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Abstract

This paper develops a multi-way analysis of variance for non-Gaussian multivariate
distributions and provides a practical simulation algorithm to estimate the
corresponding components of variance. It specifically addresses variance in
Bayesian predictive distributions, showing that it may be decomposed into the sum of
extrinsic variance, arising from posterior uncertainty about parameters, and intrinsic
variance, which would exist even if parameters were known. Depending on the
application at hand, further decomposition of extrinsic or intrinsic variance

(or both) may be useful. The paper shows how to produce simulation-consistent
estimates of all of these components, and the method demands little additional effort
or computing time beyond that already invested in the posterior simulator. It
illustrates the methods using a dynamic stochastic general equilibrium model of the
US economy, both before and during the global financial crisis.

Keywords: analysis of variance, Bayesian inference, predictive distributions,
posterior simulation

JEL codes: C11, C53
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Non-technical summary

This paper follows the Bayesian paradigm of integrating information. In this context it
provides a new decomposition of variance for predictive distributions. Here are some
of the questions that motivate this research.

1. In prediction and other decision-making situations, econometricians sometimes
replace parameters with point estimates rather than using full posterior or predictive
distributions. This eliminates the contribution of parameter uncertainty to the
distribution relevant to the decision at hand. The impact could be anywhere from an
academic footnote to a disastrous outcome in the real world. Can Bayesian analysis
provide systematic guidance on this point?

2. Understanding complex interactions in large models and their impact on predictive
distributions relevant for decision-making is an essential component in the
improvement of decision support. Are there tools that Bayesians could employ on a
regular basis to identify links between model components and features of predictive
distributions?

3. Emphasis on economic prediction over longer horizons has never been greater,
due to pressing problems such as structural financial problems in many countries. In
models that draw on historical time series, predictions naturally tend to be driven
more by actual behaviour in the near term and more by aspects of model
specification in the longer term. Can the structure of the impact of alternative
information sources be decomposed systematically over a prediction horizon?

We believe that the answers to all three of these, and similar, questions are yes,.and
this paper provides additions to the Bayesian econometrician’s set of tools to address
such questions. The basic approach is to use the law of total variance iteratively to
identify multiple sources of variance.

In the paper we take up details pertinent to Bayesian analysis, making two specific
contributions. The .first is the decomposition of the predictive distribution into
extrinsic variance, i.e. due to parameter uncertainty, and intrinsic variance, which
would exist even if parameters were known.

The second contribution is to show that given a posterior simulator, very little
additional effort or computing time is required to produce simulation-consistent
estimates of these variance components.

The paper concludes with an illustrative application of the techniques developed in
the paper, to predictive distributions from a widely used dynamic stochastic general
equilibrium (DSGE) model just before and then during the recent financial crisis in the
U.S. This illustration shows, among other things, that the understatement of
predictive variance inherent in replacing parameters with known values is
systematically greater in volatile than quiescent times.
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1 Introduction

Bayesian inference is a remarkable intellectual tool that can integrate information from
widely different sources and draw out its implications for specific decisions under con-
sideration. That many economists recognize this fact is due in no small part to the
work and unrelenting efforts of Arnold Zellner over his long and rich career. While these
activities took many forms, three of the most important were his 1971 book Bayesian
Inference in Econometrics (Zellner, 1971), the Seminar on Bayesian Inference in Econo-
metrics and Statistics that convened regularly in the following quarter-century, and the
International Society for Bayesian Analysis which he was instrumental in founding in
the early 1990’s.

This paper follows the Bayesian paradigm of integrating information. In this context
it provides a new decomposition of variance for predictive distributions. Here are some
of the questions that motivate this research.

1. In prediction and other decision-making situations, econometricians sometimes re-
place parameters with point estimates rather than using full posterior or predictive
distributions. This eliminates the contribution of parameter uncertainty to the dis-
tribution relevant to the decision at hand. The impact could be anywhere from
an academic footnote to a disastrous outcome in the real world. Can Bayesian
analysis provide systematic guidance on this point?

2. Understanding complex interactions in large models and their impact on predic-
tive distributions relevant for decision-making is an essential component in the
improvement of decision support. Are there tools that Bayesians could employ
on a regular basis to identify links between model components and features of
predictive distributions?

3. Emphasis on economic prediction over longer horizons has never been greater, due
to pressing problems including climate change, aging population and structural fi-
nancial problems in many countries. In models that draw on historical time series,
predictions naturally tend to be driven more by actual behavior in the near term
and more by aspects of model specification in the longer term. Can the structure of
the impact of alternative information sources be decomposed systematically over
a prediction horizon?

We believe that the answers to all three of these, and similar, questions are “yes,” and
this paper provides additions to the Bayesian econometrician’s set of tools to address
such questions. The basic approach is to use the law of total variance iteratively to
identify multiple sources of variance, and these ideas are developed in Section 2. If the
relevant statistical structure of information and the problem at hand is Gaussian this
amounts to no more than analysis of variance with multiple factors, well understood for
a century and standard training in statistics. But contemporary econometric models
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are fundamentally nonlinear, and our approach accounts for that. To the best of our
knowledge, this is a new contribution.

