have model sets
of the form given in (25), with nonparametric frequency-dependent uncertainty weights. As
in Section 3 above, we approximate these weights with rational functions which are then
used in the optimization procedures. In order to make the control rules interpretable and
consistent with the rest of the paper, we consider simple Taylor-type rules which feedback
on the four quarter average inflation rate and the output gap. As our estimation results
in the previous section only considered the Phillips curve, we augment the model with the
estimated IS equation from the RS model. For most of our results we also zero out the
shocks in the IS equation. This provides the simplest method for obtaining an interest rate
rule from our Phillips curve estimates.

Once we specify the uncertainty weights and the IS equation, the policy optimization
problem is the same as in Section 3 above, but now with different nominal models and
different measurements of uncertainty. Then we tune the coefficients of the Taylor-type policy
rule in order to minimize the upper bound on the worst case quadratic loss. Unfortunately,
under our first set of assumptions the uncertainty that we estimated is simply too large to
be of direct use in this optimization. Because we imposed so few a priori assumptions and
allowed for models with relatively persistent effects, we are left with a very large uncertainty
set. Under these assumptions, we could not find any plausible settings of the Taylor rule
leading to finite worst case loss for any of the estimated models. However our second set of
assumptions implies a much faster decay of the impulse responses, but even in this case only
the nearly optimal model (and none of the others) resulted in finite loss.

A simple, if arbitrary, means of using our estimation results is to scale all of the uncer-
tainty weights down by a constant fraction. For illustration, we computed the robust optimal
Taylor rules under the assumption that the model uncertainty was only 10% as large as the
amount we estimated. For comparison we also computed the results for the different models
under no uncertainty, and for the nearly optimal model under the full uncertainty. Our
results are shown in Table 5, where we give the coefficients of Taylor-type rules for different
nominal models under different assumptions. As in the previous sections, we also report re-
sults when we restrict attention to business cycle frequencies. Note that the losses reported
in this table are not directly comparable to the results in Section 3 because for the most
part we zero out the shocks to the IS curve. To make these comparisons, we also compute
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Assumptions Frequencies Uncertainty Coefficient Coefficient Worst Possible
Scaling on Inflation on Output Gap Loss

Nearly Optimal Models
1 All 0 3.0 2.2 0.57
1 All 10% 3.2 2.6 1.30
2 All 0 2.8 4.2 0.31
2 All 10% 2.8 4.3 0.35
2 All 100% 3.6 4.3 2.87
2 Business 0 2.9 4.0 0.34
2 Business 10% 2.9 4.9 0.36
2 Business 100% 1.6 2.5 0.75

Optimal ARX(4) Models
1 All 0 2.7 3.3 0.30
1 All 10% 2.6 3.6 0.41
2 All 0 2.6 5.1 0.29
2 All 10% 2.7 5.6 0.34
2 Business 0 3.1 1.9 0.60
2 Business 10% 3.0 2.5 0.71

Rudebusch-Svensson Model
1,2 Any 0 3.1 2.2 0.55
1 All 10% 3.4 3.1 1.15
2 All 10% 3.4 3.0 0.85
2 Business 10% 3.0 2.7 0.68

Nearly Optimal Model with IS Curve Shocks
2 All 100% 3.6 5.3 62.19
2 Business 100% 1.7 3.2 17.99

Table 5: The coefficients of the robust optimal Taylor rules and associated worst possible losses for different
models under different assumptions. For Assumptions 1, L = 0.25, ρ = 0.9. For Assumptions 2, L =
0.325, ρ = 0.77.
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results for the nearly optimal model when we reintroduce the IS shocks. Recall that the
nearly optimal and optimal ARX models are tuned to the measurement of uncertainty, so
the models change depending on our assumptions and the frequency range considered.

From Table 5 we can see some general results. First, the a priori assumptions matter
greatly. Under the first set of assumptions the uncertainty is quite large. Even allowing for
10% of the measured uncertainty can more than double losses relative to the no uncertainty
case (under the nearly optimal and RS models) and makes the policy rules (in all cases)
more aggressive in their responses to both the inflation rate and the output gap. Under the
second set of assumptions, the uncertainty is more manageable, and allowing for 10% of the
measured uncertainty leads to more modest increases in losses and very small increases in
aggressiveness. It is notable that only the nearly optimal model, which is designed to mini-
mize model uncertainty can handle the full 100% uncertainty. Allowing for this uncertainty
at all frequencies, we see that the losses increase by a factor of more than 9 and the policy
rule becomes quite aggressive.

