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Abstract

Prediction of macroeconomic aggregates is one of the primary functions of
macroeconometric models, including dynamic factor models, dynamic stochastic
general equilibrium models, and vector autoregressions. This study establishes
methods that improve the predictions of these models, using a representative model
from each class and a canonical 7-variable postwar US data set. It focuses on pre-
diction over the period 1966 through 2011. It measures the quality of prediction
by the probability densities assigned to the actual values of these variables, one
quarter ahead, by the predictive distributions of the models in real time. Two
steps lead to substantial improvement. The �rst is to use full Bayesian predictive
distributions rather than substitute a �plug-in� posterior mode for parameters.
Across models and quarters, this leads to a mean improvement in probability of
50.4%. The second is to use an equally-weighted pool of predictive densities from
the three models, which leads to a mean improvement in probability of 41.9%
over the full Bayesian predictive distributions of the individual models. This im-
provement is much better than that a¤orded by Bayesian model averaging. The
study uses several analytical tools, including pooling, analysis of predictive vari-
ance, and probability integral transform tests, to understand and interpret the
improvements.
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Non-technical summary
Decision-making theory requires that the decision-maker have a coherent probability

distribution over relevant unknown magnitudes. Often these include future events, and
there are alternative approaches (or models) that the decision maker, and the decision-
maker�s sta¤, can take in approaching this task. This requires that the approaches
somehow be brought together in order to arrive at a single distribution.
This work examines some of the ways in which this task can be addressed in the

particular case of macroeconometric models. Central banks, in particular, routinely uti-
lize these models, and increasingly focus on probability distributions for future events
as opposed to point forecasts. In many cases research departments maintain and im-
prove several alternative models and bring forward their di¤erent predictions to a fairly
advanced point in support of monetary policy.
We consider alternative approaches to formulating predictive distributions frommacro-

economic models, and reconciling their implications with full allowance for the fact that
none of the models corresponds �or even comes close �to reality. The study focuses on
three macroeconometric models: a dynamic factor model (DFM), a dynamic stochastic
general equilibrium (DSGE) model, and a vector autoregression (VAR) model. We have
several reasons for taking this approach. First, these are representatives of the three ma-
jor families of macroeconometric models used for prediction in central banks. Second,
these families di¤er in the ways in which they attempt to use general equilibrium theory
as a source of information in formulating the model and conducting statistical inference.
Third, the models take di¤erent approaches in the marshalling of prior information that
is required if useful predictions about complex phenomena are to be constructed from
relatively sparse data. Finally, our recent methodological work on some aspects of this
problem (Geweke and Amisano, 2011) suggests that model combination is most fruit-
ful when the models at hand are dissimilar. This is exactly what happens in portfolio
allocation: diversi�cation is particularly useful when the available assets have di¤erent
properties in di¤erent states of the world.
We concentrate exclusively on the same canonical US data for seven macroeconomic

aggregates used by Smets and Wouters (2007), incorporating subsequent revisions of
their data and extending it through the last quarter of 2011.
Four principal analytical tools are used in our construction and interpretation of

predictive distributions. Two are competing approaches to model combination, Bayesian
model averaging and linear prediction pools. We use analysis of predictive variance
(Geweke and Amisano, 2012b) to understand the gains from using prediction pools
and to interpret the superiority of full Bayesian predictive distributions to predictive
distributions based on point estimates that emerges in this work. The probability integral
transform tests adduce evidence that all of the models studied here are grossly unrealistic
in particular dimensions. We regard this fact both as fundamental in guiding approaches
to model combination for purposes of prediction and in explaining the relatively poor
performance of Bayesian model averaging in the empirical work.
We study two leading methods for prediction, one based on substituting the posterior

mode for the parameter vector and the other using the full Bayesian predictive distri-
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bution. In general �though not entirely without exception �the latter performs much
better than the former. It shows that these di¤erences can be traced to quarters that
turn out to be "outliers," realizations that have relatively low probability as assessed by
any of the models. It shows that the e¤ect arises because parameter uncertainty is an
important source of variance in full predictive distributions that is ignored when only
posterior modes are used. Finally, it shows that the e¤ect is smallest in the DSGE model
and strongest in the VAR model (the one with the most parameters, in which predictive
variance due to parameter uncertainty is also largest).
We also pursue the combination of models for purposes of prediction using linear

combinations. The simple average of predictive distributions turns out to be very e¤ec-
tive and imposes essentially no demands on the econometrician beyond those required
to evaluate the predictive performance of the di¤erent models in the �rst place. An
alternative is an optimal linear pool with weights updated at the end of each quarter
to combine the model predictive densities for the next quarter. This turns out to fall
somewhat short of the equally-weighted pool. This comparison is speci�c to the three
models used and the data employed here, and may well be attributed to the fact that
we use three models that have all held their own in the marketplace of macroeconomic
prediction. Bayesian model averaging falls well short of either pool for the entire period
studied. The explanation is rooted in the fact that Bayesian model averaging conditions
on one of the models being fully correctly speci�ed (though which one is not known a
priori), a condition that is manifesting unrealistic here.
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1 Introduction

Normative decision-making theory, based on expected utility, requires that the decision-
maker have a coherent probability distribution over relevant unknownmagnitudes. Often
these include future events, and often there are alternative approaches that the decision
maker, and the decision-maker�s sta¤, can take in approaching this task. This requires
that the approaches somehow be brought together in order to arrive at a single distri-
bution. While this is a rare�ed depiction of actual decision-making, in the real world
substantial time, e¤ort and resources are devoted to distilling the logical implications of
disparate views of uncertainty that emerge from even the most disinterested and skillful
modelling of the course of future events.
This work examines some of the ways in which this task can be addressed in the par-

ticular case of macroeconometric models that are designed for the purpose of assigning
probabilities to the future course of principal economic aggregates. Central banks, in
particular, routinely utilize these models, and increasingly focus on probability distribu-
tions for future events as opposed to point forecasts. In many cases research departments
maintain and improve several alternative models and bring forward their di¤erent pre-
dictions to a fairly advanced point in support of monetary policy. Reconciling di¤erences
among these models will not soon, if ever, be reduced to one formal procedure. However,
there are well-de�ned steps in this direction.
This work takes up some alternative approaches to formulating predictive distribu-

tions from macroeconomic models, and reconciling their implications with full allowance
for the fact that none of the models corresponds �or even comes close �to reality. In
doing this it brings together a number of analytical tools, with some re�nements beyond
those in the literature, and uses them to sort through di¤erent approaches, understand
their di¤erences, and make practical recommendations for prediction in central banks.
The study focuses on three macroeconometric models: a dynamic factor model

(DFM), a dynamic stochastic general equilibrium (DSGE) model, and a vector au-
toregression (VAR) model. We have several reasons for taking this approach. First,
these are representatives of the three major families of macroeconometric models used
for prediction in central banks. Second, these families di¤er in the ways in which they
attempt to use general equilibrium theory as a source of information in formulating
the model and conducting statistical inference. Third, the models take di¤erent ap-
proaches in the marshalling of prior information that is required if useful predictions
about complex phenomena are to be constructed from relatively sparse data. Finally,
our recent methodological work on some aspects of this problem (Geweke and Amisano,
2011) suggests that model combination is most fruitful when the models at hand are
dissimilar.This is very similar to what is found in empirical optimal porfolio alloca-
tion: diversi�cation works best when di¤erent asset categories have desirable features in
di¤erent states of the world.
Section 2 provides summary detail of the three models. We concentrate exclusively

on the same canonical US data for seven macroeconomic aggregates used by Smets
and Wouters (2007), incorporating subsequent revisions of their data and extending it
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through the last quarter of 2011. The paper studies predictive performance over 184
quarters, 1966 through 2011, breaking this up into three periods of interest described in
Section 2. The work here is all based on probability distributions over a single-period
(one quarter) horizon. Posterior distributions or modes are constructed for each sample,
the �rst ending in 1965:4 and used for prediction of the seven aggregates for 1966:1, and
the last ending in 2011:3 and used for prediction of the seven aggregates for 2011:4. In
that sense the analysis here is �out of sample,�mimicking what a real econometrician
would do in real time. However this study does not attempt to limit attention to the
most recent data revisions available each quarter, nor does it grapple with the question
of which vintage of revised data should be used in assessing the predictions. The most
recent revisions available on February 16, 2012, are used for all purposes through the
paper.
Section 3 summarizes the four principal analytical tools used in our construction and

interpretation of predictive distributions from several models and alternative approaches
to inference. Two are competing approaches to model combination, Bayesian model av-
eraging and linear prediction pools. We use analysis of predictive variance (Geweke and
Amisano, 2012b) to understand the gains from using prediction pools and to interpret
the superiority of full Bayesian predictive distributions to predictive distributions based
on point estimates that emerges in this work. The probability integral transform tests
adduce evidence that all of the models studied here are grossly unrealistic in particular
dimensions. We regard this fact both as fundamental in guiding approaches to model
combination for purposes of prediction and in explaining the relatively poor performance
of Bayesian model averaging in the empirical work.
The balance of the paper is devoted to the formulation, evaluation and understanding

of the predictive distributions that emerge in the three models and in di¤erent combi-
nations of these distributions. Section 4 studies two leading methods for prediction, one
based on substituting the posterior mode for the parameter vector and the other using
the full Bayesian predictive distribution. In general �though not entirely without excep-
tion �the latter performs much better than the former. It shows that these di¤erences
can be traced to quarters that turn out to be �outliers,�realizations that have relatively
low probability as assessed by any of the models. It shows that the e¤ect arises because
parameter uncertainty is an important source of variance in full predictive distributions
that is ignored when only posterior modes are used. Finally, it shows that the e¤ect
is smallest in the DSGE model (the one with the fewest parameters, in which predic-
tive variance due to parameter uncertainty is also smallest) and strongest in the VAR
model (the one with the most parameters, in which predictive variance due to parameter
uncertainty is also largest).
For predictions of several random variables, the case considered here, a theorem

of McConway (1981) shows that the marginal distributions of a pool of multivariate
predictive densities can be identical to the same pool of marginal predictive densities if
and only if the pool is linear in the predictive densities. This motivates the requirement
that the pool be linear and renders the analysis tractable while still leaving open a
number of interesting possibilities. The simple average of predictive distributions turns

5



out to be very e¤ective and imposes essentially no demands on the econometrician
beyond those required to evaluate the predictive performance of the di¤erent models
in the �rst place. An alternative is an optimal linear pool with weights updated at
the end of each quarter to combine the model predictive densities for the next quarter.
This turns out to fall somewhat short of the equally-weighted pool. This comparison is
speci�c to the three models used and the data employed here, and may well be attributed
to the fact that we use three models that have all held their own in the marketplace of
macroeconomic prediction. Bayesian model averaging falls well short of either pool for
the entire period studied. The explanation is rooted in the fact that Bayesian model
averaging conditions on one of the models being fully correctly speci�ed (though which
one is not known a priori), a condition that is manifestly unrealistic here.
The paper concludes with a short quantitative recapitulation of the results.