This decomposition is a feature of the population. Simulations from the population
provide estimates of the decomposition. Section 3 lays out the details, and shows that
the estimates are simulation consistent: i.e., they converge almost surely to population
counterparts as the size of the simulation sample increases.

Section 4 takes up details pertinent to Bayesian analysis, making two specific contri-
butions. The first is the decomposition of the predictive distribution: first, into extrinsic
variance, that which is due to parameter uncertainty, and intrinsic variance, which would
exist even if parameters were known; and, second, the further decomposition of extrin-
sic and intrinsic variance, either (or both) of which may be relevant depending on the
application at hand. The second contribution in this section is to show that given a pos-
terior simulator, very little additional effort or computing time is required to produce
simulation-consistent estimates of these variance components.

The paper concludes with an illustrative application of the techniques developed in
the paper, to predictive distributions from a widely used dynamic stochastic general
equilibrium model just before and then during the recent financial crisis in the U.S. This
illustration shows, among other things, that the understatement of predictive variance
inherent in replacing parameters with known values is systematically greater in volatile
than quiescent times. We believe that this finding reflects a general principle that should
emerge in other applications as well.

The ideas in this paper have more than one intellectual heritage. From the Bayesian
perspective of Section 4, which motivates the work, the decomposition of predictive
variance into extrinsic and intrinsic components is a natural outgrowth of prior and
posterior predictive analysis, which can be traced to Good (1956), Roberts (1965) and
Box (1980) and is fully described by Lancaster (2004), Sections 2.4-2.5, and Geweke
(2005), Section 8.3. An immediate precursor of the work in Section 4 is the idea of
prior predictive analysis of variance mentioned in passing in Geweke (2010), Section
4.2.3. From the distribution theory perspective of Section 2, all of the decompositions of
variance here are repeated applications of the law of total variance, which is stated at the
start of that section. Virtually all of the applications of this idea in traditional analysis
of variance have been in the context of linear (Gaussian) models, and that treatment is
insufficient for the general case as well as for the application of the law of total variance
in the context of posterior distributions. We are not aware of expositions of these ideas
at this level of generality, or exploitation of the modification of simulation with balanced
design and multi-factor analysis with no interactions to access these decompositions of
variance as developed in Section 3.

2 Population

Let U be a random vector defined in the usual way, partitioned as U’ = (Y’, Z’), where
Y and Z are vectors. The following result is well known (e.g. Weiss, 2005, pp 385-386).
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Proposition 1 (Law of Total Variance) Suppose that U' = (Y', Z') is an (E, £)-valued
random vector defined on a probability space (2, F, P), and that var (U) exists. Then

var (Y) = Ez [var (Y|Z)] 4+ varz [E (Y|Z)]. (1)
The next three results are contingent on:

Condition 1 V = (W'Y, Z") is an (E,&)-valued random vector defined on a proba-
bility space (2, F, P) and var (V') ezists.

The following two extensions of Proposition 1 are immediate.

Proposition 2 Given Condition 1, denote by w any point in the support of the marginal
distribution of W. Then

var (Y | W =w) =Egz [var (Y|Z,W =w)| +varyz [E(Y|Z W =w)]. (2)

Proof. In Proposition 1 replace the distribution of U with the distribution of V' condi-
tionalon W =w. m

Proposition 3 Given Condition 1,
Ew [var (Y | W)] =Ewzz [var (Y | W, Z)] + Ew {varz [E(Y | W, 2)]} . (3)

Proof. Integrating both sides of (2) with respect to the measure d Py yields the result.
|

Proposition 3 leads directly to the following result, which in turn provides the foun-
dation for the rest of the methods discussed in this paper.

Proposition 4 Given Condition 1,
var (Y') = Eyz [var (Y | W, Z)] + Ez {varw [E(Y | W, Z)]} + varz [E(Y | Z)] . (4)
Proof. In (3) reverse the roles of W and Z to write
By [var (V| 7)) = By [var (V | W, 2)] + By fvary [E(Y | W, 2} (5)

Then substitute (5) in (1) to obtain (4). m
Next, suppose:

Condition 2 X is an (F, £)-valued random vector defined on a probability space (2, F, P)
and var (X) ezists.

