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Abstract

Bayesian approaches to the estimation of DSGE models are becoming

increasingly popular. Prior knowledge is normally formalized either be

information concerning deep parameters’ values (‘microprior’) or some

macroeconomic indicator, e.g. moments of observable variables (‘macro-

prior’). In this paper we introduce a non parametric prior which is elicited

from impulse response functions. Results show that using either a micro-

prior or a macroprior can lead to different posterior estimates. We probe

into the details of our result, showing that model misspecification is to

blame for that.

JEL Classification Numbers: C11, C51, E30

Keywords: DSGE Models; Bayesian Estimation; Prior Distribution; Im-

pulse Response Function
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Non Technical Summary

Bayesian estimation methods have gained ground as a very attractive alterna-
tive over classical methods in the field of dynamic stochastic general equilib-
rium models (DSGE), among both academicians and practitioners. Unlike in
the frequentist approach, a Bayesian researcher uses both information from the
available data and prior knowledge, in order to provide so-called posterior es-
timates. Hence, an important aspect of the Bayesian approach relates to how
the researcher elicits prior information and the way the latter influences poste-
rior estimates, as results to be used for policy analysis should in principle be
reasonably robust to a different prior specification.

For DSGE models, prior knowledge is normally expressed in the form of
independent probability distributions placed on each of the structural parame-
ters. Hence, the resulting joint prior distribution has independent components.
Often such independent distributions are informed by using previous microe-
conometric studies.

This prior selection scheme is very simple and ready to implement, but suf-
fers from several shortcomings. First, a priori independence of the deep param-
eters entails implicit assumptions for the a priori beliefs on data moments and
the responses of macroeconomic variables after some shock (e.g. impulse re-
sponse functions) which may indeed be at odds with prior knowledge drawing
from microeconometric studies.

Second, for some parameters, microeconometric information can be abun-
dant, while for others it can be scant At the same time there might be abun-
dant evidence concerning the behaviour of macroeconomic variables, such as
its response after some shock occurs (i.e. IRFs), that researchers might want to
exploit.

Based on such considerations, Del Negro and Schorfheide (2008) pioneered
a different approach in which prior distributions are formed on the basis of a
priori beliefs on macroeconomic indicators (for example simulated moments)
rather than on the deep parameters. This implies that the a priori belief on
deep parameters is described by a joint distribution whose dependence struc-
ture hinges on the mapping between the deep parameters and the macroeco-
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nomic indicator at hand.
The contribution of our paper is twofold. First, we aim to investigate if and

how the dependence structure of macropriors shape posterior estimates, and in
particular how estimates of nominal rigidities are affected by the prior. Second,
we find it convenient to do that by introducing a new type of prior, elicited in
a non parametric way from impulse response functions. A clear advantage of
a prior based on impulse response functions is that, differently from the deep
parameters and, although to a lesser extent, from the sample moments used by
Del Negro and Schorfheide (2008), researchers and policy makers often have a
clear prior view of how the response of the economic system to certain shocks
should look like.

Our main finding is that, when an IRF-prior is applied to exogenous state
parameters, posterior estimates can differ with respect to the case of the bench-
mark independent case only by a little amount. Our second finding is that when
applying the IRF-prior to a different set of deep parameters posterior estimates
change more widely.
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1 Introduction

Since the seminal contributions by Sims and Zha (1999), Schorfheide (2000) and
Smets and Wouters (2003), Bayesian estimation methods have gained ground
as a very attractive alternative over classical methods in the field of dynamic
stochastic general equilibrium models (DSGE), among both academicians and
practitioners. Unlike in the frequentist approach, a Bayesian researcher uses
both information from the available data and prior knowledge, in order to pro-
vide so-called posterior estimates. Hence, an important aspect of the Bayesian
methodology relates to how the researcher elicits prior information and the way
the latter influences posterior estimates.

For DSGE models, prior knowledge is normally expressed in the form of
independent probability distributions placed on each of the structural parame-
ters. Hence, the resulting joint prior distribution has independent components.
Often such independent distributions are informed by using previous microe-
conometric studies. In the following, we will refer to this approach as ‘micro-
prior’.

The microprior selection scheme is very simple and ready to implement, but
suffers from several shortcomings. First, a priori independence of the deep pa-
rameters entails implicit assumptions for the a priori beliefs on data moments
and the responses of macroeconomic variables after some shock (e.g. impulse
response functions, IRFs heretofore) which may indeed be at odds with prior
knowledge drawing from macroeconometric studies. Second, for some param-
eters, microeconometric information can be abundant (e.g. the frequency at
which firms adjust their prices, a direct measure of nominal rigidities in the
economy), while for others it can be scant (e.g. concerning the average size
of some shock or its persistence). At the same time there might be abundant
evidence concerning the behaviour of macroeconomic variables, such as its re-
sponse after some shock occurs (i.e. IRFs), that researchers might want to ex-
ploit.

Based on such considerations, Del Negro and Schorfheide (2008) – DS hereto-
fore – pioneered a different approach in which prior distributions are formed on
the basis of a priori beliefs on macroeconomic indicators (for example simulated
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moments or IRFs) rather than on the deep parameters; we will label this ap-
proach as ‘macroprior’. A macroprior implies that the a priori belief on deep
parameters is described by a joint distribution whose dependence structure
hinges on the mapping between the deep parameters and the macroeconomic
indicator at hand. More specifically, DS propose an hybrid approach in which
a macroprior is used for the subset of parameters concerning the exogenous
states, e.g. the persistence of exogenous shocks and their standard deviations,
and a microprior for the other parameters such as those related to the amount of
nominal rigidities in the economy. In the context of a Smets and Wouters (2003)
type of model, DS find that posterior estimates, in particular those related to the
nominal rigidities in the economy, which are not informed with the macroprior,
change with respect to the case when only micropriors are used.

The contribution of our paper is twofold. First, we aim to investigate if
and how the dependence structure of macropriors shape posterior estimates, as
hinted by the results by DS, and in particular how estimates of nominal rigidi-
ties are affected by the prior. Second, we find it convenient to do that by intro-
ducing a new type of macroprior, elicited in a non parametric way from impulse
response functions (IRF-prior heretofore). Concerning our IRF-prior, we build
a controlled experiment, where we constrain the prior to have the same loca-
tion (e.g. the mean/mode) as in the microprior. By doing this, any difference in
posterior estimates can then be attributed to the second order properties of the
IRF-prior, e.g. the dependence structure of parameters and its spread. A clear
advantage of the IRF-prior is that, differently from the deep parameters and, al-
though to a lesser extent, from the sample moments used in DS, researchers and
policy makers often have a clear prior view of how the response of the economic
system to certain shocks should look like, even without explicitly referring to a
data-based presample.1 We compare the way our prior’s dependence structure
shapes posterior estimates with what is obtained with both a microprior and
the DS prior.