2 Models and data

The models that we study are a representative selection of forecasting models used in
macroeconomic policy environments. Some models are typically speci�ed in order to in-
corporate features directly drawn from economic theory. Among these models, dynamic
stochastic general equilibrium models have been widely used in many central banks to
produce forecasts, historical decompositions aiming at assessing the relevance of di¤erent
kinds of macroeconomic shocks, and counterfactual analyses. Smets and Wouters (2003,
2007) have shown that these models can be successfully estimated with satisfactory �t
and forecasting properties. Del Negro and Schorfheide (2012) provides interesting dis-
cussion of how DSGE models have fared in the recent past and how external information
can be brought to bear to improve them.
On the other hand, policy-oriented macroeconomic forecasting is often based on time

series models that are more agnostic with respect to general equilibrium theory. Among
these models, the most widely used are the vector autoregression models introduced by
Sims (1980). These models are characterized by a parameter space of high dimension
and typically employ prior distributions with carefully chosen hyperparameters.
It is often said that economic policy requires very large amounts of economic infor-

mation being taken into consideration in order to guide decision making (Bernanke and
Boivin, 2003). Dynamic factor models (Geweke, 1977; Sargent and Sims, 1977; Stock
and Watson, 2002a; Forni, Hallin, Lippi and Reichlin, 2005) are well suited to this task.
In these models the joint behavior of a large number of economic time series is jointly
modelled by specifying that the series are driven by a small set of persistent common
factors and by idiosyncratic shocks.
The strategy of combining di¤erent macroeconomic models with each other and with

information beyond the data, pursued in this paper, is well-established in the macroeco-
nomic prediction literature. One approach, re�ected in the models we use, is to enrich
the statistical structure of disturbances. Sargent (1989) and Ireland (2004) incorporated
measurement errors to avoid stochastic singularity. Canova (2008) added measurement
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errors to relax the implications of a DSGE model for the low frequency properties of
the time series. Smets and Wouters (2007) incorporated serial correlation in shocks to
improve the predictions of DSGE models.
Combining models of the kind used here is another theme in this literature. The �rst

attempt in this direction appears to be Ingram and Whiteman (1994), who linearized
the mapping between DSGE and VAR parameters and then employed the prior for VAR
parameters implied by a normal prior distribution for DSGE model parameters. Del
Negro and Schorfheide (2004) provided a hierarchical prior distribution in which DSGE
model restrictions enter a VAR with noise. Schorfheide et al. (2011) utilized the same
approach using a DFM rather than a VAR model. Waggoner and Zha (2012) build a full
mixture of a DSGE and VAR model. We are not aware of previous work that combines
DSGE, VAR and DFM models simultaneously.
All these considerations lead us to include in our analysis three speci�c models rep-

resentative of these classes, referred to subsequently as DFM, DSGE and VAR, in order
to provide a compact, yet representative, basis to span the model set commonly used in
an economic policy environment. Going forward, in circumstances where the ordering of
the models is arbitrary, we refer to these models in alphabetical order of their acronyms.

2.1 Three models

The observable time series of interest in each of the three models are the log growth
rates of real consumption, investment, income (GDP), and wages; the logarithm of a
per capita weekly hours worked index, in�ation as measured by the growth rate of the
GDP de�ator, and the nominal Federal Funds rate. In the DFM and DSGE models the
�rst series appear in exactly this form. We examine two variants of VAR models: in
the VARD (VAR-di¤erences) model the series also appear in this form; in the VARL
(VAR-levels) the �rst four series appear as log-levels rather than growth rates.

2.1.1 The DFM

In a dynamic factor model a set of time series is driven by a typically small set of
common factors and by idiosyncratic shocks. When the number of series being jointly
considered is high, usually non-parametric estimation is used. In this regard, Stock and
Watson (2002b) and Forni, Hallin, Lippi and Reichlin (2005) show how to use static
and dynamic principal components methods to obtain consistent estimates of the space
spanned by common factors.
In this study, we use a very small dynamic factor model, with a set of n = 12 variables

that includes the 7 series common to all three models. The set of additional variables
is chosen to consider, in a highly stylized way, some economic phenomena which are
neglected by the information set used to estimate the DSGE and VAR models. These
additional variables are stock returns, the term structure slope, the risk premium, the
unemployment rate and the rate of change of the money supply M2.
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With such a compact information set, inference can be entirely parametric and we
employ the model of Stock and Watson (2005) as follows for the n � 1 vector of time
series yt,

yt = �ft + vt, ft = c+
pX
j=1

Ajft�j + �t, vt =
qX
j=1

Bjvt�j + "t,

where ft is a k�1 vector of latent factors and vt is an n�1 vector of mutually independent
idiosyncratic shocks.
The parameters are subject to several restrictions. For identi�cation of factors, 
ij =

0 (j > i) and therefore there are r = nk � k (k � 1) =2 free parameters of the matrix
� that can be collected in an r � 1 vector 
. Because the idiosyncratic shocks are
independent Bj = diag (bj) (j = 1; : : : ; q).
The shocks are Gaussian and independent:�

�t
"t

�
iids N

��
0
0

�
;

�
Ik 0
0 H�1

��
.

The prior distribution has �ve independent components:


 s N (0; 10 � Ir) ;
c s N (0; 10 � In)

vec (Aj)
iids N (0; Ik) (j = 1; : : : ; p) ;

bj
iids N (0; In) (j = 1; : : : ; q) ;

0:4 � hi
iids �2 (4) (i = 1; : : : ; n) .

After preliminary investigations to settle on a satisfactory speci�cation, we chose
k = 3 common factors, VAR dynamics of order p = 2, and idiosyncratic shock dynamics
of order q = 2. The total number of parameters in the model is r+n+pk2+nq+n = 99.
The linear-Gaussian state space nature of the model easily lends itself to Gibbs

sampling with data augmentation. The conditional distributions of (a1; : : : ; ap) and
(b1; : : : ; bq) require a Metropolis-Hastings within Gibbs approach, while the conditional
distributions of 
 and (h1; : : : ; hn) are known analytically; the simulation of the latent
common factors is straightforward. For each of the subsamples being analyzed, we
run 65,000 MCMC iterations, after 15,000 burn-in draws to ensure convergence of the
algorithm. The MCMC output was thinned to 10,000 recorded draws to save on storage
space. We also computed posterior modal values for the parameters by using the Gibbs-
based simulated annealing algorithm proposed by Doucet, Godsill and Robert (2002).

2.1.2 The DSGE model

The dynamic stochastic general equilibrium model we use in this study is exactly the
model described in Smets and Wouters (2007), which details and discusses the model�s
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speci�cation. To brie�y summarize the model�s main characteristics, we just recall
that the model has two sectors, intermediate goods and �nal goods. The �rst sector
produces di¤erentiated goods in a monopolistically competitive setting, while the second
sector is perfectly competitive. Both wages and prices are sticky and the in�nitely-lived
representative consumer has utility characterized by consumption habits. Monetary
policy is speci�ed as a Taylor rule and real variables are all characterized by a common
deterministic growth rate which is estimated with all the other parameters of the model.
The model has seven shocks: an aggregate total factor productivity shock, an investment
speci�c shock, a risk premium shock (which acts as proxy for �nancial disturbances),
wage and price mark-up shocks and �scal and monetary policy shocks.
The model has 39 free parameters which we endow with exactly the same prior

structure as in Smets and Wouters (2007). We carry out Bayesian and posterior mode
estimation by using the linearized solution and, as customary in the applied DSGE liter-
ature (An and Schorfheide, 2007), we use a random walk Metropolis-Hastings algorithm
with candidate tailored using the Hessian of the log posterior computed at its mode. For
each posterior, the mode is found using numerical optimization. The results obtained
are based on 40,000 MCMC draws for each subsample, after 12,000 burn-in iterations.
For each of the subsamples we thin the draws to 10,000.