)
m December 2011
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Let X be partitioned
X'=(X1,...,X5). (6)

For n = 2, taking Y = X; and Z = X, in (1) leads to
var (X1) = Ex, [var (X1|X2)] + vary, [E (X1]|X3)] (7)
For the case n = 3, taking Y = X;, W = X3 and Z = X, in (4) yields

var (X1) = Ex,x, [var (X1 | Xo, X3)] + Ex, {varx, [E (X | X2, X3)]}
+varX2 [E (Xl | Xg)] . (8)

Now apply Proposition 3 to the leading term of (8), with ¥ = X, W = (Xs, X3)
and Z = X4, to obtain

var (Xl) = EXQ,Xg,X4 [var (Xl ’ XQ,Xg,X4)]
+Ex, x; {varx, [E (X1 | X2, X3, X4)}
+Ex, {varx, [E (X; | Xa, X3)]} + varx, [E (X1 | X2)]. (9)

This procedure can be iterated, as follows.
Proposition 5 Given Condition 2 and the partition (6),

var (X;) = Ex,

-----

~~~~~ Xn-1 {Vaan [E (Xl ‘ X27 ct 7Xn)]}
—|—...+EX2 X {VELI'X].Jrl [E(Xl ‘XQ,...,X]‘+1)]}

.....

4.+ Ex, {vary, [E (X1 | Xo, X3)]} + vary, [E (X1 | Xs)].

= Ex, . x. [var (X1 \ Xo, ... 7Xn)] (10)
n—1

+3 By, {varx,,, [BE(X1 | Xa,..., X))} (11)
j=1

Proof. The case n = 4 is (9). Apply Proposition 3 to the leading term (10), with
W= (Xy...,Xp), Z=X,,1 and Y = Xj. This leads to the substitution

+EX2 Xn {Vaan+1 [E (Xl | XQ, e 7Xn+1) | XQ, Ce ,Xn_,_l}} .

-----

for (10). By induction, the proposition is true. m
The foregoing results are quite general, depending only on Conditions 1 and 2. In
the special case that P in Condition 2 is Gaussian, we have

=06+ Bajte
j=2
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where ¢ is independent of (zg,...,2,), E(z1 | 22,...,2,) = d + 37,0875, E(e) =
E(e|za,...,2,) =0, and var (¢) = var (x1 | z2,...,z,). Let

n;=x; —E(x;|2,...,25.0) (J=2,...,n).

Then there is a one-to-one linear transformation between (zs,...,z;) and (772, .. ,nj).
In particular,

n
xr = E ;n; + €,
J=2

where a; = cov (z1,7;) /var (n;) and var (z1) = > iy Qvar (n;) + var (¢). Moreover,
J+1
E (Il ‘ To, ... ,33j+1) =FE (371) + Zozmz
i=1

and
Varmj+1 [E (xl | To, ... ,SL’jJrl) | To, ... 7.1'J]
it
_ _ 2
= varg,, <Z ain; | Mg, - ,T]j> = aj  var (nj+1) .
=2

None of these terms involve x; or 7;, because in the Gaussian distribution conditional
variances do not depend on the values of the variables conditioned upon.

Thus the leading term (10) in Proposition 5 reduces to var (¢) in the Gaussian case,
and term j in the sum (11) is a2 var (n,,,). Were we to divide the equation in Propo-
sition 5 by var (1), then (10) would be 1 — R?  where R? is the coefficient of multiple

correlation between x; and (xa,...,x,); the term j in (11) would be the increment to
population R? when x;,; is introduced into the set of regressors that already contains
T1y.-., L5 .

3 Simulation

All of these population decompositions have analogs in simulation. This is important for
the Bayesian applications that motivate this work. What follows takes the components
Xi,...,X, to be scalars. The vector case exactly parallels the scalar case but entails
more awkward and space-consuming notation.

Suppose that it is feasible to simulate

j plxj|zy...,z01) (m=1,2,...;j=2,...,n), (12)

where the case j = 2 is unconditional simulation, as well as

2™ (@ | @ey ) (m=1,2,..). (13)
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We shall suppose that the random sequences {:Ugm

lations that parallel the decompositions in the previous section, which provide method
of moments estimates of the terms in the population decomposition given in Proposition
5.

)} are ergodic. Then there are simu-

For the simplest case n = 2, this involves simulating :Ué ma) (my=1,...,M;), and
(m2) simulating azg ma,m2) (my =1,..., M) from the distribution of
x1 conditional on :Ug 2). Denote

M
7" = My Zx(mm and 7y = My Z—W?) (MiMy)™ Z Z (ram2)

conditional on each x;

mi1=1 ma=1 mi1=1mao=1
Then
My 9 Mo 9
M1M2 Z Z ( (m1,m2) _51) _ M1M2 Z Z ( (m1,m2) —E§m2)>

mi1=1mo=1 mo=1mi=1

Mo 9
+M; Y (fﬁm"’) —fl> . (14)

mo=1

The terms in this relationship constitute consistent estimates of the terms of the equa-
tion in Proposition 5 for the case n = 2, equivalently for the terms of the equation in
Proposition 1 with Y = z; and Z = xs.

When the distribution of (z1, x9) is Gaussian, or more generally when the distribution
of x1 | x5 is conditionally homoscedastic, we need only a single simulation (x(m) xé ™)

from the joint distribution of z; and x5 to consistently estimate the terms in the decom-
position. The fact that in the more general case the conditional variance of x; depends
in a nontrivial way on the value of x5 necessitates the double simulation in m; and msy.

Next consider the case n = 3. This case turns out to be significant, because the
calculations here are essentially those that are required for the general case. Corre-

sponding to each simulation xgm) (mg =1,..., M;) from the unconditional distribution
of xy there are simulations x:(,)mz’m) (m3 =1,..., Ms) from the distribution of x3 condi-
(m2) (m27m2)

there are simulations

., My) from the distribution of x; conditional on (x(mQ’m3), xém3)) :