Our main finding is that, when an IRF-prior is applied to exogenous state
parameters we find that posterior estimates can differ with respect to the case

1For example, in the setting of structural VARs, identifying schemes based on placing restric-
tions on the signs of the impulse responses Uhlig (2005) are becoming increasingly popular.
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of the benchmark independent case by a little amount. This happens when
the joint prior is set to be rather tight, while the effects are negligible when the
overall variance of the prior is larger. This differs from the findings of DS, which
report large differences in the posterior estimates: we apply their method to our
case and we are able to explain how this difference is produced. Our second
finding is that when applying the IRF-prior to a different set of deep parameters
posterior estimates change more widely. As an additional result, by recurring
to an exercise on simulated data, we highlight the fact that this last feature is
likely to be due to model misspecification.

The paper is structured as follows:

prior is applied to the block of parameters which pertain to exogenous states. In

prior is applied to a different block of deep parameter and we discuss whether
this might be due to misspecification or to weak identification. Some conclu-
sions follow. A discussion of more technical parts, such as the ‘intractable nor-
malizing constants’, the DSGE model specification and a presentation of DS
method are presented in the appendix.

2 Impulse Response Priors

The reduced form of a (linearized) DSGE model can be written in state space
form An and Schorfheide (2007):

Xt = F (ψ)Xt−1 +G(ψ)εt, (1)

εt ∼ N(0,Σε), (2)

Yt = HXt, (3)

in section 2 we describe the general
formulation of our IRF-prior. In section 3 we introduce the DSGE model used
for our experiments. Section 3.1 details the estimation strategy we follow and
3.2 shows posterior estimates with our benchmark prior. In section 4 the IRF-

subsection 4.2 we contrast our results with those obtained with the DS prior.
In section 4.3 we present changes in posterior estimates obtained when a IRF-
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the transition equation corresponds to the solution (e.g. the reduced form) of
the model. The n-dimensional vector of statesXt collects all variables which are
known to economic agents (households, firms and government) at time t Sims
(2002). Xt includes so called exogenous states (e.g. total factor productivity),
which follow, individually, a scalar autoregressive process. εt denotes the l-
dimension vector of i.i.d. normally distributed (and uncorrelated) structural
shocks, which appear either as innovations of exogenous state processes and/or
directly in one or more other equations. Their standard deviation is a diagonal
matrix Σε, or, as vector, σε. Both the (n × n) F matrix and the (n × l) G matrix
in the transition equation are functions of ψ, the vector of so called deep (or
structural) parameters (e.g. parameters in the utility functions of the agents or
parameters related to technology). The vector ξ gathers both σε and ψ:

ξ ≡ [ψ, σε].

For simplicity we will refer to ξ as the vector of ‘deep parameters’.
The l × n selection matrix H links states Xt to the variables Yt which are

observed by the econometrician. As common in the literature, we also assume
that the number of observed variables is equal to the number of shocks. Yt is
then a vector of dimension l.2

Referring to variable Y , the j-period-ahead impulse response to a shock εt

at time t, is defined as the difference between the j-steps ahead projection of Yt,
conditional on both the t−1 information (It−1) and the knowledge of εt, and the
same j-steps-ahead projection without the knowledge of εt Koop, Pesaran, and
Potter (1996):

γt,j ≡ E[Yt+j | εt = σε, It−1] − E[Yt+j | It−1], j = 0, . . . ,m (4)

where, as convenient, we conditioned the shocks on the their standard devia-
tions. In our linear state space model (1-3), following definition (4), the impulse

2This assumption is not important to define impulse responses while it plays a relevant role
in the estimation process, as it is not possible to run the Kalman Filter on a stochastically singu-
lar system.
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γj(ξ) at horizon j = 0, . . .m reduces to:

γj(ξ) = HF j(ψ)G(ψ)Σε, j = 0, 1, . . .m, (5)

γj(ξ) is a l × l matrix. Stacking all horizons we denote:

γ(ξ) ≡ [γ0(ξ) . . . γj(ξ) . . . γm(ξ)], 0 < ∀j < m,

which is a l × l × (m + 1) matrix. We follow this notation in non-ambiguous
cases.

Our nonparametric prior is constructed as follows. For a given ξ, compute a
distance function between the model impulse γ(ξ) and some target impulse γ∗,
which is supplied by the analyst, as it contains his prior ideas on the response.
The distance is denoted with d(γ(ξ), γ∗) and it maps the l × l × (m + 1) space
(measurement, shock and impulse horizon) into the positive real line. Our prior
kernel w is given by a logistic3 transformation of the distance: 4

w(ξ | γ∗, K) =
exp(−d/K)

K(1 + exp(−d/K))2
, (6)

where K is the variance of the logistic and it controls for the degree of belief the
analyst has on his prior. A proper prior probability distribution can be obtained
by normalizing the kernel:

w̄(ξ | γ∗, K) =
w(ξ | γ∗, K)∫
w(ξ | γ∗, K)dξ

, (7)

but the knowledge of the normalization constant (e.g. the denominator of 7) is

3Results are robust to the choice of the penalty function; we experimented with a normal
distribution-like function (consistently with the steady state priors explored by Del Negro and
Schorfheide (2008)), reporting similar results as for the logistic case. For the model used in
section 3 the logistic function reported faster convergence properties for the MCMC. Results on

4Different distance functions can also be used; for example, we experimented the inverse of
the distance, with broadly similar results. However, the inverse function is not continuous on
a measure zero set, e.g. when the distance is exactly zero. In practice we found it to be not a
problem unless the parameter space of the prior is of dimension one. Yet, in this case the MCMC
sampler can get stuck at the point of discontinuity.

the normal penalty function are available upon request.
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not required since the model is estimated by MCMC techniques. As the prior
kernel is directly used in the estimation process in the rest of the presentation
we omit the proper prior w̄ and we directly express formulas in terms of the
kernel w.

Using a penalty function draws upon the idea of a distance between im-
pulses, already in use for estimating DSGE models Christiano, Eichenbaum,
and Evans (2005). The distance we use is a quadratic function of the type used
in impulse response matching:5

d(ξ | γ∗) = vec(γ(ξ) − γ∗)′W vec((γ(ξ) − γ∗)), (8)

where W is an (l2 ∗ (m + 1)) × (l2 ∗ (m + 1)) identity matrix and vec denotes
the vec matrix operator.6 A branch of research which is closely connected to
our approach is the literature known as Generalized Likelihood Uncertainty
Estimation, within the framework of global sensitivity analysis, where some
measure of distance is also used to inform distribution measures (see Saltelli,
Tarantola, Campolongo, and Ratto (2004) pages 182 and following).

Formula (6) defines a joint prior kernel over the whole vector of parameters
ξ, but, as explained in the introduction, the best use of prior knowledge of re-
searchers might entail using a macroprior only on a subset of parameters, ξ† .
Partitioning the vector of parameters ξ into two parts,

ξ ≡ [ξ†, ξb],

only ξ† is informed by IRF-priors and ξb is the subvector informed by indepen-
dent distributions p(ξb | ξ∗b ,Σ∗b). Hyperparameters (location and spread) are
now denoted ξ∗b ,Σ

∗
b ; were the benchmark prior applied also to the † parameters,

its hyperparameters would be denoted as ξ∗† ,Σ
∗
† . The ‘hybrid’ prior over the

5We experiment also different functions: a sup distance; and the function described by Uhlig
(2005) in the context of sign restrictions for VAR models. Since we have not found strikingly dif-
ferent results using different distance measures, we present the quadratic function case, except
when stated differently.