2.1.3 The VAR model

In the VAR the conditional distribution of the series takes the form of a normal mul-
tivariate regression model in which the covariates consist of an intercept term and the
�rst four lagged values of each series. Thus the model has 29 coe¢ cients in each of
7 equations, making a total of 231 parameters together with the conditional variance
matrix.
For both the di¤erenced (VARD) and levels (VARL) variants of this model we uti-

lize the �Minnesota prior�distribution (Litterman, 1986) in which the coe¢ cients are
Gaussian and independent and their variances are functions of a small number of hy-
perparameters. In the equation for variable i, let ci denote the intercept and aij;h the
coe¢ cient of variable j, lag h. The prior variances of these parameters are

var(aij;h) =

8<:
�
�1 � ��h3 � �ii

�jj

�2
(i = j)�

�1 � �2 � ��h3 � �ii
�jj

�2
(i 6= j)

var(ci) = (�1 � �4)2 ,

with �1 = :2; �2 = :9; �3 = 1; �4 = 1: In this prior distribution E (aij;h) = 0 in for all
coe¢ cients, except that E (aii;1) = 1 if variable i appears in levels. Hence, in the VARL
variant all coe¢ cients pertaining to own �rst lag have mean 1, while in the VARD variant
only hours, in�ation and the short term interest rate have own �rst lag coe¢ cient with
prior variance equal to one and the other four variables have �rst own lag coe¢ cient
prior mean equal to zero.
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As regard the shocks precision matrix H; we speci�ed a Wishart distribution with
parameters � = 9 and S set to match the OLS estimate ofH based on the �rst subsample.
The posterior simulation of the model is based on a straightforward two block Gibbs

algorithm. For each of the subsamples analyzed, we obtained 65,000 draws, the �rst
15,000 of which were discarded and the remaining 50,000 were thinned to produce 10,000
retained draws.
The posterior mode estimates were obtained by analytically marginalizing the joint

posterior distribution with respect to the coe¢ cients aij;h and ci. The resulting marginal
posterior of H was numerically optimized yielding a modal value for H. With the modal
value of H in hand, it is immediate to �nd the modal values of the coe¢ cients aij;h and
ci, because their conditional posterior distribution is Gaussian with known moments.

2.2 Data and periods of interest

The series we use for the DSGE and VAR models are exactly those described in Smets
and Wouters (2007), extended through 2011 and incorporating the latest available revi-
sions. The DFM utilizes �ve additional series: stock returns, de�ned as the log di¤er-
ences of quarterly averages of S&P 500 Composite index; the aggregate civilian unem-
ployment rate; the term premium, measured as the di¤erence between the yields on ten
year and three month US Treasury bond; the risk premium, measured as the di¤erence
between the Risk premium: BAA and AAA corporate bond spread; and the growth rate
in the money supply M2.
The relevant series were all obtained from the Federal Reserve Bank of St. Louis Data

Repository (FRED 1) and from the Bureau Labor of Statistics website2, in their version
available on February, 16th 2012, when the series were downloaded. Series mnemonics
and data sources are summarized in Table 1.
The time series plots in Figure 1 convey well known features of the seven series of

interest. In particular, real variables seem to be a¤ected by severe negative shocks in
contractions, while the behavior of nominal variables is dominated by secular forces,
especially the build-up to the great in�ation of the 1970s and the early 1980s and the
subsequent drastic disin�ation. All series show large abrupt movements at the outset of
the Great Financial Crisis, from 2007:4 onwards.
Another well known feature of these series is the fact that they secular trends in

second moments. This phenomenon is known as the great moderation (McDonnell and
Perez-Quiros, 2000; Stock and Watson, 2004). Figure 2 provides standard deviations
computed on rolling windows of 60 quarters and it shows that the movements in volatility
have been gradual and substantial. With the exception of hours worked and real wage
growth, all other series are a¤ected by a gradual decrease of volatility taking place from
the mid 1980s onwards which was sharply reversed with the onset of the global �nancial
crisis.

1http://research.stlouisfed.org/fred2/.

2http://www.bls.gov/.
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Figure 1: Series being predicted
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Figure 2: Standard deviations of the series being predicted. Computations based on
rolling window of 60 observations
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Table 1: Data sources
Series Mnemonics De�nition Source
AAA Moody�s Seasoned AAA Corporate Bond Yield FRED
BBB Moody�s Seasoned BAA Corporate Bond Yield FRED
CE16OV Civilian Employment FRED
FEDFUNDS E¤ective Federal Funds Rate FRED
FPI Fixed Private Investment FRED
GDPC96 Real Gross Domestic Product, 3 Decimal FRED
GDPDEF Gross Domestic Product: Implicit Price De�ator FRED
GS10 10-Year Treasury Constant Maturity Rate FRED
LNS10000000 Civilian noninstutitional population BLS
M2SL M2 stock FRED(*)
PCEC Personal Consumption Expenditures FRED
PRS85006023 Nonfarm Business Sector: Average Weekly Hours BLS
PRS85006103 Nonfarm Business Hourly Compensation BLS
SP500C SP500 composite index FRED
UNRATE Civilian unemployment rate FRED
(*) Prior to 1959 the M2 series comes from Balke and Gordon (1986)

This phenomenon can be alternatively described by computing standard deviations
based on sub-samples, as we do in Table 2.
The analysis that follows distinguishes among four periods:

1. Initial: 1951:1-1965:4, used to initialize the estimation of each of the models and
not used for forecasting evaluation;

2. Pre moderation: 1966:1 - 1984:4, characterized by higher volatility;

3. Great moderation: 1985:1-2007:4, characterized by smaller volatility;

4. Post moderation: 2008:1-2011:4, characterized by a return to higher volatility.

Throughout the paper t indexes quarters, with t = 1 being the �rst quarter predicted,
1966:1, and t = T = 184 being the last quarter predicted, 2011:4. We denote the 7� 1
vector of random variables of interest Yt, and their realized values (the data) yt. Each
model speci�es conditional densities p (Yt j Y1:t�1; �i; Ai) and a prior density p (�i j Ai),
where Ai denotes the speci�cation of model i together with the data in the initial period
and �i is the parameter vector in model Ai. In the interest of non over-burdening
the reader with pedantry, this abuses the notation somewhat: the conditioning data
set always goes back to 1951:1; and, in the DFM, the conditioning data includes the
histories of the �ve additional series from 1951:1 through quarter t� 1.
In particular, note that all series volatilities dropped during the great moderation and

for many series volatility returned to pre moderation levels (or higher) post moderation.
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Table 2: Standard deviations of observed data computed on di¤erent subsamples
Period

Pre Great Post
Series Initial moderation moderation moderation
Consumption growth 0.94 0.82 0.51 1.04
Investment growth 2.82 2.72 1.63 3.88

Income growth 1.16 1.09 0.53 0.97
Hours worked index 2.18 3.06 1.95 3.10

In�ation 0.52 0.58 0.24 0.26
Wage growth 0.56 0.49 0.67 0.75
Fed funds rate 0.23 0.89 0.54 0.24

Notice also that the federal funds rate was characterized by very low volatility in the
years before 1970 and that the most recent years have reduced its volatility to the pre-
1970s levels. This re�ects the very expansive monetary policy pursued by the Fed as a
consequence of the Great Financial Crisis.

3 Analytical methods

This work uses an eclectic methodology in order to understand the performance of
macroeconometric models in prediction and to examine how an econometrician might
best use the models at her disposal to form predictive distributions. With the exception
of one technique discussed in Section 3.4, all of these methods appear in the literature.
The treatment here is short, intended to establish notation and indicate precisely the
tools used in Sections 4 and 5.

3.1 Bayesian model averaging

Bayesian model averaging is implied by the M-closed perspective of fully subjective
Bayesian inference (Bernardo and Smith, 1993, Section 6.1.2). This approach conditions
on a set of models A1; : : : ; An, each with a parameter vector �i 2 �i, a prior density
p (�i j Ai), and a speci�cation of conditional densities p (Yt j Y1:t�1; �i; Ai) for a common
set of observable vectors Y1:T = fY1; : : : ; YTg. (Upper case Y denotes random vectors
and lower case y the corresponding realizations.) Model prior probabilities p (Ai), withPn

i=1 p (Ai) = 1, place models, parameter vectors and observables in a common proba-
bility space.
The laws of probability then imply the sequence of one-step-ahead predictive densities

p (Yt j y1:t�1) =
nX
i=1

p (Ai j y1:t�1) � p (Yt j y1:t�1; Ai) .
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The model predictive densities

p (Yt j y1:t�1; Ai) =
Z
�i

p (Yt j y1:t�1; �i; Ai) p (�i j y1:t�1; Ai) d�i (t = 1; : : : ; T ) (1)

are accessed as described in Section 2.1. The conditional probabilities p (Ai j y1:t�1), also
known as Bayesian model averaging weights, are

p (Ai j y1:t�1) / p (Ai) p (y1:t�1 j Ai) = p (Ai)
t�1Y
s=1

p (ys j y1:s�1; Ai) . (2)

The marginal likelihoods p (ys j y1:s�1; Ai) are evaluated as described in Section 2.1.
Given weak regularity conditions, including the existence of a true data generating

process p (Yt j Y1:t�1; D),

t�1
tX
s=1

log p (Ys j Y1:s�1; Ai)
a:s:�! LSi

as detailed in Geweke and Amisano (2011). So long as j = argmaxi (LSi) is unique
p (Aj j Y1:t�1)

a:s:�! 1, and p (Ai j Y1:t�1)
a:s:�! 0 for i 6= j. If in fact Ak = D for some

k 2 f1; : : : :ng then j = k.