tional on z; /. Then corresponding to each simulation z

mi,ma,m
fl’g 1,m2 3)<m1:1

Corresponding to these simulations define the (conditional) sample means

M.
_gmmms) _ Ml_l Z $§m1,m2,m3) <m2 =1,...,My;mg=1... ,M3),

mi1=1

M3
7 = Myt Y MM (my =1, M),

m3=1

M3
o= Myt Yy wm

mo=1

ECB
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These are simulation-consistent approximations of E (x | 2™, x§m2’m3) ), E (:pl | mémz))

and E (z), respectively. By “simulation-consistent” we refer to almost sure limits as
M; — oo (j =1,2,3). Relative rates of divergence of the terms M, do not matter.
The simulation-consistent method of moments approximation of var (1), the left side

of (8), is
(M, My M)~ Z Z i ( ml’mQ’m3)—E>2. (15)

mi1=1mo=1msz=1
Corresponding to the three terms on the right side of (8), the simulation-consistent
approximation of Ex, x, [var (X; | Xa, Xg)] is

AR [ S (wY"l’mz’mg)—f&m%mg))Q]; (16)

mo=1msz=1 mi1=1

the simulation-consistent approximation of Ex, {varx, [E (X; | Xz, X3)]} is

M- M:
M1 - M1 - =(ma,m3) _ —(m3) ’l. 17
2P Mt Y () ) | a7

mo=1 ma=1

and the simulation consistent approximation of vary, [E (X; | X3)] is
! (m2) ?
My (El 2 — f1> : (18)

Consistent with the identity in (8), the sum of (16) — (18) is (15). The computations
(16)-(18) are implemented with three lines of code in the Matlab function provided in the
Appendix of this paper. Taking M; = M, = M3 = 100 is adequate in our experience, as
indicated by the finding that computations starting with different seeds of the random
number generator produce quite similar results. Even in the case in which x; is replaced
by a vector of modest size (e.g., 10 or 12 components) the computations require well
under one second.

This process could be iterated to the general case of Proposition 2. The outcome
would be a simulation sample ideally suited to multi-factor analysis of variance with a
balanced design, but the simulation requirements are overwhelming e.g. the number of
simulations required is (M "+ — M?) /(M — 1) in the case where M; = ..., M, = M.
This is impractical for n much larger than 3 and M sufficiently large to provide reliable
approximations. Instead consider term j of (11),

EXQ,...,Xj {VaI"XjH [E (X1 | D ORI 7Xj+1)]}

and note that we can use the approach in the previous paragraph, replacing x, with
(wa,...,7;) and x3 with z,;;. The requisite simulations are all possible by virtue of the
assumption that simulations are possible from the distributions (12) — (13), made at
beginning of this section. In the case M; = ..., M, = M, this entails nM? simulations,
a number that is linear in n and is reasonable in the applications that motivate this
work.
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4 Application to Bayesian inference

These decompositions are useful tools in the interpretation of posterior distributions
that are accessed by means of simulation, as is the case in most Bayesian work. Let
Yr = [y1,-..,yr| denote the observables (random ez ante) where T is the size of the
sample, Y5 their observed values (fixed ex post), A the model, 84 € ©, the para-
meter vector, p (64 | A) the prior density, and p(Yr | 04, A) the distribution of ob-
servables conditional on the parameters. The posterior density of the parameters is
p(Oa| Y5 A) xp(@a|A) - -p(YS]|04,A), and we assume that a posterior simulator is
available that generates an identically distributed ergodic process H(Am) ~p(0a| Y5 A)
(m=1,2,3,...). For importance sampling, there are obvious modifications to the com-
putation of simulation moments involving the weighting function, and these will also be
consistent if the usual regularity conditions (Geweke, 2005, Theorem 4.2.2) are satisfied.

From a formal perspective, Bayesian inference is always undertaken to inform a policy
decision. Let w denote the random vector pertinent to the loss function L (w) governing
the decision: e.g., for a central bank, w could consist of measures of output and inflation
in some future quarters; for a retailer, w could be sales of specified products in specified
markets; for a government agency seeking to adjust census count, w might contain
measures of characteristics of the actual population; in a pure prediction problem w
consists of future values (yr41,...,yr+m) over a specified horizon H. The model informs
the policy decision if and only if it specifies the conditional distribution p (w | Y, 84, A),
and we assume that is the case. This conditional distribution could be degenerate: for
example, if the decision involves testing the hypothesis 84 € ©4; then w = Ig,, (041).
Simulation from p (w | Y%, 04, A) is generally straightforward and less demanding than
simulating from the posterior distribution. In many of these specific instances, expected
loss conditions on the prospective action taken by the decision-maker. For our purposes
one of a number of alternative actions is then subsumed in A.

4.1 Extrinsic and intrinsic variance