6In order to avoid the criticism of Canova and Sala (2009) that the surface described by the
distance between impulse responses can be very ill-behaved due to the non linearity of IRFs,
we set m = 1, that is we use only the impact of the impulse response and the first lead; results
are in general robust to using m < 5.
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whole vector of parameters, p(ξ|ξ∗b ,Σ∗b , γ∗, K) can now be defined as (propor-
tional to) the product of the kernel of the IRF-prior conditional to ξb, times an
independent prior on ξb:

p(ξ|ξ∗b ,Σ∗b , γ∗, K) ∝ w(ξ† | ξb, γ∗, K)p(ξb|ξ∗b ,Σ∗b), (9)

where the conditional distribution is computed from the ratio between joint and
marginal IRF prior:

w(ξ† | ξb, γ∗, K) =
w(ξ†, ξb | γ∗, K)

w(ξb | γ∗, K)
. (10)

Expression (9) is of little use for estimation: while the numerator in (10)
is computable, the denominator cannot be analytically computed and, by the
same token, it varies over draws of ξb, making it unsuitable for MCMC estima-
tion. This is a (well) known issue in the MCMC literature as the ‘intractable
normalizing constant problem’ Moeller, Pettitt, Berthelsen, and Reeves (2006).
DS propose to approximate the conditional distribution at hand by the joint IRF-
distribution (i.e. the numerator of 10, which is known), where the conditioning
parameters ξb are kept fixed at some value (ξ?

b ):

w(ξ† | ξb, γ∗, K) ≈ w(ξ†, ξb = ξ?
b | γ∗, K). (11)

Introducing the calibrated set of parameters ξ?
b , equation (9) is replaced by

the following one:

p(ξ†, ξb = ξ?
b | ξ∗b ,Σ∗b , γ∗, K) ∝ w(ξ†, ξb = ξ?

b | γ∗, K)p(ξb | ξ∗b ,Σ∗b), (12)

where now the full expression for the kernel is written as:

w(ξ†, ξb = ξ?
b | γ∗, K) =

exp(−d(ξ†, ξb = ξ?
b | γ∗, K)/K)

K(1 + exp(−d(ξ†, ξb = ξ?
b | γ∗, K)/K))2

. (13)

Equations (12) and (13) together with the definition of the distance (8), as mod-
ified to take into account the partitioning of the set of deep parameters, define
the IRF-prior we will be using in the remainder of our analysis. The subvector
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ξb plays now a double role:

1. ξb is informed with an independent prior (microprior) p(ξb | ξ∗b ,Σ∗b).

2. It is calibrated in the IRF-prior (and in the DS prior) at some value ξ?
b .

In the analysis by DS, which is based on sample moments rather than IRFs,
the same type of calibrated parameters appear. From their analysis we have
little guidance on how much point 1 vs. 2 above drive posterior estimates. Also
it is not clear how much having a non-independent prior matters for results. To
shed light on those issues, in the following we run a set of experiments with
our prior and we cross-check some of our results by using the DS methodology.
In the first set of experiments we apply the IRF-prior on the exogenous state
parameters (section 4) as in DS, in the second one (section 4.3) we apply it to a
different set of deep parameters more related to the structure of the economy,
such as the amount of nominal rigidities; more details of the selected parameters
are offered to the reader at the end of section 3. In order to control for the effects
of point 2 in both experiments we use a target impulse γ∗ derived from the
DSGE model itself

γ∗ = γ(ξ∗IRF , ξb = ξ?
b ),

as ξ∗IRF is the same location hyperparameter as in the microprior, we also fo-
cus on the role of second order properties (spread and correlation structure) of
the macroprior in shaping the posterior distribution. As we check, once cali-
brated parameters are controlled for, posterior estimates do not vary much as
calibrated parameters are considered at different ξ?

b .7 In section 4.2 we show
how the DS prior is sensitive to calibrated ξ?

b . In particular, when comparing re-
sults for the benchmark and the DS prior, the two posteriors come closer when
also ξ?

b is closer to the posterior mode obtained under the benchmark prior. Our
results show that the introduction of calibrated parameters is not at all innocu-
ous and it is the main determinant of the large impact of prior knowledge on
posterior estimates as found by DS.8

7In a more general case, when γ∗ is taken from VAR studies or when pre-sample information
is considered, as it is the case of the DS prior, this is not likely to be the case. Further research is
in progress by the authors on this topic.

8Our prior could be computed for a given set of points, integrated with respect to the sub-
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3 The DSGE Model

Our workhorse is a New Keynesian model which features Calvo pricing with
indexation, no capital, no habits in consumption and no wage rigidities; the
model follows the description in Rabanal and Rubio-Ramirez (2005) – RR hereto-
fore.9. The set of its structural parameters is given by:

ξ ≡ (β, η, δ, σ, θp, γ, ω, ρr, γy, γπ, ρa, ρg, σa, σm, σg, σp),

β is the discount factor, η is the elasticity of substitution among varieties in the
bundle of commodities, δ is the share of capital in the Cobb Douglas production
function, σ is the elasticity of intertemporal substitution and θp is the (Calvo)
probability of price adjustment, which lies in a bounded space (0,1). γ is the
elasticity of labor supply, ω is the degree of backward looking indexation in the
Phillips curve, ρr, γy, γπ are the parameters concerning the Taylor rule (interest
rate inertia, output term and inflation term). The rest of parameters pertain to
exogenous state variables, technology (a) and preference shocks (g) which are
autocorrelated (ρa, ρg), while the monetary shock (m) and the mark-up shocks
(p) are modeled as i.i.d. Gaussian.

Some parameters which are known to be difficult to pin down, i.e. either
because not separately identifiable from other model parameters or are hard to
estimate with detrended data, are calibrated at values which are standard in the
literature (see also RR); the calibrated elements are set at β = 0.99, δ = 0.36, ε =

6. Since both the elasticity of substitution σ and the Calvo probability θp lie in a
bounded space (i.e. between zero and one), we transform them as:

σ−1 ≡ 1/σ ; Θp ≡ 1

1 − θp

.

The transformation at hand is also convenient from an economic point of view:
transformed variables are, respectively, the risk aversion of agents and the aver-

vector ξb and then an interpolation scheme might be used to fill missing points during the
estimation procedure. Due to interpolation, this procedure turned out to be very unstable from
a numerical point of view and we abandoned it.

9Some further details concerning the model and the motivation for choosing a small scale
model are provided in appendix E.
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age amount of time that it takes until a price is revised. As it is common practice
in literature we formalize our priors as functions of the transformed parameters.

The vector of estimated parameters ξ hence reduces to:

ξ ≡ (σ−1,Θp, γ, ω, ρr, γy, γπ, ρa, ρg, σa, σm, σg, σp),

and exogenous state parameters are the last six terms.
In the next section we sketch the general estimation procedure. As we run

two different experiments with IRF-priors, in each one we inform a different
block of parameters by our macroprior. These blocks are respectively given by:
10

1. The exogenous states parameters block, as in Del Negro and Schorfheide
(2008):

ξ† ≡ [ρa, ρg, σa, σm, σg, σp].

For this case the application of the DS prior is also discussed.