3.2 Pooling

Suppose that R1; : : : ; Rn are prediction rules, each specifying a sequence of predictive
densities p (Yt; y1:t�1; Ri) (t = 1; : : : ; T ). A prediction rule Ri could coincide with a se-
quence of model predictive densities (1), but it might also be any sequence of legitimate
predictive densities that depends only on information actually available at t � 1. For
example it could be the sequence

p
�
Yt j y1:t�1;b�i (t� 1) ; Ai� (t = 1; : : : ; T ) (3)

where b�i (t� 1) = argmax
�i
p (�i j Ai) p (y1:t�1 j �i; Ai) , (4)

the posterior mode.
A linear pool of n prediction rules R1; : : : ; Rn is the sequence of predictive densities

p (Yt; y1:t�1;wt�1; R1; : : : ; Rn) =

nX
i=1

wt�1;ip (Yt; y1:t�1; Ri) (t = 1; : : : ; T ) (5)

wherewt�1 is a point in the n-dimensional unit simplex, i.e. wt�1;i � 0 (i = 1; : : : ; n) andPn
i=1wt�1;i = 1. The subscript t � 1 indicates the requirement that wt�1 also depends
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only on information actually available at t�1. Arguably the simplest pool is the equally
weighted pool (EWP) that speci�es wt�1;i = n�1 (t = 1; : : : ; T ; i = 1; : : : ; n).
Any prediction ruleR formed at time t can be evaluated using the log scoring criterion

tX
s=1

log p (ys; y1:s�1; R) . (6)

There are several compelling arguments for this rule, summarized in Geweke and Amisano
(2011). Note that if p (yt j y1:t�1; R) = p (yt j y1:t�1; Ai) (t = 1; : : : ; T ), the sequence of
predictive likelihoods for model Ai, then the criterion (6) is the log marginal likelihood
log p (y1:t j Ai). An optimal prediction pool selects w�

t�1 to maximize this criterion:

w�
t�1 = argmax

wt�1

t�1X
s=1

log

"
nX
i=1

wt�1;ip (ys; y1:s�1; Ri)

#
.

subject to the constraint that wt�1 be in the n-dimensional unit simplex. This is a
simple convex programming problem.
This process generates a sequence of weight vectors and corresponding pools, each of

which we refer to subsequently as a real-time optimal pool (RTOP). Because wt�1 and
p (yt�1; y1:t�2; Ri) involve only information actually available at the end of period t� 1,
this mimics a procedure that could have been carried out by an econometrician in real
time. In order to summarize the behavior of pools over various time intervals, we shall
sometimes refer to static optimal pools of the form

w�
r:t = argmax

w

tX
s=r

log

"
nX
i=1

wip (ys; y1:s�1; Ri)

#
(7)

for particular choices of r and t. Note that w�
1:t�1 = w�

t�1. The log score of a static
optimal pool cannot be less (and is generally greater) than the log score of the corre-
sponding equally weighted pool. The log score of a RTOP can be less than that of the
corresponding equally weighted pool.

3.3 Analysis of predictive variance

The variance implicit in a Bayesian predictive distribution can be decomposed into
several sources as described in Geweke and Amisano (2012b). The approach proves
useful here in understanding the relative performance of two popular approaches to
forming predictive densities in macroeconometric models, the fully Bayesian predictive
distribution with the sequence of densities (1) and the posterior mode or �plug in�
approach (3). Due to the particular characteristics of predictive distributions in the
three models, discussed in Section 2.1, the technical steps di¤er from those in Geweke
and Amisano (2012b) and are somewhat simpler.
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Consider �rst the predictive distributions for a single model Ai. By the law of total
probability

var (Yt j y1:t�1; Ai) = E�i f[var(Yt j y1:t�1; �i; Ai)] j y1:t�1; Aig
+var�i f[E(Yt j y1:t�1; �i; Ai)] j y1:t�1; Aig . (8)

Following Geweke and Amisano (2012b), the �rst term on the right side of (8) is the
intrinsic variance of the predictive distribution, so named because it is the variance in
the predictive distribution that would exist even if �i were known, averaged over the
distribution of �i speci�ed in the relevant posterior distribution. The second term on
the right side of (8) is the extrinsic variance of the predictive distribution, so named
because it is the variance in the conditional mean that arises from the fact that �i is not
degenerate in the relevant posterior distribution.
As detailed in Section 2.1, the distribution

Yt j (y1:t�1; �i; Ai) s N [� (y1:t�1; �i) ; V (y1:t�1; �i)]

in all of the macroeconometric models considered in this work. The vector � (y1:t�1; �i)
and matrix V (y1:t�1; �i) have closed form expressions that are easy to evaluate. Corre-
sponding to the vectors �(m)t�1;i (m = 1; : : : ;M) from the posterior simulator for model Ai
and the sample y1:t�1, let

�
(m)
t�1;i = �

�
y1:t�1; �

(m)
t�1;i

�
; V

(m)
t�1;i = V

�
y1:t�1; �

(m)
t�1;i

�
(t = 1; : : : ; T � 1; i = 1; : : : ; n;m = 1; : : : ;M), and

�t�1;i =M
�1

MX
m=1

�
(m)
t�1;i (t = 1; : : : ; T � 1; i = 1; : : : ; n) .

Then the relevant numerical approximations in (8) are

E�i f[var (Yt j y1:t�1; �i)] j y1:t�1; Aig uM�1
MX
m=1

V
(m)
t�1;i = V It�1;i (9)

for intrinsic variance and

var�i f[E (Yt j y1:t�1; �i)] j y1:t�1; Aig

u (M � 1)�1
MX
m�1

h
�
(m)
t�1;i � �t�1;i

i h
�
(m)
t�1;i � �t�1;i

i0
= V Et�1;i (10)

for extrinsic variance (t = 1; : : : ; T � 1; i = 1; : : : ; n). The approximation of total vari-
ance is the sum of (9) and (10). Then the fraction of the variance that is extrinsic may
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be computed in the obvious way for each component of Yt, using the diagonal elements
of V It�1;i andV Eti�1;i.
For any pool with weight vector w this analysis can be extended to remove the con-

ditioning on model Ai. From Geweke and Amisano (2012b, Proposition 4) the governing
law of total probability is

var (Yt j y1:t�1) = EAi;�i f[var (Yt j y1:t�1; �i; Ai)] j y1:t�1g
+EAi hvar�i f[E (Yt j y1:t�1; �i)] j y1:t�1; Aig j y1:t�1i
+varAi [E (Yt+1 j y1:t�1; Ai) jy1:t�1] : (11)

The �rst term on the right side of (11) is the intrinsic variance, and its numerical approx-
imation is

Pn
i=1wiV

int
t�1;i. The second term is the within-model extrinsic variance, and its

numerical approximation is
Pn

i=1wiV
ext
t�1;i. The last term is the between-model extrinsic

variance, and its numerical approximation is
Pn

i=1wi
�
�it�1 � �t�1

� �
�it�1 � �t�1

�0
where

�t�1 =
Pn

i=1wi�
i
t�1.

In the applications in this work the original posterior simulation samples of size
10,000 are thinned to simulation samples of sizeM = 1; 000, which becomes the relevant
simulation sample for the approximations just described.

3.4 Model evaluation with probability integral transforms

A data generating process D for a vector time series Yt implies conditional cumulative
distribution functions for any element Yjt of Yt,

Fj (x;Y1:t�1;D) = P (Yjt � x j Y1:t�1; D) :

Rosenblatt (1952) showed that the sequence �jt = Fj (Yjt;Y1:t�1; D) is independent, each
�jt uniformly distributed on the unit interval. Smith (1985) noted that the sequence
zjt = �

�1 (�jt), where � is the cumulative distribution function of the standard normal
distribution, is i.i.d. N (0; 1); see also Berkowitz (2001).
These properties are the foundations of probability integral transform (PIT) tests

of correct model speci�cation. For the stated distributions of f�jtg and fzjtg to be
literally true a model speci�cation would have to be dogmatic and correct for �i. The
usual criterion of correct speci�cation of an econometric model is weaker: that for some
value of �i, the distribution of Y1:T coincides with D. The actual size of test statistics
for the properties of f�jtg or fzjtg is likely to be larger than the nominal size when
the model is correctly speci�ed up to unknown parameters. More relevant is the degree
to which di¤erent models depart from the ideal of the PIT, and the particular ways in
which this happens for di¤erent models; Geweke and Amisano (2010) illustrates this use
of PIT tests.
The i.i.d. normal distribution of fzjtg under the hypothesis of correct speci�cation

is analytically more tractable than that of f�itg and the tests here proceed from fzitg.
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These series are by-products of the computation of variance decompositions described
in the previous section. Corresponding to each parameter vector �(m)t�1;i compute

�
(m)
jt;i = �

�1
��
yjt � �(m)j;t�1;i

�
�
�
v
(m)
jj;t�1;i

��1=2�
(m = 1; : : : ;M)

and then M�1PM
m=1 �

(m)
j;t�1;i u �jt;iand � (�jt;i) u zjti. For each model Ai and each

constituent time series j the ideal of correct model speci�cation implies

zjti (t = 1; : : : ; T )
iids N (0; 1) .

This hypothesis can be tested in a great many ways, each with its own power against
alternatives. This work uses PIT tests developed in Geweke and Amisano (2012c). That
paper provides further detail and derives the properties of the tests, which are simply
stated here. Moment PIT tests are based on the distribution of a Q�1 vectormji of raw
moments, each element of the form T�1

P
zqjt;i where q is a particular positive integer

unique to that element. The asymptotic (in T ) distribution is itself Gaussian with known
parameters implied by the moments of the univariate standard normal distribution,
which leads to a single test statistic with an asymptotic (in T ) �2 (Q) distribution.
Autocorrelation PIT tests are based on the distribution of an L � 1 vector rji of cross
products, each element of the form (T � `)�1

PT�`
t=1 zjti � zj;t�`;i where ` is a particular

positive integer unique to that element. This vector is also asymptotically normal with
known parameters and leads to a test statistic with an asymptotic �2 (L) distribution.
The sum of the two test statistics has an asymptotic �2 (Q+ L) distribution.
Under the hypothesis of correct model speci�cation the exact distribution of the test

statistics depends only on T , and it is easy to access this distribution by simulating zt
iids

N (0; 1) (t = 1; : : : ; T ). The work here uses 105 simulations, which reliably establishes
p-values of PIT test statistics in the �rst three decimal places; moreover, except for very
small p-values it turns out that the asymptotic approximations are quite good.

4 Model comparison and evaluation

This work concentrates on models designed for prediction, and speci�cally for the pur-
pose of assigning probabilities to future events. This section addresses some details of
this task using models individually, before taking up the matter of model combination in
Section 5. It employs the log scoring rule for model comparison and, using this criterion,
shows that full Bayesian inference is decisively superior to a �plug in�rule that substi-
tutes the posterior mode b�i for the parameter vector �i (Section 4.1). It uses similar
methods to contrast levels and �rst-di¤erence formulations of VAR models (Section 4.2).
Such model comparison exercises do not address the calibration of models �the de-

gree to which subjective probability distributions for events ex ante are consistent with
observed frequencies ex post. PIT tests of the models (Section 4.3) show that predic-
tive probabilities and realized frequencies are inconsistent in varying degrees, depending
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mainly on the events in question and to a lesser degree on the particular model. This
�nding sets the stage for taking up model combination methods that do not invoke the
assumption that one of the models is true in Section 5.