The distribution relevant for decision-making conditions on the model A and data Y9,
p(w|Y;,A)o</ (04 1Y% A)p(w | Y2, 04 A)d6,4.
O

Given a posterior sample O(Amz) (mg =1,..., M;), this distribution can be accessed by
means of auxiliary simulations from the model for w,

i e | Y059, 4) =1, )

The corresponding sample moments of w, and in particular the approximation

M1M2 ZI: Z ml,m2

mi1=1mo=1
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of E[L (w) | Y7, A] are simulation-consistent if and only if My — oo; it is not necessary
that M; increase at all, for this purpose, and indeed M; = 1 is sufficient.

From (7) with X; = w and X5 = 04, and recognizing that the relevant distribution
conditions on the data Y9 and the model specification A,

var (w | Y7, A) = Eg, [var (w | 04,Y5, A)] + varg, [E(w | 04,Y7, A)]. (19)

We refer to the first component on the right-hand side as the intrinsic variance of w:
it is the variation in w that would exist if one knew the parameter vector 6 4, averaged
using the posterior distribution of 8 4. We refer to the second component as the eztrinsic
variance of w: it is the variance in w that is due to not knowing 8 4. If the distribution
of w conditional on Y7 and 64 is degenerate, as is the case with conventional tests
of hypotheses about @ 4, then there is no intrinsic variance. If the prior distribution is
dogmatic then there is no extrinsic variance. In most realistic cases both intrinsic and
extrinsic variance are positive.
Making the corresponding substitution in the simulation (14)

(MlMQ)—l (w(m1,m2) . 5) (w(ml,mQ) _ w)/
My My

= ()T 3 Y (W = @) (W) - gy (20)

mao=1mi1=1

My
+M7Y T (@) - w) (@) - @) (21)

mi1=1

where

M1 M2
W) = M Z wmm2) and @ = M,! Z wm),
m1=1 mo=1
As M; — oo and My — oo (20) converges to Eg, [var (w | 84, A)] in (19) and (21) to
varg, [E(w | 04,Y7, A)].

4.2 Decomposition of intrinsic variance

Let the vector of interest be partitioned w’ = (w,w}), and suppose that it is feasible
to simulate

W~ plwi ] Y5.04,4), (22)

wg ™~ p(ws | w1, Y5,04,A). (23)
For example in a pure prediction problem we might have w; = yr; and wy = yr o
or wy = (1/4) ZS L ¥71+s; or, wi could be a monetary policy instrument and w, would
consist of the remaining variables in a macroeconomic model. In the notation of the
previous section, take X7 = wsy, Xo = 0,4 and X35 = w;. Then from the particular case
(8) of Proposition 5,
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var (we) = Eg, w, [var (ws | wy,04)] (24)
+E0A {Varwl [E (w2 | 04, wl)]} (25)
+varg, [E (w2 ]04)]. (26)

All of the moments in this decomposition condition on the data Y$ and model
specification A as well as the vectors explicitly indicated; we omit those terms to keep
the expressions from being unduly cluttered. The term (26) is the extrinsic variance
of wq, and therefore (24)-(25) provides a decomposition of the intrinsic variance of wy.
The bracketed term in (24) is the variance in ws that would remain even if one knew
both 8, and w;, and (24) averages this with respect to the posterior distribution of
04 and predictive distribution of w;. The term in braces in (25) is the variance in ws
attributable to not knowing w;, and (25) averages this with respect to the posterior
distribution of 8 4. More loosely speaking, (25) is the portion of intrinsic variance that
is resolved (disappears) once w; becomes known. As a specific instance, if 7" is the fourth
quarter of 2011, y; is a vector of growth rates, w; = yr,; and wy = (1/4) 221:1 VTis
then (25) is the variance in the annual growth rate for 2012 that will be resolved at the
close of the first quarter of 2012.

Following the methods of Section 3, it is straightforward to compute a simulation-
consistent approximation of (24)-(26). Conditional on a simulation sample 054m2)0f size
M, from the posterior distribution of 8,4, generate M;s values wgmz’m?’) from (22) and
then conditional on each of these My M3 draws generate M; values wéml’m’m) from (23).
Then substituting 0547”2) for xgm), w!m2m3) for a:gm’m?’) and wéml’m’m?’) for g{mmms)
compute the moments as indicated in (16)-(18).

This process can be iterated For example, continuing with the specific case of pre-
dicting four successive quarters of growth rates, intrinsic variance can be decomposed
into four rather than two components, yielding the variance in the 2012 annual growth
rate that will be resolved following quarters 2 and 3 as well as quarter 1 of 2012.

Y

4.3 Decomposition of extrinsic variance

Let the parameter vector be decomposed 0’y = (6 4,0, ), and suppose that it is feasible
to simulate

0% ~ p(0a1] Y% A), (27)
95473) ~ p(0a2| 041, Y7, A). (28)

The simulation (27) is from the marginal distribution of 84;, so these simulations can
be taken as the corresponding subvector of the posterior simulation sequence itself. The
second simulation need not be straightforward or even feasible, though it usually is. If
the posterior simulator is a pure Metropolis algorithm then the same algorithm can be