2. Parameters non related to the exogenous shocks, with the exception of the
intertemporal elasticity of substitution which we found hard to identify
when a joint prior is used:11

ξ† ≡ [Θp, γ, ω, ρr].

3.1 Estimation

From the model solution, we write a state-space model as (1 − 3), by using
the reduced form of the model as transition equation. The state vector Xt is
given by real wages (rwt), inflation (πt), GDP (yt), the FED funds rates (rt); two
autoregressive processes of order one: a preference shock process (gt) and a
technology shock process (at). The vector of i.i.d. shocks εt is given by the
innovations of the two the AR(1) processes (technology and preference shock)

10We also ran a third experiment covering only parameters in the Taylor rule, but we omit it
since it yields no different results with respect to the benchmark prior.

11In linear models this parameter can be difficult to identify, see the paper by An and
Schorfheide (2007).
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plus monetary and mark up shock (see the appendix for more details). The
measurement equation is given by:12

Real Wage = 100 rwt,

Real Output Growth% = 100(yt − yt−1),

Annualized inflation rate = 400πt ≡ 400(lnPt − lnPt−1),

Annualized interest rate = 400 rt,

where measurements are on the left hand side, their model counterparts on the
right hand side. To form the likelihood of the model we use the Kalman Filter in-
novations: its implementation follows the description in Durbin and Koopman
(2001). Since an analytical form of the posterior distribution cannot be obtained,
we use an MCMC Random Walk Metropolis-Hastings to draw samples from it.

A detailed description of how the estimation procedure works with the dif-
ferent priors is summarized below; we denote differently only those steps which
differ across different priors (b, IRF, DS are respectively for benchmark priors,
IRF prior, DS prior):

1b Set benchmark priors: p(ξ | ξ∗,Σ∗). Combine with the Likelihood function
to form the posterior kernel.

1IRF Set benchmark p(ξb | ξ∗b ,Σ∗b) and compute a target γ∗ = γ(ξ∗† , ξ
?
b = ξ∗b )

(compute posterior kernel).

1DS Set p(ξb | ξ∗b ,Σ∗b) and compute sample moments (Γ∗) on a pre-sample (com-
pute posterior kernel).

2 Use a numerical optimizer to find the mode of the posterior defined above
for benchmark priors (1b), call the mode ξ̄.13 To make the different estima-

12The sample is 1960:01-2001:04. Series on output, prices and wages come from the Bureau of
Labor Statistics, output for the non farm business sector and its deflator and hourly compensa-
tion for the nonfarm business sector. Fed Funds rates from the FRED database of the FED of St.
Louis. Data have been made stationary prior to estimation: inflation and output are in growth
rates and we demean them, whereas a linear trend is subtracted from the real wages series.

13We used the csminwell.m program by Chris Sims.
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tions comparable this step is run only once with benchmark priors and the
estimates are used to run estimation for all different priors.14

3 Compute the inverse Hessian of the posterior H at ξ̄ and decompose via
eigenvalue-eigenvector decomposition to form a matrix D: H = D′ΛD.

4 Draw a candidate vector of parameters (ξc) according to a random walk
with normally distributed innovations η ∼ N(0, 1):

ξc = ξi + μΛ−
1
2Dη,

where ξc = [ξc
† , ξ

c
b ] and μ is a general scale parameter, which we use to

tune the acceptance rate of the chain. To make estimation with different
priors numerically comparable, each chain is started at the same ξ0, which
is numerically found in step one by benchmark priors.

5b Combine Likelihood and benchmark prior to get a posterior kernel for
draw ξc.

5IRF Compute the impulse response function γ(ξc
† , ξ

?
b = ξ∗b , ) and form the prior

kernelw(ξc
† , ξ

?
b = ξ∗b | γ∗, K), combine with p(ξc

b | ξ∗b ,Σ∗b) and the Likelihood
to get a posterior kernel for draw ξc.

5DS Compute the simulated data moments implied by draw ξc
† , ξ

?
b where ξ?

b is
fixed (we discuss this in section 4.2) and get the DS prior kernel (described
in 23) combine with the benchmark p(ξc

b | ξ∗b ,Σ∗b) and with the Likelihood
to get the posterior kernel of ξc.

6 Accept the draw ξc with probability depending on posterior odds ratio:

ξi+1 = ξc if ratio ≡ P (ξc)

P (ξi)
> rand(U(0,1)), (14)

ξi+1 = ξi, otherwise, (15)
14It is clearly possible to form a posterior, to be used for numerical maximization, applying

points 1IRF and 1DS; MCMC posterior results are robust to this.
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where P is the posterior kernel (likelihood times prior) and rand is a
uniformly-distributed random variable.

7 The algorithm is run in one chain for 200.000 draws, the μ is calibrated
in order to keep the acceptance rate between 20 and 40 % as in common
literature concerning Bayesian DSGE estimation.

We assessed convergence by inspecting CUMSUM statistics which suggested
us to select the last 50.000 draws of the chains to draw inference upon the pa-
rameters; further details on convergence diagnostics are reported in the ap-
pendix.

3.2 Posterior results with the benchmark prior

In our benchmark prior all parameters are independent random variables which
follow from the description in Rabanal and Rubio-Ramirez (2005).15 The prior
mode of the elasticity of intertemporal substitution is set to one, the logarithmic
utility case when substitution and income effect compensate, while the Calvo
parameter is set in such a way that prices adjust on average every two quar-
ters; both distributions are modeled as gamma. The elasticity of labour is also
set equal to one with a normal distribution. We chose a uniform distribution
between zero and one for the degree of price indexation in the economy. The
coefficients on the Taylor rule are informed on the basis of previous studies,
the γπ = 1.5 being the reference value since the original work by Taylor (1993).
For the exogenous parameters block we use uniform distributions.16 We use a
slightly larger support for what concerns the cost push shock, which is known
to contribute to inflation dynamics with quite large movements. The chosen
shapes and parameters of the prior distributions, are reported in table 1.

The posterior distributions generated by employing the benchmark prior are
shown in figure 1.

15Results do not change when more or less diffuse priors are adopted, provided they are
independent distributions.

16Switching to an inverted gamma prior for the variances of shocks does not alter results
significantly.
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Parameters Mean Distribution
σ−1 2 Gamma(2, 1)
Θp 2 Gamma(2, 1)
γ 1 Normal(1, 0.25)
ω 0.5 Uniform(0, 1)
ρr 0.5 Uniform(0, 1)
γy 0.25 Normal(0.25, 0.125)
γπ 1.5 Normal(1.5, 0.25)
ρa 0.5 Uniform(0, 1)
ρg 0.5 Uniform(0, 1)
σa 0.5 Uniform(0, 1)
σm 0.5 Uniform(0, 1)
σg 0.5 Uniform(0, 1)
σp 0.75 Uniform(0, 1.5)

Table 1: Sufficient statistics for the benchmark prior (microprior)
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Figure 1: Benchmark prior, posterior distribution, numerical posterior mode
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Posterior estimates are quite close to the numerical posterior mode. The
elasticity of labor supply turns out quite low compared to its prior mean value;
this makes marginal costs less sensitive to variations in output and therefore it
can be seen as a substitute mechanism to wage rigidity. The degree of inflation
indexation turns out to be quite high (ω = 0.77), which might also be a conse-
quence of the lack of rigid wages in the model. Estimated price rigidities (Θp)
also turn out to be quite high compared to microeconometric evidence implied
by our prior, which is a common feature in this class of models. Parameter esti-
mates are similar to those obtained by Rabanal and Rubio-Ramirez (2005) with
a similar dataset.