4.1 Bayesian predictive distributions and prediction using pos-
terior modes

A formal Bayesian approach with a single model Ai uses the predictive distribution (1)
of Yt conditional on y1:t�1. Given the the output �

(m)
i s p (�i j y1:t�1; Ai) (m = 1; : : : ;M)

of a posterior simulator, this can always be done by means of subsequent simulations

Y
(m;s)
t s p

�
Yt j y1:t�1; �(m)i

�
(m = 1; : : : ;M ; s = 1; : : : ; S) . (12)

Since the latter density is that of a multivariate normal distribution in the cases of the
models studied in this work, methods like those discussed in Sections 3.3 and 3.4 can
often be used to avoid the supplementary simulations (12). We refer to this approach
subsequently in this section as �full Bayes�(FB).
A common alternative approach is to �nd the posterior mode b�i (t� 1) (4) and then

replace �i with b�i (t� 1) in the conditional predictive density p (Yt j y1:t�1; �i) yielding
(3). The same substitution in (12) can be used to access the resulting distribution
of Yt; again, in the case of the models used in this work, the subsequent simulation
can be avoided. We refer to this approach subsequently in this section as �posterior
mode�(PM). Whereas FB accounts for uncertainty about the parameter vector in �i,
PM ignores it completely.
We emphasize that both approaches are fully out-of-sample procedures and can there-

fore be implemented in real time.
Table 3 compares these approaches using the log scoring rule. The entries in the

third column of the table are
P
p (yt j y1:t�1; Ai) and those in the fourth column areP

p
�
yt j y1:t�1;b�i (t� 1) ; Ai�, the range of summation being indicated by the �rst col-

umn and the model Ai by the second column in each case. The �fth column provides the
di¤erence in these log scores. Each row of the table also provides the weight on the full
Bayes prediction rule (sixth column) and the posterior mode prediction rule (seventh
column) in a static optimal pool of the two models. The right-most column indicates
the log score of the optimal pool.
For the entire period full Bayes prediction clearly outperforms posterior mode (�fth

column). The e¤ect is smallest for the DSGE model, with successive increases for the
DFM, VARD and VARL models. The same rankings occur in the pre moderation
and post moderation periods, though the e¤ects are substantially greater before than
after the great moderation. The rankings do not characterize the great moderation,
where di¤erences are much smaller even though the great moderation period is slightly
longer than the pre-moderation period. The optimal pools are consistent with these
comparisons.
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Table 3: Comparison of full Bayesian and posterior mode predictive distributions
Log scores Pool weights Pool

Period Model FB PM FB-PM FB PM Log score
Entire DFM -1083.86 -1135.10 51.24 0.816 0.184 -1082.40
Entire DSGE -1097.03 -1128.23 31.20 1.000 0.000 -1097.03
Entire VARL -1146.87 -1306.41 159.54 0.955 0.045 -1146.78
Entire VARD -1122.43 -1265.46 143.03 1.000 0.000 -1122.43

Pre moderation DFM -540.66 -581.09 40.44 0.805 0.195 -539.58
Pre moderation DSGE -559.74 -593.05 33.31 1.000 0.000 -559.74
Pre moderation VARL -599.67 -753.80 154.135 1.000 0.000 -599.67
Pre moderation VARD -609.05 -752.78 143.73 1.000 0.000 -609.05
Great moderation DFM -437.97 -443.57 5.60 0.750 0.250 -437.25
Great moderation DSGE -436.55 -433.88 -2.66 0.110 0.890 -433.73
Great moderation VARL -430.71 -424.40 -6.301 0.130 0.870 -418.38
Great moderation VARD -410.87 -402.98 -7.89 0.133 0.867 -399.36
Post moderation DFM -105.23 -110.44 5.20 1.000 0.000 -105.23
Post moderation DSGE -100.75 -101.30 0.44 1.000 0.000 -100.75
Post moderation VARL -116.49 -128.21 11.71 1.000 0.000 -116.49
Post moderation VARD -102.50 -109.69 7.19 1.000 0.000 -102.50

Table 4: Extrinsic fraction of total predictive variance
Series DFM DSGE VARL VARD

Consumption growth 0.0522 0.0257 0.1289 0.0847
Investment growth 0.0557 0.0240 0.1343 0.0866

Income growth 0.0627 0.0200 0.1247 0.0839
Hours worked index 0.0549 0.0202 0.1324 0.0942

In�ation 0.0480 0.0355 0.1354 0.0979
Wage growth 0.0583 0.0311 0.1415 0.0933
Fed funds rate 0.0435 0.0193 0.1386 0.1038
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One would expect the advantage of full Bayes prediction to be greater in those mod-
els in which parameter uncertainty in the posterior distribution is greater. To make
this somewhat more precise, one might expect the advantage to increase along with the
number of parameters. That is the case here: the DSGE has 39 parameters, the DFM
99 parameters, and the VARD and VARL models 233 parameters. A more speci�c char-
acterization can be given in terms of the decomposition of predictive variance described
in Section 3.3: the advantage of FB over PM prediction should be greater to the extent
that extrinsic predictive variance is relatively more important in a model.
This is in fact con�rmed by the variance components of the predictive distributions,

approximated as described in Section 3.3. Table 4 provides the fraction of predictive
variance that is extrinsic, averaged over the T = 184 predictive distributions. Without
exception across the seven series, the ordering is the same as that of the di¤erence in
log scores between FB and PM shown in Table 3 for the entire time period. More
detailed consideration of the variance decomposition, not presented here, reinforces this
interpretation: with all the models, the extrinsic fraction of predictive variance is lower
in the great moderation period than it is either pre moderation or post moderation.

Figure 3: Each panel has one point for each of 184 quarters. The dotted line shows the
least squares �t.

The full Bayes predictive distributions and posterior mode predictive distributions
have no systematic di¤erences in location, but the former are systematically more
dispersed than the latter. The intrinsic component of the predictive distribution is
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Gaussian. The extrinsic component is not, but appears to have broadly similar decay
with increasing distance from the mode. The arithmetic of the Gaussian distribution
then implies that as realizations yt are farther from the center of the predictive distribu-
tion, the corresponding log score under the posterior mode predictive distribution decays
more swiftly than it does under the full Bayes predictive distribution.
Figure 3 illustrates this e¤ect in the four models. It is exhibited most sharply in the

DSGE model and least sharply in the DFM model, but is clearly present in all four.
Consistent with the evidence in Tables 3 and 4, the trade-o¤ is strongest for the VAR
models and weakest for the DSGE model. Of course, other e¤ects can be at work as well:
for instance, recent behavior (yt�s, s small) that is historically atypical should magnify
the e¤ect of extrinsic uncertainty. However there is little evidence that such e¤ects
are of any quantitative importance. The main feature working to the disadvantage of
predictive distributions based on posterior modes is their inability to account for regular
but more extreme realizations of Yt relative to full Bayes predictive distributions.

4.2 VAR models

To this point we have systematically considered two variants of VAR models, VARL
and VARD. There are important di¤erences in these models, chie�y with respect to
long-run dynamics: VARL permits stationarity, random walk (with drift) and explosive
behavior, whereas VARD imposes a unit root (with drift) thus precluding stationarity
but permitting explosive behavior. These di¤erences account for the greater number of
parameters in the VARL variants. One might conjecture that the greater importance
of extrinsic variance in the VARL predictive distributions originates in the variability
in long-run dynamics. This is reinforced by the logical implausibility of both stationary
and explosive behavior, though it seems unlikely that this would matter much in one-
quarter-ahead predictive distributions.
Because of the potential simplicity a¤orded in going forward with three models rather

than four in the model combination work in Section 5, we compare the VARL and VARD
variants using the log predictive scoring criterion. Table 5 compares VARL and VARD
in the same way that Table 3 compared FB and PM variants of the models.
For the entire period VARD performs substantially better than VARL. A formal

Bayes factor would place the odds in favor of VARD over VARL at over 1010 : 1,
but this conclusion assumes that one or the other of the two models coincides with
the data generating process. The static optimal pool for the entire period strongly
contradicts this assumption, achieving an improvement of almost 20 points over VARD.
This appears to be driven mainly by the pre moderation and great moderation periods.
Comparisons based on PM are less interesting due to their inferiority relative to FB, but
the implications for comparison of VARD and VARL are similar.
Going forward we exclude VARL from further analysis, and in particular undertake

the model combination work in Section 5 using the three models DFM, DSGE and
VARD. We have also undertaken these exercises using all four models. Model pools
achieve higher log scores, but the improvements are slight compared with the dramatic
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Table 5: Comparison of VARL and VARD predictive distributions
Log scores Pool weights Pool

Period Method VARL VARD VARL-VARD VARL VARD Log score
Entire FB -1146.87 -1122.43 -24.45 0.380 0.620 -1102.74
Entire PM -1306.41 -1265.46 -40.95 0.379 0.621 -1229.98

Pre moderation FB -599.67 -609.05 9.39 0.596 0.404 -584.60
Pre moderation PM -753.80 -752.78 -1.02 0.497 0.503 -717.17
Great moderation FB -430.71 -410.87 -19.84 0.124 0.876 -409.77
Great moderation PM -424.40 -402.98 -21.42 0.216 0.784 -399.34
Post moderation FB -116.49 -102.50 -13.99 0.000 1.000 -102.50
Post moderation PM -128.21 -109.69 -18.52 0.000 1.000 -109.69

improvement in the three-model pools over any of the individual models. If VARL
substitutes for VARD in these exercises, then the three-model pools have modestly
poorer performance. These results are consistent with the view that the predictive
distributions of the VARL and VARD models are much closer to each other than they
are to the predictive distributions of any of the other models.