used in (28), and indeed this simulation should be less challenging due to the diminished
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order of the parameter vector. If the posterior simulator is a Gibbs sampling algorithm
and none of the blocks include components of both 84, and 60 45 then a subset of the
conditional distributions required for the full posterior simulator provides (28).

Turning first to the formalities, take X; = w, Xy = 041 and X3 = 645 in (8), which
yields

var (w) = Eg, [var(w | 04)] (29)
+Eg,, {varg,, [E(w | 6.4)]} (30)
+varg,, [E(w | 041)]. (31)

(That all moments are also conditional on Y and A is suppressed in this notation to
avoid clutter.) The first term (29) is the intrinsic variance of w. The terms (30)-(31)
decompose the extrinsic variance of w. The last term (31) measures systematic location
movement in w in response to changes in 0 4;, where the relevant changes in 64, are
those in its posterior distribution. Since by definition all extrinsic variance is accounted
for by 64, (30) assigns the remainder to 64 while also accounting for the fact that
the magnitude of the remainder may depend on 0 ,; itself. If the joint distribution
of 84 and w were Gaussian and the last two terms were divided by extrinsic variance
varg, [E (w | 6 ,)] then (31) would provide the R-squared, the fraction of extrinsic vari-
ance due to 0 4;.

As a specific instance, suppose a central bank using a dynamic stochastic general
equilibrium (DSGE) model is interested in the extent to which extrinsic variation the one-
step-ahead predictive distribution p (y741 | Y%, A) is driven by the structural parameters
of the model (e.g., the parameters of utility, production and policy response functions)
as opposed to those describing the dynamics of shocks to equations (e.g., the variances
and autoregressive coefficients). The foregoing analysis provides two answers to these
questions, depending on which parameters are cast as 8 4; and which as 0 4.

It is important to keep in mind that by definition the parameters as a whole account
for all of the extrinsic variance. Taking 6 4; as the vector of structural parameters pro-
vides the measure (31) of the extent to which posterior variation in structural parameters
accounts for extrinsic variance, and taking 0 4; as the shock dynamics parameters does
the same for those parameters. If the two groups of parameters are independent in the
posterior distribution, then the sum of the two measures is the extrinsic variance. But, in
general, this will not be the case and it will turn out that the two measures sum to more
than extrinsic variance. Nevertheless the exercise can identify contrasting contributions
of groups of parameters to extrinsic variance. This ambiguity in attributing explained
variance uniquely to alternative sources is precisely the same one that arises in linear
regression, and is just as fundamental here as in that more elementary situation.
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5 An illustration

We illustrate the methods set forth using the dynamic stochastic general equilibrium
(DSGE) model with price and wage stickiness and monopolistic competition due to
Smets and Wouters (2007). There are seven structural shocks in the model: innovations
in total factor productivity and the risk premium, an investment specific technology
shock, innovations to wage and price mark up, and policy shocks to fiscal and monetary
policy. See Smets and Wouters (2007) for further detail. The model predicts seven
macroeconomic time series:

1. Consumption (quarterly percentage growth rate in per capita real consumption);
2. Investment (quarterly percentage growth rate in per capita real investment);

3. Output (quarterly percentage growth rate in per capita real GDP);

4. Hours (log per capita weekly hours);

5. Inflation (quarterly percentage growth rate growth rate in GDP deflator);

6. Real wage (quarterly percentage growth rate growth rate in real wage);

7. Interest rate (Federal Funds Rate on a quarterly basis).

The data used in this illustration begin with the first quarter of 1951.

With respect to the notation introduced in Section 4 this seven-dimensional time
series constitutes {y;}. DSGE modes like the one in Smets and Wouters (2007) are
widely used in central banks. In the most common implementation the one-step-ahead
predictive density is taken to be

~(T ~(T
D <yT+1 | Y7, 9; ),A> , Where 054) = argmaxp (04 |Y7,A). (32)
A
This does not conform with the formal Bayesian rule

p(yre1 | Y7, 4) = / pP(Yrs1 | Y7,04,A)p(0a| Y7, A)dO 4. (33)
O,

If there were no extrinsic variance in yr,; in the predictive density (33) then (32) would
be equivalent to (33). Of course this is not the case, but if extrinsic variance is a small
enough component of predictive variance then the preference for (33) over (32) is an
academic rather than a practical point. That is one of the questions investigated here.