4 The impact of IRF priors

4.1 IRF priors: first block

In this section we apply our IRF-prior to the exogenous states block of parame-
ters:

ξ† ≡ [ρa, ρg, σa, σm, σg, σp].

Kernel density plots (figure 4.1) show both the case K = 0.5 and the more
informative prior K = 0.05, together with the benchmark prior.

We report means and quantiles of the IRF-prior below, for the caseK = 0.5:17

17Due to the nonlinear mapping between the structural and the reduced-form parameter
spaces, analytical expressions for IRF-priors cannot be obtained, therefore we draw the param-
eters we are interested in from a uniform distribution and we compute our normalized prior.
This is then used to re-weight the original draws as in an importance sampling scheme. This
approach is used to compute (weighted) kernel densities, quantiles and the linear correlation
measures in the tables.
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Figure 2: I block of parameters: univariate kernel density

Parameters 0.01 perc. Mean 0.99 perc.

ρa 0.06 0.64 1.00
ρg 0.06 0.55 1.01
σa 0.07 0.49 1.00
σm 0.09 0.46 0.96
σp 0.06 0.53 1.01
σg 0.06 0.54 1.01

The amount of information conveyed by the prior differs across parameters;
it is quite high for the standard deviation of technology and monetary policy
shocks, while it is lower for the remaining parameters.

By using importance sampling we also compute the correlation structure
implicit in our prior; parameters turn out to be highly correlated.
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Parameters ρa ρg σa σm σp σg

ρa 1.00 0.97 0.61 0.96 0.69 0.85
ρg 0.97 1.00 0.67 0.92 0.72 0.92
σa 0.61 0.67 1.00 0.65 0.98 0.87
σm 0.96 0.92 0.65 1.00 0.74 0.82
σp 0.69 0.72 0.98 0.74 1.00 0.88
σg 0.85 0.92 0.87 0.82 0.88 1.00

From the MCMC posterior estimates we found that there is little difference
with respect to the benchmark prior case. Figure 3 shows the case K = 0.05,
as for K = 0.5 the difference turned out to be almost negligible. Regarding
σp, in spite of the fact that the IRF-prior appears to be almost as informative as
the benchmark in figure 4.1, this is the only posterior for which there was some
noticeable shrinkage using K = 0.05.

4.2 DS reassessed

In this section we compare benchmark estimates with posterior results obtained
by applying a DS-prior to the set of exogenous state parameters. Some descrip-
tion and technical details concerning the DS-prior are in appendix; estimation
follows the steps outlined in section (3.1). We use a pre-sample of around forty
observations on which we compute moments, leaving the remaining for esti-
mation18. Following DS (2008), the moments computed for the observable vari-
ables are restricted to the variance covariance matrix and the order one (cross)
autocorrelation. We fix the scale parameter of the strength of the prior, T ∗, at 6,
also following DS.19

For what concerns the calibrated parameters, experiments show that two
parameters matter the most in shaping results: the parameter for risk aversion
and the average amount of time after which a firm is able to change its price.
We present two experiments, respectively DS1 and DS2 below, which differ only

18Results are not very sensitive to this choice, we also tried different splits without seeing

19We checked that for T ∗ in the range between 4 and 8 results do not change.
much qualitative difference, albeit a little quantitative one.
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Posterior: IRF−prior block I, K= 0.05

Figure 3: Posteriors: univariate kernel density, using benchmark prior and IRF-
prior block I.
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for the calibration of those two parameters. The following points summarize the
experiments:

• Calibrated parameters are:

ξ?
b = [σ?−1

,Θ?
p, γ

?, ω?, ρ?
r, γ

?
y, γ

?
π],

all but two are set at the benchmark prior mean.

DS1 (σ?−1, Θ?
p) are both set equal to 2, the benchmark prior mean.

DS2 (σ?−1, Θ?
p) are both set equal to 5, closer to the posterior mean found with

benchmark priors.

In both experiments the benchmark prior applied to subvector ξb is the same, as
described in table 1.

Such an (apparently) small difference in calibration between the two exper-
iments is sufficient to produce dramatic differences in posterior estimates, as
shown in figure 4. In particular we find that posterior nominal rigidities (Θp) are
very low when Θ?

p = 2, which is in line with the findings of DS (2008). MCMC
posterior estimates for DS1 and DS2 with respect to benchmark are shown in
figure 4.

When the two parameters are set closer to the posterior mode obtained un-
der benchmark prior (DS1 experiment, reported in blue), estimates for nominal
rigidities become much closer to those obtained by using the benchmark prior
(red line). The DS prior seems to be quite informative, posterior distributions
being narrower with respect to the benchmark prior case. The DS2 experiment
(σ?−1

,Θ?
p = 2) is reported in green; in this case the DS method produces poste-

rior estimates for nominal rigidities which are far away and much lower than
the benchmark results. DS found that, in general, deep parameters estimates
can be sensitive to priors. We conjecture that not only do priors matter, but
(mostly) matters how parameters which need to be calibrated are fixed by the
researcher; luckily it seems to be possible to find calibrations for which bench-
mark and macroprior results do coincide, while maintaining an high degree of
informativeness by using the DS prior.
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Figure 4: MCMC posterior distribution using the benchmark prior and DS prior.
Two different settings of the calibrated rigidities, DS1, ‘high’ values of calibrated
parameters, DS2, ‘low’ values of calibrated parameters.



27
ECB

Working Paper Series No 1289
January 2011

4.3 IRF-priors: Second block

In our second experiment IRF-priors are used for a different block of parame-
ters, namely the average length of price adjustment, the elasticity of labor sup-
ply, the degree of inflation indexation and the smoothing parameter in the Tay-
lor rule: ξ† ≡ [Θp, γ, ω, ρr].

For the IRF prior we impose (roughly) the same prior means as in the bench-
mark: means and quantiles are reported below.

Parameters 0.01 perc. Prior Mean 0.99 perc.

Θp 1.01 2.11 7.03
γ 0.01 1.06 2.03
ω 0.06 0.49 0.92
ρr 0.01 0.43 0.78

with the kernel density plots shown in figure 5:20

Also in this case the strenght of the prior differs across parameters; dif-
ferently from the previous block, the difference between setting K = 0.5 or a
tighter K = 0.05 appears to be rather limited. The correlation structure of this
prior turns out to be as follows:

Parameters Θp γ ω ρr

Θp 1.00 0.78 0.91 0.73
γ 0.78 1.00 0.96 0.98
ω 0.91 0.96 1.00 0.94
ρr 0.72 0.98 0.94 1.00

For what concerns the estimation, we follow the steps described in section
3.1; calibrated parameters were set according to ξ?

b = ξ∗b , i.e. according to the
hyperparameters of the benchmark prior; no relevant difference was found
by changing calibrated parameters both in the target and IRF implied by the
metropolis draws.