4.3 Model performance

PIT tests of speci�cation clearly indicate that each model is misspeci�ed. The vari-
ant of the portmanteau test (Section 3.4 and Geweke and Amisano (2012c)) in this
work uses the �rst four moments (q = 1; 2; 3; 4) and the �rst four lagged cross-products
(` = 1; 2; 3; 4) of the normalized PIT zjt (t = 1; : : : ; 184) for each constituent j = 1; : : : ; 7.
For each constituent the asymptotic distribution of the moment and autocorrelation test
statistics are each �2 (4), and the asymptotic distribution of the joint test statistic is
�2 (8).
Table 6 reports the results of these tests using FB predictive distributions of the

models indicated in the second column for each of the seven time series indicated in
the �rst column. The p-values are based on the simulation sample of size 105 described
in Section 3.4. For reported values above 0.02 these values are close to those of the
asymptotic distributions; for smaller values they are generally larger.
Overall the tests indicate strong evidence against correct model speci�cation. Varia-

tion in the results is driven more by variation across constituent series than be variation
across models, with the Fed funds rate being by far the most problematic. Among the
other series, the right column indicates that the strongest evidence against correct spec-
i�cation arises for consumption growth, the weakest for the income growth and hours
worked index.
The evidence against correct speci�cation arises more strongly in the failure to cal-

ibrate probabilities correctly on average (the moments test) than in any tendency for
realizations to persist on one side of the conditional distribution rather than the other
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Table 6: Portmanteu probability integral transform tests
Moments Autocorrelation Joint

Series Model Test p-value Test p-value Test p-value
Consumption growth DFM 104.50 0.0000 3.88 0.4077 108.37 0.0001

DSGE 32.00 0.0018 17.27 0.0040 49.28 0.0007
VARD 54.24 0.0003 0.72 0.9441 54.96 0.0005

Investment growth DFM 39.19 0.0009 12.68 0.0188 51.87 0.0005
DSGE 10.90 0.0325 11.43 0.0289 22.34 0.0155
VARD 11.44 0.0285 10.09 0.0459 21.53 0.0178

Income growth DFM 17.03 0.0104 5.46 0.2358 22.49 0.0151
DSGE 21.49 0.0057 2.74 0.5837 24.23 0.0113
VARD 14.81 0.0144 4.96 0.2830 19.77 0.0355

Hours worked index DFM 5.58 0.1566 9.37 0.0591 14.96 0.0651
DSGE 14.33 0.0157 14.40 0.0107 28.73 0.0060
VARD 3.82 0.3111 4.47 0.3340 8.29 0.3225

In�ation DFM 18.89 0.0080 5.17 0.2629 24.06 0.0116
DSGE 34.45 0.0014 55.61 0.0000 90.06 0.0001
VARD 12.95 0.0205 6.53 0.1630 19.48 0.0257

Wage growth DFM 29.08 0.0026 4.62 0.3177 33.70 0.0033
DSGE 24.93 0.0039 0.75 0.9397 25.68 0.0092
VARD 21.92 0.0054 5.50 0.2342 27.41 0.0070

Fed funds rate DFM 937.17 0.0000 41.51 0.0000 978.69 0.0000
DSGE 1619.18 0.0000 37.54 0.0000 1656.72 0.0000
VARD 4130.84 0.0000 47.76 0.0000 4178.60 0.0000
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(the autocorrelation test). Variations on these tests that use di¤erent combinations of
moments (not reported in the table) reveal that the high values of the moments test
statistics are driven by higher order moments (especially q = 4) than by lower order
moments (e.g. q = 1). This indicates that the di¢ culty resides in failure of subjective
predictive distributions to be well-calibrated for outlying realizations, which occur more
frequently than these distributions imply, rather than in any failure of these distributions
to be systematically shifted relative to actual behavior.
In contrast autocorrelation in realizations relative to subjective probability distribu-

tions is substantially closer to the PIT paradigm, the Fed funds rate excluded. Indeed,
there is little evidence to suggest serial correlation in the probability integral transforms
for the DFM and VARD models. The evidence is somewhat stronger for DSGE but this
is mild relative to the moments test.

Figure 4: Centered 99% predictive credible intervals (top and bottom lines) and actual
series values (middle lines). Actual values outside the intervals have circles.

Figure 4 illustrates some aspects of the behavior of predictive distributions relative to
realizations. In each case the upper and lower bands indicate the centered 99% interval
for the series in question from the predictive density p (Yjt j y1:t�1; Ai). The line in the
center indicates the corresponding realized values yjt. Whenever the realized values are
outside the 99% predictive interval the violation is indicated by a circle.
For the consumption growth series (top row of panels) the models all poorly anticipate

the sharp drops in the two main recessions of the pre moderation period and in the
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global �nancial crisis in the post moderation period. Credible intervals for the DFM are
somewhat shorter than those for the DSGE and VARD models, leading to larger third
and fourth sample moments for z1t in the DFM. This produces the relatively high value
of the moment test statistic in the �rst line of Table 6.
For the in�ation series (middle row of panels) all three models are better calibrated.

In the case of the DFM and VARD models all realizations are within the 99% credible
interval. During the pre moderation period actual in�ation tends to be persistently to
the right side of the predictive distribution. This is especially evident in the DSGE
model, which for this series has the largest of all the autocorrelation test statistics in
Table 6.
The last row of panels of Figure 4 indicates that the extremely poor calibration of

the models for the Fed funds rate conveyed by the last three rows of Table 6 originates
in the pre moderation period. The models poorly anticipate the many large upward
and downward movements in this period. This is not surprising, given the much more
moderate behavior of interest rates prior to 1970 (Table 1), which drives the posterior
distribution going into this period. The posterior distributions adjust to this more
volatile behavior: note how much wider the predictive intervals are during and after the
great moderation than they are in the late 1960�s and early 1970�s. For the Fed funds
rate predictive intervals for the VARD remain somewhat narrower than those for the
DFM and DSGE models in the 1970 - 1983 period, leading to larger PIT test statistics
in Table 6.
The condition that one of the models includes the data generating process as a special

case underlies formal Bayesian inference from multiple models, and is central to many
non-Bayesian procedures as well. Any credibility that this condition might have had
is refuted by the PIT tests. This suggests that procedures for prediction using several
models that do not invoke this condition might produce superior predictions.

5 Model combination

Given several alternative models constructed for the purpose of assigning probabilities
to future events, it is natural to investigate whether it is possible to combine models to
accomplish this goal more e¤ectively than would be possible with any one model alone.
The linear pool (5) has been the dominant approach in the literature in combining
predictive densities. Wallis (2011) reviews these approaches, including the log pools of
Genest and Zidek (1986). When future events are functions of several random variables,
as is the case here with Yt, we �nd the result of McConway (1981) compelling: that paper
shows that, under mild regularity conditions, the combination must be of the form (5)
if the process of combination is to commute with any possible marginalization of the
distributions involved. After summarizing the behavior of some selected static pools
(Section 5.1) we turn to three kinds of linear pools: those with equal weights (Section
5.2), pools arising from Bayesian model averaging (Section 5.3), and real time optimal
pools (Section 5.4). All of the analysis in this section is based on full Bayesian predictive
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distributions of the DFM, DSGE and VARD models.

5.1 Pools

Let f (wr:t) denote the summation on the right side of (7). This function conveys the
performance of any possible linear pool with constant weights over the period from r to
t, using the log scoring rule to assess performance. Figure 5 depicts the function for the
four periods of interest. The domain is the three-dimensional unit simplex, depicted in
two dimensions in the usual way. In all four panels the horizontal axis corresponds to
the weight on the DFM model and the vertical axis to the weight on the DSGE model.
Thus the value of f (wr:t) at the right vertex corresponds to the log score of the DFM
model over the indicated period, at the upper vertex to the DSGE model, and at the
origin to the VARD model. These values are indicated in Table 7.
The contours in each panel indicate [argmaxwrt f (wr:t)]�f (wr:t), and are chosen to

show increments of 0:025 (t� r + 1), corresponding to increments of 0.025 in the arith-
metic mean of log [

Pn
i=1wip(ys j ys�1; Ai] over the period in question. An increase from

one contour to the next corresponds to an increase in the proportion exp (0:025) � 1,
or about 2.5%, in the geometric mean of the probability density assigned to observed
events. This makes the contours directly comparable across periods of unequal length.
Notice that the log score f (wr:t) is much less sensitive to changes in wr:t near its maxi-
mum, indicated by the asterisk in each panel of Figure 5, than it is to changes close to
the vertices of the simplex.