Second, uncertainty which enters at different frequencies has different effects. In most
cases, allowing for uncertainty at all frequencies leads to more aggressive policy while re-
stricting attention to business cycle frequencies generally leads to attenuation in policy. This
effect is strongest in the nearly optimal model under the second set of assumptions, allowing
for the full 100% uncertainty. In this case the policy rule is significantly less aggressive than
the no uncertainty case, and has the smallest inflation response coefficient of any of the
specifications we consider. This is consistent with our results above, suggesting that policy
attenuation may be a relatively robust result from considering model uncertainty at business
cycle frequencies.

In summary, we obtain our sharpest results by considering model sets with less persistent
effects and by focusing on business cycle frequency perturbations. It may be possible to
sharpen our results even further by weighting model uncertainty in the estimation stage.
Rather than minimizing model uncertainty across frequencies, our estimation procedure
would then directly consider where uncertainty is the most damaging for policy.

5 Conclusion

In this paper we analyzed the effects of uncertainty on monetary policy decisions. We con-
sidered four different types of uncertainty: uncertainty about the specification of a reference
model, uncertainty about the serial correlation of noise, uncertainty about data quality, and
uncertainty about the choice of the reference model. We argued that different specifications
of uncertainty may have significantly different implications for monetary policy. Further,
uncertainty which enters at different frequencies has substantially different effects. It is
therefore necessary to model the uncertainty itself and try to carefully estimate or calibrate
the uncertainty model.

We introduced two different ways to systematically approach the formulation of uncer-
tainty relevant for policy making. Our first approach is based on the Model Error Modeling
literature. Following this approach, to describe the uncertainty one should first estimate a
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reference model of the economy. Then take the reference model’s errors and model them
using a relatively unrestricted model. Finally, build the model uncertainty set around the
reference model which is consistent with all models for the errors not rejected by formal
statistical procedures.

Our second approach exploits recent advances in the Set Membership identification lit-
erature. We model uncertainty by bounding the absolute values of shocks and requiring the
impulse responses to decay geometrically. The model uncertainty set is represented by the
set of models not falsified by the data and these restrictions. An advantage of the latter
approach over the former is that fewer a priori restrictions on the true model are imposed.
Moreover, it is possible to simultaneously obtain a reference model and uncertainty descrip-
tion using an estimation procedure designed to produce the most compact description of
the uncertainty. However, a relative disadvantage of the Set Membership approach is that
at present it can be applied only to single equation input-output models and may result in
large model uncertainty sets.

In the numerical part of the paper, we used both approaches to build a description of
economic uncertainty with a final goal of designing robust monetary policy rules of Taylor
type. The robust rule was defined as the policy rule that minimizes losses under the worst
possible scenario consistent with the uncertainty description. We found that under both
approaches our description of uncertainty was often too large to produce sensible recommen-
dations for policy makers. Only by imposing a faster rate of decay of the impulse responses
in the SM case were we able to tolerate the measured uncertainty. We ranked different types
of uncertainty according to their potential destructiveness for the Taylor-type policy rules.
The most damaging source of uncertainty for a policy maker is found to be the pure model
uncertainty, that is the uncertainty associated with the specification of the reference model.
The second worst is the real-time data uncertainty. Finally, the most manageable evil is the
pure shock uncertainty.

We also found that although the measured uncertainty is largest at high frequencies, very
low frequency perturbations have the most impact on policy. The aggressiveness we found in
policy rules is driven almost entirely by worst-case scenarios at very low frequencies. Since
our baseline model is essentially a model of short-run fluctuations, we felt that it was extreme
to ask it to accommodate very low frequency perturbations. Therefore we recalculated our
results by restricting attention to business cycle frequencies. In these cases we found that
instead of reacting aggressively, our policy rules were more attenuated than in the absence
of uncertainty. Under some specifications, our results were quite close to the policy rules
that have been estimated based on actual data.

We started by saying that uncertainty is pervasive in economics. We can now add that in
many cases the amount of the uncertainty seems to be unmanageably large. By allowing for
low frequency perturbations, policy must respond very aggressively and policy makers face
large worst-case losses. However if we restrict attention to business cycle frequencies, the
optimally robust policy is less aggressive than the optimal policy under no uncertainty. This
finding supports Brainard’s conservatism principle. More work remains to be done to extend
our baseline models to incorporate more theory, and to incorporate more prior knowledge to
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structure our measures of model uncertainty. This requires even more careful modeling of
model uncertainty.
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