From our second experiment we report changes in posterior estimates with
respect to the benchmark prior case, for some parameters regarding the stan-

20To show how overall prior tightness operates we show both K = 0.5 and K = 0.05
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Figure 5: Block II. Univariate kernel density (Note that Θp is cut at one, kernel
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dard deviation of the exogenous states: technology and more dramatically, the
mark-up shock.

Among the structural parameter the most relevant changes concerned the
amount of nominal rigidities Θp and the elasticity of labor supply γ. For this
block no sizeable difference was found between the case K = 0.5 and K = 0.05

The change in the posterior estimates produced by a change in the priors
seems to follow some meaningful pattern: higher nominal rigidities (Θp) are
met by a lower elasticity of labor supply γ and by larger mark-up shocks σp.
This can be better understood by looking at how the Phillips curve and the
marginal costs are specified in the model. After some trivial algebraic manipu-
lation we see that,

πt = γbπt−1 + γfEtπt+1 + κpp(θp) (mct + ep) , (16)

mct =

(
1

σ
− 1 +

γ + 1

1 − δ

)
yt − γ + 1

1 − δ
at − gt (17)
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Figure 6: IRF prior on block II. Posteriors: univariate kernel density
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the impact of the cost push shock ep is loaded into inflation πt by a term κpp

which is a negative function of the expected duration of price rigidity (Θp). For
given expectations of future inflation, more rigid prices will need a larger vari-
ance of ep in order to match the same variance of inflation present in the data.
The elasticity of labor supply enters instead in the definition of marginal costs;
a lower value of the elasticity γ helps in keeping marginal costs lower after
shocks to output. A lower estimate of γ would then imply an higher variance
of technology shocks (σa), since technology at is multiplied by the parameter γ
in equation (17). The specific changes in posterior estimates under the two pri-
ors might suggest a problem of identification: deep parameters are only jointly
identified in the model, but individually they are not well identified.

A possible interpretation of the difference in posterior estimates would then
be that a correlated prior would effectively twist estimates by imposing a stronger
correlation structure among parameters, when those are not well identified in-
dividually. A different interpretation would be that the model is misspecified
and the structure of dependence in the prior exacerbates the problem by impos-
ing the cross equation restrictions of the DSGE model as prior information. In
order to get some insights about which of the two explanations above appears
more plausible, we simulated artificial data from the model and we estimated it
by recurring to both our IRF-prior and the benchmark independent prior. Data
is simulated by setting parameters consistently with the numerical posterior
mode on real data.

We contrast results in figure 7: once misspecification is controlled for, the
difference between the two posterior estimates is greatly reduced with respect
to what was apparent from figure 4.3, and appears to affect almost only the pa-
rameter σp.21 This can suggest that misspecification is to blame for the instability
of the estimates. As a check for misspecification, we ran a Kalman smoother in
order to recover the supposedly i.i.d. innovations of the shocks and to compute
their contemporaneous correlation structure, shown in the table below.

21Some caution should be used since we did not undertake a proper Monte Carlo experiment.
With MCMC estimation this can take more than 300 hours of computing time.
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Posterior: IRF−prior block II, K= 0.05

Figure 7: II block and independent prior benchmark: simulated data

Shocks Technology Monetary Cost Push Preference

Technology 1.00 -0.55 0.31 0.01
Monetary -0.55 1.00 -0.57 0.16
Cost Push 0.31 -0.57 1.00 0.014
Preference 0.01 0.16 0.01 1.00

It is easy to see that all shocks are highly cross-correlated with the only ex-
ception of the preference shock, which is a sign of misspecification.22

22We assessed confidence bands for the correlation matrix by undertaking a little Monte Carlo
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5 Conclusions

In this paper we studied the effect of joint priors on posterior estimates for
DSGE models. We introduced a new macro prior based on impulse response
functions (‘IRF-prior’) and we compared posterior estimates obtained using
ours against a benchmark microprior.

The paper has two main implications concerning the use of macropriors.
First, when a macroprior is adopted, posterior distributions depend upon pa-
rameters which need to be calibrated. The way researchers calibrate those pa-
rameters is not neutral for results. We show this to be the key to understand the
Del Negro and Schorfheide (2008) result that posterior estimates change when
a joint prior on exogenous states parameters is adopted. Once we offset the role
of calibrated parameters, a joint prior on exogenous state parameters seems to
have a weak or negligible influence on the posterior estimates of the parameters
which regulate the amount of nominal rigidities in the economy. We confirm
this finding by using both our IRF-prior and the DS prior.

Second, we verify that applying our IRF-prior on a key set of parameters
can twist the posterior estimates even after calibrated parameters are taken into
account. The change in the posterior estimates mostly concerns the Calvo prob-
ability of price adjustment and the variance of mark-up shocks. By the means
of a simulated dataset we argue that this result could be attributed to misspeci-
fication of the DSGE model.

Appendices

A. The problem of intractable normalizing constants

Consistently with our definitions of the IRF-prior, the Metropolis-Hastings Ra-
tio which defines the probability of accepting a candidate draw ξc over the pre-
vious ξi is given by:

experiment with 1000 simulated datasets. This provided us with the insight that in this model
a reasonable confidence interval for correlations is (-0.2–0.2) with a mode of zero. Results are
available upon request.
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H(ξc | ξi) =
L(X | ξc)g(ξi | ξc)w(ξc

b , ξ
c
irf )

L(X | ξi)g(ξc | ξi)w(ξi
b, ξ

i
irf )

w(ξi
b)

w(ξc
b)
, (18)

where L denotes the likelihood function from the DSGE model (X are the data)
and g is the proposal or candidate distribution; when using a random walk as
a proposal, this term cancels out. The kernel w rather than its proper version
w̄ is adopted, as its normalizing constant would be eliminated in the ratio, as
standard in an MCMC approach. To simplify notation we omit in the expres-
sion the term related to the benchmark prior. The last term in the expression is
the ratio between ’normalizing constants’; it is not analytically available and it
varies over the draws c and i so the ratio cannot be computed.

Moeller, Pettitt, Berthelsen, and Reeves (2006) show that this type of problem
can be tackled by introducing an auxiliary variable x which is defined over the
same space as ξ†, distributed with a conditional density f(x | ξ†) chosen by the
researcher. Introduce then a proposal density π(x | ξb) (indepedent to g) to be
used in the Metropolis sampler, as follows:

π(x | ξb) =
w(x, ξb)

w(ξb)
, (19)

where w(x, ξb) is in our case the joint distribution of x, ξb as induced by our IRF-
prior. The marginal density w(ξb) was defined before. Now consider estimating
the joint set ξ, x by a Metropolis sampler. Its ratio would be given by:

H(ξc, xc | ξi, xi) =
L(X | ξc)g(ξi | ξc)w(ξc

b , ξ
c
irf )

L(X | ξi)g(ξc | ξi)w(ξi
b, ξ

i
irf )

w(ξi
b)

w(ξc
b)

f(xc | ξc
b)π(xi | ξi

b)

f(xi | ξi
b)π(xc | ξc

b)
, (20)

now plug (19) in (20) to remove the normalizing constants. Assuming also a
random walk for the g we obtain:

H(ξc, xc | ξi, xi) =
L(X | ξc)w(ξc

b , ξ
c
irf )

L(X | ξi)w(ξi
b, ξ

i
irf )

f(xc | ξc
b)

f(xi | ξi
b)

w(xi, ξi
b)

w(xc, ξc
b)
, (21)
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the solution comes as one assumes that the distribution followed by the auxil-
iary variable x is given by:

f(xc | ξb) =
w(xc|ξb = ξ?

b )

w(ξ?
b )

,

where, as in the main text, w(xc, ξb = ξ?
b ) denotes the IRF joint prior kernel when

ξb is at some fixed value ξ?
b . The final expression for the metropolis ratio is given

by:

H(ξc, xc | ξi, xi) =
L(X | ξc)w(ξc

b , ξ
c
irf )

L(X | ξi)w(ξi
b, ξ

i
irf )

w(xc | ξb = ξ?
b )

w(xi | ξb = ξ?
b )

w(xi, ξi
b)

w(xc, ξc
b)
, (22)

(22) reduces to the shortcut outlined by DS(2008) only if xi = ξi
irf for all i.

B. The Model

We use the same model as one of those estimated in Rabanal and Rubio-Ramirez
(2005). The reason for choosing a small scale model rather than a larger one is
that it yields more simple and transparent results. Larger models would still
suffer from misspecification problems, albeit probably less than smaller ones,
but on top of that, they have more parameters and this can make identification
more difficult. Overall, we believe that the model we chose represents a good
trade-off between transparency and realism for our analysis.

The (linearized) model is described by the following set of equations:

1

σ
yt =

1

σ
Etyt+1 − (rt − Etπt+1 + Etgt+1 − gt);

πt = γbπt−1 + γfEtπt+1 + κpp(mct + ep);

rt = ρrrt−1 + (1 − ρr)(γππt + γyyt) + em;

yt = at + (1 − δ)nt;

mct = rwt + nt − yt;

rwt = yt
1

σ
+ γnt − gt;

The complete set of variables is given by: {yt,mct, rwt, πt, rt, nt}, respectively
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the GDP, marginal costs, real wages, inflation rates, interest rates, the amount of
hours worked. There are four shocks in this economy, technology a, intertem-
poral preferences g, monetary em and mark up shocks ep; the first two autore-
gressive processes, while the latter are i.i.d.

at = ρaat−1 + ea,

gt = ρggt−1 + eg.

The first three equations are the Euler equation, the (backward looking)
Phillips curve and a standard Taylor rule. The backward looking component
in the Phillips curve is derived from the assumption that non updating pro-
ducers partially index their prices as a function of past inflation. The remaining
equations are standard: the production function, the definition of marginal costs
and the supply for labour. As common in the literature, some constants in the
equations above are given by a non linear combinations of deep parameters, as
follows:

γb = ω/(1 + ωβ)

γf = (β/(1 + ωβ));

κpp =
(1 − δ)(1 − θpβ)(1 − θp)

(θp(1 + δ(ε− 1)))(1 + ωβ)
,

ω is the degree of backward looking indexation in the Phillips curve, β is the
discount factor (calibrated at 0.99), θp is the probability of price adjustment in
the Calvo model, δ is the share of capital in the Cobb Douglas production func-
tion (0.36) and ε is the elasticity of substitution among varieties in the bundle of
commodities (6).

C. Some further details concerning the DS prior

The DS prior uses information about sample moments, elicited from a pre-
sample of data. IRFs and moments are closely related concepts: they coincide
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when impulse responses from all shocks are considered. Differently from simu-
lated moments, the advantage of IRFs is that they allow the researcher to draw
prior information only from the shocks whose behaviour is most known to re-
searchers, even if they contribute to the overall data moments by little. A good
example of that is the monetary policy shock. In general, IRFs are the most stud-
ied objects in macroeconomics and potentially allow to better draw information
from prior knowledge.

The kernel of the Del Negro and Schorfheide’s prior corresponds to the like-
lihood of the VAR which (approximately) embeds the restrictions implied by
the DSGE model.23 The VAR approximation of the DSGE is denoted as follows:

Yt = Φ1(ξ)Yt−1 + Φ2(ξ)Yt−2 + . . .+ Φj(ξ)Yt−j + εt,

or in matrix notation
Yt = Φ(ξ)Xt + εt,

with Φ(ξ) ≡ Φ1(ξ) . . .Φj(ξ) and Xt ≡ [Yt−1 . . . , Yt−j].
The Φs are numerically constructed using the OLS regression coefficients for-

mulas from DSGE-simulated data moments and they depend upon the whole
vector of structural parameters ξ. The likelihood of the VAR approximation of
the DSGE is easily expressed as a function of few data moments, conditional on
the values of deep parameters:

L(Y,X | ξ) =| Σ(ξ) |−(T ∗+n−1)/2 exp

(
T ∗

2
tr[Σ(ξ)]−1(ΓY Y − 2Φ(ξ)ΓXY + Φ(ξ)′ΓXXΦ(ξ

(23)
where Σ(ξ) is the theoretical variance covariance matrix of the data implied by
the DSGE, T ∗ is a scale factor for the strength of the prior. Γs are sample data
moments (a pre-sample is used) with Y as the dependent variables (in our case
wages, output growth, inflation and interest rates ) and X are lagged data. Ex-
pression (23) provides the kernel of the DS prior concerning parameters which

23DSGEs do not always have a finite VAR representation; a simple RBC model estimated with
capital as unobserved variable has a finite VARMA structure, but no exact VAR one. To check
the quality of the approximation we simulated datasets from an RBC model and we estimated
both the RBC and the approximated VAR by likelihood methods. The difference in the sampling
distributions seems to be rather small. Results are available upon request.
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Table 2: DS Prior statistics: σ?−1
,Θ?

p at 2

Parameters 0.01 perc. Prior mean 0.99 perc.
ρa 0.6464 0.8284 0.9856
ρg 0.6051 0.7954 0.9691
σa 0 0.0515 0.2176
σm 0 0.1411 0.2944
σg 0 0.0504 0.2633
σp 0.0408 0.2326 0.3860

Table 3: DS Prior statistics: σ?−1
,Θ?

p at 5

Parameters 0.01 perc. Prior Mean 0.99 perc.
ρa 0.5640 0.7503 0.9223
ρg 0.5927 0.7933 0.9367
σa 0 0.0606 0.2030
σm 0 0.0606 0.2172
σg 0.0321 0.2172 0.3739
σp 0 0.1197 0.2554

are informed by the prior. When only a subset of the deep parameters ξds is
informed by the DS prior, the kernel above should be multiplied with a mi-
croprior on ξb. The same issue of calibrated parameters as in IRF-prior also
arises when computing (23). The rationale underlying the DS prior stems from
a dummy prior approach, see Sims (2008), where the researcher constructs an
augmented sample which combines the original data with some ‘dummy’ ob-
servations which have been simulated from the model. By approximating the
DSGE by a VAR, DS are able to tune their dummy prior directly on moments of
the data without the need of calibrating directly deep parameters.