5.2 Equally weighted pools

An equally weighted pool, wi = 1=3 (i = 1; 2; 3), is arguably the simplest pool that could
be created. These pools are indicated by the � in each panel of Figure 5. It is evident
that such pools improve markedly on the log score of any given model. The log score
of the equally weighted pool is also close to the maximum log score indicated by the
asterisk. But this maximum log score is unattainable in real time, because the weight
vector achieving this maximum is chosen on the basis of all the data for the period in
question. This suggests that an equally weighted pool is likely to be a strong competitor
for prediction using all three models. Subsequent analysis in this section veri�es this
conjecture.
Table 7 quanti�es the gains from pooling with equal weights that is evident in Figure

5. The second column is the log score of the equally weighted pool, indicated by the
� in each panel of Figure 5. The entries in columns 3 through 5 are the log scores of
the FB variants of the indicated models (see Table 3) minus the EWP log scores. Each
of the last three columns measures the value of the corresponding model in an equally
weighted pool as the di¤erence between the log score of the equally weighted pool with
all three models and an equally weighted pool composed of the other two models. For
example, the entry 32.10 for DFM for the whole period is the di¤erence between the log
score of the equally weighted pool (X in the upper left panel of Figure 5), and the log
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Figure 5: Log scores of pools as a function of the weight vector wr:t in (7), normalized
so that the maximum value is the same. Distance between contours is 0:025 (t� r + 1).

score of the equally weighted pool of the DSGE and VARD models (the square on the
vertical axis in this panel). Clearly value measured in this way need not be positive, but
it generally is. The DFM has the greatest value in every period except post moderation.
The equally weighted pool also provides a useful benchmark in understanding the

gains from pooling and the reason that the DFM is the most valuable contributor to the
pool. The left panels of Figure 6 show the model log predictive scores in all 184 quarters.
These log scores tend to move together: the correlation coe¢ cient is over 0.9 for all pairs
and is driven in large part by extreme events that are assigned low predictive probability
by all three models. The right panels of the �gure show the di¤erences between model
log scores and the log score of the equally weighted pool. This di¤erence cannot exceed
log (3), which is the highest value on the vertical axis in these panels. There is no lower
bound.
The vertical lines in Figure 6 denote the twelve quarters in which the mean predictive

log score, taken over the three models, was the lowest. In these quarters di¤erences in
model log scores also tend to be greatest, because these three models di¤er substantially
in the probabilities they assign to rare events. This can be detected in the left column of
panels but is more evident in the right column where the equally weighted pool is used
as a common benchmark. In many of these quarters, one of the models substantially
outperforms the other two, leading to a log score relative to the equally weighted pool
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Table 7: Log scores of models (with full Bayesian inference) and the equally weighted
pool

Log score Relative to EWP Model values
Period EWP DFM DSGE VARD DFM DSGE VARD

Entire -1036.72 -47.13 -60.31 -85.70 32.10 12.08 12.58
Pre moderation -526.06 -14.59 -33.68 -82.99 27.68 10.44 -0.67
Great moderation -411.36 -26.61 -25.19 0.49 4.31 -1.45 12.93
Post moderation -99.30 -5.93 -1.45 -3.20 0.11 3.09 0.32

that is close to log 3 for that model, but low values for the other two models. The DFM
enjoys this distinction most often. The only notable exception is the �nal quarter of
2008, where the DSGE outperformed the DFM and VARD.
The DFM contributes the pool in a manner similar to a �nancial asset that moves

against the market. For the di¤erences shown in the right column of panels in Figure 6,
the DFM is negatively correlated with both the DSGE (-0.501) and the VARD (-0.313),
whereas the DSGE and VARD are positively correlated (0.268). This property of the
DFM, together with its higher log score, accounts for the fact that the DFM has the
highest value in the equally weighted pool (Table 7).
This analysis tends to obscure the asymmetric behavior of the three models with

respect to outlying events that is evident in Figure 6. Figure 7 highlights the di¤erent
properties of the models in this dimension. It cumulates di¤erences between the log
predictive scores of the models and the log predictive score of the equally weighted pool,
over quarters ordered by the mean of the log predictive score over models, lowest to
highest. Thus the twelve quarters highlighted in Figure 6 correspond to the values 1
through 12 on the horizontal axis. For quarter 184 the values are those in the �rst row
of entries in Table 6, columns 3 through 5. Through the 50 quarters with the lowest
predictive log scores, the DFM dominates: its log score is very nearly that of the equally
weighted pool. These same quarters account all of the de�ciency in the predictive log
score of the VARD; indeed it more than accounts for this di¤erence, because the value
of the VARD performs best, relative to the EWP, in those quarters in which model log
scores are highest. This is also consistent with the strong performance of the VARD
relative to the other two models during the great moderation (Figure 5).
The improvement in predictive log score achieved in moving from any one model to

the equally weighted pool is comparable to the gain in moving from posterior mode to
full Bayes predictive densities in each model. For the DFM, DSGE and VARD models
the average gain from the former was 64.39 (minus the average of relative log scores for
the entire period in Table 7) and the average gain from the latter was 75.15 (�fth column
of Table 3 for the entire period). Analysis of predictive variance for the pool with equal
weights (11) leads to the same conclusion, as indicated in Table 8.
This table reports two di¤erent approximations of the decomposition. The �rst

one (columns 2 through 4) uses the expression
Pn

i=1wi
�
�it�1 � �t�1

� �
�it�1 � �t�1

�0
to
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Figure 6: Model predictive log scores by quarter, absolutely (left panels) and relative
to the equally weighted pool (right panels). Vertical lines indicate the 12 quarters for
which the mean values taken over the model predictive log scores are the smallest.

approximate varAi [E (Yt+1 j Ai)] just as described in Section 3.3, using the equal weights
wi = 1=3 (i = 1; 2; 3). This preserves the identity (11) when the estimates are substituted
for the population values. But this also leads to the usual downward bias in the variance
estimate, which is severe here because there are only three di¤erent models. Columns
5 through 7 use wi = 1=2 (i = 1; 2; 3), which alleviates the bias. The �within�extrinsic
variance is that which drove the better performance of FB log scores relative to PM log
scores, as argued in Section 4.1; the �between�extrinsic variance is due to di¤erences
between models, which drives the improvement in the log predictive scores of the equally
weighted pool relative to the individual models. The order of magnitude is similar,
supporting the �nding that pooling and the use of full Bayes predictive distributions are
of comparable importance in improving predictions using several models.

5.3 Bayesian model averaging

As discussed in Section 3.1, di¤erences between models in log scores for full Bayes
prediction are closely related to Bayes factors and posterior odds ratios. Precisely,

LSr:t (Ai) =
tX
s=r

log p (ys j y1:s�1; Ai)
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Figure 7: Quarters are ranked by the average log predictive score of the models from
lowest to highest (horizontal axis). Then the cumulative di¤erences in model log scores
and the log scores of the equally weighted pool (vertical axis) are shown.

is the marginal likelihood in a model for which the prior distribution has density kernel

p (�i) p (y1:r�1 j �i; Ai) (13)

and the likelihood function is
tY
s=r

p (ys j y1:s�1; Ai). Then exp [LSr:t (Ai)� LSr:t (Aj)] is

the Bayes factor in favor of model Ai over model Aj, and if the prior odds ratio is 1 : 1
then this is also the posterior odds ratio. Thus the di¤erences in log scores across models
in columns 2 through 4 of Table 2.1 imply large Bayes factors in many cases; e.g. for
the entire period the Bayes factor in favor of the DFM model over the DSGE model
is 5:24� 105, and therefore via (2) Bayesian model averaging (BMA) weights are often
very close to 0 or 1.
Table 9 provides these weights for the periods studied. In each case, the formal

interpretation is that there are three models, each with a prior distribution of the form
(13) where s = 1 corresponds to 1951:1 and t is the last quarter before the start of the
period indicated. At the start of each period the BMA weights are 1/3, and then as
predictive likelihoods are accumulated through the period weights move toward 0 or 1
until at the end of the period they have the values shown in the table.
The �End of period� entries show the BMA weights at the end of the period and
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Table 8: Decomposition of extrinsic variance in the equally weighted pool
Fraction of variance extrinsic

Adding-up preserved Unbiasedness preserved
Series Within Between Total Within Between Total
Consumption growth 0.0507 0.0690 0.1197 0.0491 0.0982 0.1473
Investment growth 0.0523 0.0494 0.1017 0.0508 0.0707 0.1216
Income growth 0.0496 0.0460 0.0956 0.0483 0.0662 0.1145
Hours worked index 0.0489 0.0385 0.0874 0.0477 0.0551 0.1027
In�ation 0.0583 0.0645 0.1228 0.0563 0.0913 0.1476
Wage growth 0.0598 0.0419 0.1017 0.0585 0.0606 0.1191
Fed funds rate 0.0469 0.0695 0.1164 0.0448 0.0950 0.1398

Table 9: Bayesian model averaging weights and log scores
End of period Average over period

Model BMA weights Log Model BMA weights Log
Period DFM DSGE VARD score DFM DSGE VARD score

Entire 1.0000 0.0000 0.0000 -1083.86 0.9111 0.0656 0.0234 -1084.96
Pre moderation 1.0000 0.0000 0.0000 -540.66 0.7849 0.1585 0.0566 -541.75

Great moderation 0.0000 0.0000 1.0000 -410.87 0.0055 0.0406 0.9540 -411.97
Post moderation 0.0095 0.8446 0.1459 -99.93 0.0910 0.7472 0.1618 -101.68

the log score that results when these weights are applied to the model log scores for the
entire period. This is the log score for BMA most commonly reported, but it cannot
be achieved in real time. The �Average over period�entries are based on BMA weights
updated each observation in the period, with average weights shown. The log score is
�gured by applying the BMA weights updated through period t � 1 to the predictive
densities for period t, which are then evaluated at yt.
The DFM strongly dominates the entire period and pre moderation; VARD strongly

dominates the great moderation; and DSGE weakly dominates the post moderation. In
Figure 5 the BMA weights are indicated by the triangle in each panel, and the �fth
column of Table 9 shows the corresponding log predictive scores for the Bayesian model
averages. They are all lower than the log scores of the equally weighted pool
Suppose a Bayesian econometrician maintained the hypothesis underlying BMA: that

the data generating process is exactly p (Yt j Y1:t�1; ��i ; Ai) for some one of the models Ai
and some particular value ��i of that model�s parameter vector, though which model and
which speci�c values of the parameter vector are unknown. Were this econometrician
to have started to work at the end of 1965, using (13) as the kernel of her prior density,
then her BMA weights would have evolved as indicated in the upper panel of Figure
8.3 The sum of the BMA weights on the DFM and DSGE models drops below 0.1 in

3This exercise is consistent with the values in Table 9 for the entire period and the pre moderation
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Figure 8: Bayesian model averaging and optimal pool weights updated each quarter

the last quarter of 1971, and below 0.01 the following quarter where it remains for the
rest of the entire period. The largest sum of BMA weights on the DFM and DSGE
models in the rest of the entire period is 0.00345 in the �rst quarter of 1998, and for
most quarters beyond 1972:1 the sum is less than 10�6. This is all consistent with the
typical asymptotic distribution of BMA weights outlined in Section 3.1.