We accessed the posterior density p (04 | Y5, A) by means of a conventional Metropo-

lis random walk posterior simulation algorithm to generate the sequence {9;’”2)} de-

scribed in Section 4 by thinning a chain of 10,000 MCMC simulations to My = 100
equally-spaced draws. Our vector of interest is w’ = (w},w}), with w; = yr4; and

Working Paper Series No 1409



ECB

wy = (1/4) 3% yris. Following the procedures described in the previous section we

simulated M; = 100 draws w!™"™ = y(T"fl’m?’) from the one-quarter-ahead density

P <yT+1 | Y%,B%m”) conditional on each of these 100 parameter drawings. Starting
with each of the 10,000 pairs <0£1m2),w§m2’m3)) we simulated in succession M; = 100

drawings

yrLmems) g (yT+s Y G,y Ly H(Amz)) (s=2,3,4)
and then formed
W) _ (1 /4) (y(T"fl’m” Fymmams) y glmumama) ymmm)) ' (34

The simulations of wng’m?’) and w required just under one minute using Matlab

code on a laptop computer. The analysis of variance computations (8), which produce
7 X 7 variance matrices, required just under one-quarter second.

(m1,m2,m3)
2

Predictive variance Intrinsic variance

Total Extrinsic Intrinsic Due to w; Remainder

Consumption | 0.2340 | 0.0077 (0.033) | 0.2263 (0.967) | 0.0706 (0.322) | 0.1557 (0.688

Investment | 3.3394 | 0.0763 (0.023) | 3.2631 (0.977) | 1.2786 (0.392) | 1.9845 (0.608

Output | 0.4209 | 0.0066 (0.016) | 0.4143 (0.984) | 0.1376 (0.332) | 0.2767 (0.668

Inflation | 0.0766 | 0.0022 (0.029) | 0.0744 (0.971) | 0.0696 (0.936) | 0.0048 (0.064

Wages | 0.1461 | 0.0024 (0.016) | 0.1438 (0.984) | 0.0658 (0.458) | 0.0779 (0.542

) ) ) )

(0.023) (0.977) (0.392) (0.608)

(0.016) (0.984) (0.332) (0.668)

Hours | 1.0106 | 0.0152 (0.015) | 0.9954 (0.985) | 0.5537 (0.556) | 0.4417 (0.444)
(0.029) (0.971) (0.936) (0.064)

(0.016) (0.984) (0.458) (0.542)

) (0.986) ) )

Fed funds | 0.0894 | 0.0013 (0.014) | 0.0881 (0.986) | 0.0489 (0.556) | 0.0391 (0.444

Table 1: Decomposition of predictive variance for one-year growth rates 2008:1- 2008:4,
based on the posterior at 2007:4

The analysis of variance decomposes the predictive variance of growth rates over the
next four quarters into extrinsic and intrinsic variance, and then decomposes intrinsic
variance into a component that is resolved after one quarter and the remainder that is
not resolved until all four quarters have been observed. We undertook this exercise at
two recent points in time. The first is the end of 2007:4, using data through that quarter
and analyzing the predictive distribution for growth rates over calendar year 2008. The
second is the end of 2009:2, using data through that quarter and analyzing the predictive
distribution for growth rates over the one-year period 2009:3 through 2010:2. The first
exercise is positioned just before the onset of the global financial crisis: compared with
historical values there was nothing particularly remarkable about recent quarterly growth
rates. In the second exercise recent quarterly growth rates exhibit values beyond the
range seen in the 60-year time series on which the posterior distribution conditions.

Table 1 shows the decomposition of variance for each of the seven series in the
first exercise. The main entries are the variance terms estimated from the simulations.

}
n December 2011
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The entries in parentheses in columns 3 and 4 indicate the fractional decomposition of
variance between extrinsic and intrinsic variance, while the entries in parentheses in the
last two columns indicate the fractional decomposition of intrinsic variance between the
component resolved after one quarter and the remaining variance. Table 2 does the
same thing for the second exercise.

The predictive variance (column 2 in both tables) is substantially different for the
seven time series, but these differences simply reflect the units of measurement detailed
at the start of this section. Except for inflation, predictive variance is modestly higher
in the second exercise than in the first, and the same thing is true of intrinsic variance.

There is a marked contrast in the allocation of predictive variance to extrinsic vari-
ance (column 3 in both tables) in the two exercises. Extrinsic variance is never more
than 10% of predictive variance. However, in the second exercise the fraction of predic-
tive variance that is extrinsic is always much higher, ranging from almost three times
as high to over four times as high. The explanation for this contrast lies in the val-
ues of recent time series in the two exercises. With values atypical of the sample (the
second exercise) uncertainty about parameter values is magnified in the predictive dis-
tribution: the impact of unusually high or low values, which is imperfectly known, is
more important. Replacing (33) with (32) does not result in serious understatement of
the dispersion of the predictive distribution at either time, but the understatement is
substantially greater in the second case than in the first. This finding should be gener-