The table below reports some quantiles and the mean of the DS prior as
applied to our pre-sample. We sampled parameters from a uniform distribution
and computed (23) at each draw: those are then weights for a weighted kernel
density estimation. The prior is computed for two different values of calibrated
parameters.

It is interesting to note that variances change widely when different values of
the calibrated parameters are selected, moreover the persistence of the technol-
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ogy shock changes, while the autoregressive parameter of the preference shock
is almost not affected. This is due to the fact that our set of measurements do
not provide enough information to well identify the technology shock, which
turns out to be very sensitive to the assumed parameters. While the preference
shock is not sensitive to changes in its persistence parameter we found that the
smoothed technology shock turns out to be heavily influenced by changes in
both its own parameter and changes in the persistence parameter of the other
shock.

D. Detailed estimation results

Table 4: Numerical mode results
Parameters Numerical posterior mode

σ−1 8.5361
Θp 7.2722
γ 0.3735
ω 0.7689
ρr 0.3943
γy 0.0415
γπ 1.0901
ρa 0.8332
ρg 0.9001
σa 0.0148
σm 0.0047
σg 0.1563
σp 0.7501
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Table 5: Posterior: benchmark priors
Parameters 0.01 perc. 0.99 perc. Posterior mean

σ−1 4.6972 17.7151 9.8850
Θp 5.5936 10.1753 7.9071
γ 0.2077 0.6842 0.3630
ω 0.6456 0.9082 0.7701
ρr 0.2777 0.4926 0.3950
γy 0.0115 0.0724 0.0408
γπ 1.0029 1.2097 1.0890
ρa 0.7543 0.9036 0.8329
ρg 0.8409 0.9424 0.8961
σa 0.0085 0.0258 0.0165
σm 0.0040 0.0057 0.0047
σg 0.0874 0.3300 0.1818
σp 0.4454 1.4693 0.9167

Table 6: Posterior: IRF-prior (First block)
Parameters 0.01 perc. 0.99 perc. Posterior mean

σ−1 4.8299 18.6660 10.3330
Θp 5.5119 10.0485 7.6757
γ 0.1758 0.6198 0.3650
ω 0.6466 0.8961 0.7657
ρr 0.2814 0.4959 0.3948
γy 0.0142 0.0735 0.0425
γπ 1.0036 1.2060 1.0918
ρa 0.7504 0.8955 0.8314
ρg 0.8161 0.9416 0.8921
σa 0.0092 0.0315 0.0165
σm 0.0040 0.0056 0.0047
σp 0.4285 1.4680 0.8665
σg 0.0909 0.3332 0.1885



40
ECB
Working Paper Series No 1289
January 2011

Table 7: Posterior: IRF-prior (Second block)
Parameters 0.01 perc. 0.99 perc. Posterior mean

σ−1 4.4469 17.3490 9.5278
Θp 6.8017 14.3987 10.5628
γ 0.1664 0.5168 0.2802
ω 0.6540 0.8880 0.7669
ρr 0.2892 0.4901 0.3932
γy 0.0063 0.0678 0.0322
γπ 1.0045 1.1920 1.0844
ρa 0.7717 0.9229 0.8550
ρg 0.8319 0.9491 0.8921
σa 0.0108 0.0323 0.0211
σm 0.0040 0.0055 0.0047
σp 0.6504 2.9236 1.6528
σg 0.0831 0.3150 0.1729

Table 8: Posterior Estimates with DS: (σ?−1
,Θ?

p at 2)

Parameters 0.01 perc. 0.99 perc. Posterior Mean
σ−1 10.3426 23.6727 15.7359
Θp 3.1205 4.9284 3.9258
γ 0.4376 0.8156 0.6270
ω 0.7361 0.9786 0.8935
ρr 0.3380 0.5534 0.4539
γy 0.0594 0.1315 0.0930
γπ 1.0176 1.2788 1.1297
ρa 0.6856 0.8270 0.7601
ρg 0.8435 0.8928 0.8724
σa 0.0080 0.0149 0.0109
σm 0.0040 0.0057 0.0048
σg 0.2015 0.4277 0.2993
σp 0.1438 0.3621 0.2282
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Table 9: Posterior Estimates with DS: (σ?−1
,Θ?

p at 5)

Parameters 0.01 perc. 0.99 perc. Posterior Mean
σ−1 4.7907 11.6364 7.3624
Θp 8.1756 10.1361 9.1578
γ 0.2786 0.5678 0.4165
ω 0.6984 0.9504 0.8188
ρr 0.0862 0.3692 0.2263
γy 0.0264 0.1202 0.0740
γπ 1.0019 1.1973 1.0908
ρa 0.6520 0.9066 0.8142
ρg 0.8087 0.9217 0.8646
σa 0.0085 0.0173 0.0119
σm 0.0060 0.0082 0.0073
σg 0.0962 0.2134 0.1401
σp 1.0877 1.4887 1.3153

Table 10: Benchmark priors: simulated data
Parameters 0.01 perc. 0.99 perc. Posterior mean

σ−1 2.6439 12.9031 6.1677
Θp 5.1776 9.1008 6.7599
γ 0.3489 0.6236 0.4664
ω 0.6568 0.8689 0.7554
ρr 0.3141 0.4448 0.3836
γy 0.0092 0.0814 0.0444
γπ 0.9997 1.1653 1.0627
ρa 0.8281 0.9420 0.8888
ρg 0.7483 0.8920 0.8176
σa 0.0088 0.0199 0.0138
σm 0.0044 0.0055 0.0049
σp 0.3809 1.2081 0.6743
σg 0.0590 0.2625 0.1284

E. Convergence diagnostics

We show cumsum (CS) plots of the posterior estimates, where cumsum is the
difference between a rolling mean of posterior draws and the overall mean,
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Table 11: IRF-prior on block II: K = 0.05 (simulated data)

Parameters 0.01 perc. 0.99 perc. Posterior mean

σ−1 2.6833 13.0484 6.3809
Θp 5.6056 9.9593 7.5941
γ 0.3333 0.5923 0.4474
ω 0.6575 0.8691 0.7562
ρr 0.3169 0.4470 0.3844
γy 0.0029 0.0798 0.0405
γπ 0.9989 1.1708 1.0583
ρa 0.8407 0.9547 0.9030
ρg 0.7601 0.9014 0.8206
σa 0.0092 0.0258 0.0146
σm 0.0044 0.0055 0.0049
σp 0.4497 1.4290 0.8557
σg 0.0591 0.2635 0.1320

scaled by the standard deviation of the chain:

CSt =

(
1

t

t∑
n=1

θn − μθ

)
/σθ,

in order to have the percentage oscillation of the CS statistic around the
mean value. In order to compute posterior estimates we retain draws after a
t such that the CS statistic oscillates by no more than 5%. In general this is
achieved by selecting the last 50.000 draws of our chains, which is what we do.
Below we report in the graphs for the last 100.000 draws of the chains.
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Figure 8: Cumsum plots : benchmark priors
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Figure 9: Cumsum plots : DS prior, DS1 experiment
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Figure 10: Cumsum plots : DS prior, DS2 experiment
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Figure 11: Cumsum plots: IRF-priors, block 1
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Figure 12: Cumsum plots: IRF-priors, block 2
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