5.4 Optimal pooling

Optimal pools can be constructed for any period as described in Section 3.2, leading
to the weight vector w�

r:t (7), and the corresponding log score for the optimal pool is
then given by the summation on the right side of (7) evaluated at the optimal weights.
These weights, and related statistics, provide useful summaries of the interaction between
models in prediction over particular time periods. However, they could not have been
used in real time during the period in question, and any pooling procedure that could be
used would lead to a lower log score for the resulting pool. The optimal weights could
be used going forward, for example in quarter t+ 1.
In each panel of Figure 5 the asterisk indicates the weights for the optimal pool

formed this way, and columns 2 through 4 of Table 10 provide their values. The value

period, because these exercises all start in 1966:1. It is not consistent with the values in Table 9 for
the great moderation and post moderation periods because those calculations begin at the start of the
respective periods.
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Table 10: Static optimal pools (end of period)
Optimal pool weights Log Model values

Period DFM DSGE VARD score DFM DSGE VARD
Entire 0.318 0.304 0.378 -1036.58 32.22 12.02 12.65

Pre moderation 0.480 0.387 0.133 -523.66 28.14 10.02 1.65
Great moderation 0.114 0.000 0.886 -402.62 7.70 0.00 21.21
Post moderation 0.210 0.492 0.298 -99.11 0.29 3.01 0.43

Table 11: Real-time optimal pools (average over period)
Optimal pool weights Log Model values

Period DFM DSGE VARD score DFM DSGE VARD
Entire 0.378 0.354 0.268 -1043.41 29.224 8.71 10.15

Pre moderation 0.395 0.385 0.220 -529.97 25.41 6.94 -0.63
Great moderation 0.048 0.009 0.943 -407.58 3.84 -0.24 18.75
Post moderation 0.284 0.521 0.194 -104.73 -3.24 0.24 0.22

of the function at this point is given in column 5 of Table 10. The optimal pool could
also be formed eliminating one of the three models. In each panel of Figure 5 the circles
indicate the weights in these pools. For example, if the DFM were eliminated from the
pool for the entire period then the DSGE model in the resulting optimal pool would
have the weight indicated by the circle on the vertical axis of that panel. The log score
function at this point is necessarily smaller than the log score function in the three-model
optimal pool. It is reasonable to refer to the decrease as the value of the DFM in this
pool. The last three columns of Table 10 provide the values of each of the models in
each of the periods studied: this is the decrease in the value of the function between the
corresponding asterisk in circle in the relevant panel of Figure 5.
For the entire period the DFM is the most valuable model, with a contribution

to log score more than 2.5 times as great as the contributions of DSGE and VARD,
which are in turn similar. This is due primarily to the fact that the log score of the
DFM performs substantially better than do the DSGE and VARD models in quarters
where realizations yt were the least probable under any model, as discussed in Section
5.2. These contributions are concentrated in the pre moderation period, driving the
lower values of DFM in the other two periods. Consistent with our �ndings using other
methods of analysis, the VARD is especially valuable during the great moderation. The
DSGE dominates the contribution post moderation, although e¤ects in that period are
muted by its short duration.
For practical prediction the relevant question is how well optimal pools perform in

real time. The natural way for an econometrician to use optimal pools is to compute the
optimal weights based on yr:t�1 and then attach those weights to the predictive densities
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p (Yt j y1:t�1; Ai). Speci�cally, the econometrician �nds

w�
r:t�1 = argmax

w

t�1X
s=r

log

"
nX
i=1

wip (ys j yr:s; Ai)
#

and then uses the predictive density
nX
i=1

w�r:t�1;ip (Yt j yr:t�1; Ai)

for quarter t.
Table 11 reports some aspects of the results of this procedure. For period indicated

in the table, r is the �rst quarter in the period. For each period the average weights
in columns 2 through 4 are the elements of (u� r + 1)�1

Pu
t=rw

�
rt, where u is the last

quarter in the period. The log score in column 5 is the predictive likelihood for this
real-time optimal pool,

uX
t=r

log

"
nX
i=1

w�r;t�1;ip (yt j yr:t�1; Ai)
#
, (14)

with w�r;r�1;i = n�1. Thus the log scores in this column are directly comparable with
those for individual models, equally weighted pools, and Bayesian model averaging: all
report results an econometrician could have achieved in real time.
Log scores of real-time optimal pools are, algorithmically, lower than those of static

optimal pools for the same period. Comparisons of the corresponding entries of Tables
10 and 11 show that the decrease is between 5 and 7 points in each period. More
signi�cantly, the equally weighted pool (Table 9) outperforms the real-time optimal
pool in three of the four periods examined. Only in the great moderation, in which the
three models display the greatest asymmetry (Figure 5), does the equally weighted pool
fall short of the real-time optimal pool.
The last three columns of Table 11 provide real-time model values, parallel to the

values for static optimization in Table 10. For each model the real-time optimal pool-
ing exercise is repeated eliminating that model but retaining the others. The value is
the di¤erence between the original log predictive likelihood (14) and the corresponding
expression with the model eliminated. Such model values are not algorithmically non-
negative, as is the case in the static optimal pool. All model values for all periods are
lower in the real-time optimal pool (Table 11) than in the corresponding static opti-
mal pool (Table 10), and the two models with the lowest values in the latter pool have
negative values here.

6 Conclusion

The principal conclusion of this work is that predictions are best formed from several
macroeconomic models by pooling the Bayesian predictive distributions of the models.
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Table 12: Real-time log scores of models and pools, entire period
Model log scores Model pooling

Model PM FB FB-PM Method Log score
DFM -1135.10 -1083.86 51.24 BMA -1084.96
DSGE -1128.23 -1097.03 31.20 RTOP -1043.41
VARD -1265.46 -1122.43 143.03 EWP -1036.72
Mean -1176.26 -1101.11 75.15

This is supported by multiple analyses that contribute to the understanding of this
�nding. We think it likely that similar �ndings would also emerge in other data sets,
though the postwar US data is unique in extent, continuity and quality; and also with
other families of models, either existing or yet to be formulated, of similar intellectual
and empirical pedigree.
The procedures used here emulate what could have been done in �real time� by

adding the most recent quarter�s data and updating posterior distributions accordingly
at the end of each quarter for the purposes of predicting the following quarter. The
results do not attempt to use the data releases actually at hand each quarter; we doubt
that this extension would overturn the main �ndings in this work. Table 12 summarizes
the main quantitative results for the entire postwar US data set.
The �rst part of the principal conclusion is that gains to using full Bayesian (FB)

predictive distributions, as opposed to a �plug in�distribution that replaces the random
parameter vector with its value at the posterior mode (PM), are substantial. In Table 12
the posterior mode predictive log score, averaged across the three models, falls short of
the average for the full Bayes predictive distributions by 75.15 points. To appreciate this
di¤erence, it implies that the full Bayes predictive distributions increase the geometric
average of the probabilities p (yt j y1:t�1; Ai) of the observed Yt over the period 1966 -
2011 by 100 [exp (75:15=184)� 1]% = 50:4% on average over the three models.
The key de�ciency with the posterior mode is its failure to account for parameter

uncertainty, and therefore extends to any �plug in�procedure. This is consistent with
econometric theory. The analysis in Section 4 linked the results to this theory from
a number of analytical perspectives that shed further light on the circumstances that
magnify the di¤erences. Parameter uncertainty is increasingly important moving from
the DSGE, to the DFM, to the VARD model, gauged either by the crude measure of
number of parameters or the more precise measure of the extrinsic fraction of predictive
variance, and this accounts for the di¤erences in models in column 4 of Table 12.This
interpretation implies that these di¤erences will be most manifest when realizations
in the quarter predicted are at the lowest ranges of the predictive densities, and this
implication is borne out in the analysis. In the context of a single model, the full
Bayesian predictive distribution is not only formally more correct, it is essential to
competitive prediction.
The second part of the principal conclusion is that further gains, of a similar order

37



of magnitude, can be accomplished by pooling. This study examined three variants
of pooling: Bayesian model averaging (BMA), real-time optimal pooling (RTOP) and
equally weighted pools (EWP), all using full Bayesian predictive distributions. Bayesian
model averaging puts essentially the entire weight on the DFM model, consistent with
the common �nding that in large data sets the model with the highest marginal likelihood
dominates the other models. The resulting BMA log score is closer to the mean of the
individual models using FB than it is to either the RTOP or EWP log scores. Both
the RTOP and the EWP improve substantially on the mean log scores of the models
using FB, by 57.70 and 64.39 points, respectively. This is comparable with the gains
made in moving from PM to FB in the individual models. For the EWP the increase
in the geometric average of the probabilities of the observed Yt over the period 1966-
2011 is 41:9%. Combining this with the previous improvement with FB over PM, the
EWP increases the geometric average of these probabilities by 113:5% relative to PM
predictive distributions in a single model.
BMA conditions on one of the models actually being the data generating process,

and the log score of one model often dominates that of the others even in samples of
modest size. Taken together, this virtually eliminates any posterior uncertainty about
which model is �true.� But the condition is not credible. Di¤erent models capture
di¤erent aspects of reality. Their log scores move together, but each bears a distinct
relationship to the average log score. In these circumstances there are gains to using
a linear combination of predictive densities even when it is quite clear which is highest
on average. The situation is analogous (though the math is not identical) to portfolio
diversi�cation, in which major gains accrue even when diversi�cation is not optimal.
If there is in fact a true data generating process underlying reality, then given stan-

dard side conditions there is a limiting value for the weight vector in the optimal pool
(Geweke and Amisano, 2011). If the econometrician knew that vector then eventually
the pool using that vector would outperform the EWP in log score. Of course the vector
is really unknown, and the RTOP uses a weight vector that changes from quarter to
quarter and thereby introduces noise, especially when there are few observations. Log
scores of pools are not very sensitive to weights until some of the weights approach zero,
and consequently it can be the case that �xed reasonable weights outperform an e¤ort
to re-optimize the pool each quarter.
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