ally applicable: when the data that drive the predictive distribution have been unusual,
relative to the sample, the allocation of predictive variance to extrinsic variance will
be greater and using point estimates in place of full predictive distributions will more
seriously understate variance in near-term predictive distributions.

The allocation of intrinsic variance of the one-year forecasts to near-term and longer
term reflects the volatility inherent in the values of the model’s parameters that are
plausible in the posterior distribution. Over future quarters, the spread in the predictive
distribution will reflect actual behavior in recent quarter more strongly in the near term
and the volatility implicit in the model’s parameters more strongly in the far term.
Thus, for example, were the model to infer unrealistically low volatility then the near
term would dominate the decomposition of intrinsic variance into near and longer term
(and conversely).

Intrinsic variance itself (column 4 in both tables) is virtually identical in the two
exercises. For growth rates in GDP and components (the first three series) 30% to 40%
of the variance is resolved in the near term. This is intuitively plausible: the near term
both reveals one of the four components in (34) and in addition brings the following three
quarters one quarter closer, further reducing uncertainty about these growth rates. For
hours, wages and Federal funds even more of the variance, roughly half, is resolved in the
near term. In the case of inflation well over 90% of the intrinsic variance is so resolved,
a remarkable finding. This is consistent with the model assigning volatility to inflation
that is much too low in the case of inflation, and perhaps somewhat too low in the case
of hours, wages and the Federal funds rate. Of course, other explanations are possible
as well, but these findings motivate a closer examination of inflation dynamics in this

ECB
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Predictive variance Intrinsic variance

Total Extrinsic Intrinsic Due to w; Remainder
Consumption | 0.2782 | 0.0264 (0.095) | 0.2518 (0.905) | 0.0817 (0.324) | 0.1702 (0.676)
Investment | 4.2767 | 0.3218 (0.075) | 3.9549 (0.925) | 1.6159 (0.409) | 2.3390 (0.591)
Output | 0.4714 | 0.0308 (0.065) | 0.4406 (0.935) | 0.1513 (0.343) | 0.2893 (0.657)
Hours | 1.2488 | 0.0771 (0.062) | 1.1717 (0.938) | 0.6689 (0.571) | 0.5029 (0.429)
Inflation | 0.0745 | 0.0052 (0.070) | 0.0693 (0.930) | 0.0652 (0.941) | 0.0041 (0.059)
Wages | 0.1558 | 0.0072 (0.046) | 0.1487 (0.954) | 0.0660 (0.444) | 0.0826 (0.556)
Fed funds | 0.0936 | 0.0055 (0.059) | 0.0881 (0.941) | 0.0489 (0.555) | 0.0392 (0.445)

Table 2: Decomposition of predictive variance for one-year growth rates 2009:3 - 2010:2,
based on the posterior at 2009:2

model.

6 Conclusion

From a formal but reasonable perspective the goal of Bayesian analysis can generally be
cast as providing a predictive distribution relevant for a decision at hand. In doing so
it integrates information from several sources, including increments to information sets
as predictive distributions are updated in real time. This paper has provided a corre-
sponding analysis of variance. Because integration of information does not typically lead
to linear (Gaussian) models this analysis is necessarily more complex than the familiar
treatment that has been central to statistics for a century. But the complexity poses
no essential complication for simulation methods that are fast, practical, and natural
in the context of modern Bayesian inference. We believe that systematic application of
this analysis of variance will provide greater insight into the structure of models and
information aggregation, and hope that ultimately it will be useful in improving models,

predictions and decisions.
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Appendix

The following Matlab code implements the simulation-approximation of variance
decomposition described in Section 3, and was used in for the illustration in Section 5.

function [terml term2 term3 totall]=aov(x)

h
b
b
b
b
b
o
b
b
b
b
b
b

This function computes simulation-based method of moments estimates
of the population decomposition in the paper. The explicit
computations are in the displays (16)-(18).

Input:

x This is a three-dimensional structure. The first dimension
corresponds to "X_2" and has the m_2 index; the second
dimension corresponds to "X_3" and has the m_3 index; the
third dimension corresponds to "X_1" and has the m_1 index.
OQutputs:

terml Estimate (16)of the first term of (8)

term2 Estimate (17) of the second term of (8)

term3 Estimate (18) of the third term of (8)

[M2 M3 Mi]l=size(x);

terml=var (mean (reshape(x,M2,M3%M1),2),1,1);
term2=mean (var (mean(x,3),1,2),1);
term3=mean (var (reshape (x,M3*M2,M1) ,1,2),1);
total=terml+term2+term3;

end
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