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Abstract

An economy exhibits structural heterogeneity when the forecasts of different
agents have different effects on the determination of aggregate variables. We study
how different forms of heterogeneity in structure, forecasts and adaptive learning
rules affect the conditions for convergence of adaptive learning towards rational
expectations equilibrium. Results are applied to the market model with supply
lags, a New Keynesian model of interest rate setting and the monetary inflation
model with heterogenous agents.

Key words: Adaptive learning, expectations formation, stability of equilibrium,
market model, monetary policy, Cagan model

JEL classification: D83, C62, E30

ECB * Working Paper No |20 * January 2002



Non-Technical Summary

There has been a large amount of research into the implications of adaptive learning
behavior in expectations formation for economic dynamics. Paralleling general macroe-
conomics, most of the research that uses adaptive learning has been carried out in models
with representative agents, i.e. in economies with structural homogeneity. In studies of
adaptive learning the assumption of a representative agent is usually interpreted to mean
that expectations and learning rules are also identical. These kinds of assumptions are
made mostly for analytical convenience rather than for their realism. In this paper we
reconsider stability of rational expectations equilibrium (REE) under adaptive learning
when the economy exhibits structural heterogeneity, i.e. the assumption of structural
homogeneity is relaxed.

In economies with structural heterogeneity the basic characteristics differ across con-
sumers (and firms), so that they respond to expectations in different ways. If this is the
case, it is natural to assume that expectations of different agents can also differ. We will
make the further distinction that heterogeneity in expectations can be due to different
initial beliefs or the use of different learning algorithms by the agents. Clearly, struc-
turally homogenous economies can exhibit heterogenous expectations (and this possibil-
ity is permitted in some studies, see the references below), but different agents respond
to expectations in the same way in economies with structural homogeneity.

While different approaches to adaptive learning exist, probably the largest concen-
tration of research has used what is called the statistical or econometric learning. In
this approach the economic agents are assumed to use forecast functions that depend
on some parameters and, at any moment of time, the economic decisions are made on
the basis of expectations/forecasts obtained from these functions. The values of the
parameters in these functions and expectations of the agents are adjusted over time as
new data becomes available. Parameter updating is assumed to be done using standard
econometric methods such as recursive least squares (RLS) estimation. A key issue of
interest is whether this kind of adaptive learning behavior converges to a rational ex-
pectations equilibrium (REE) over time. If this is the case, then eventually the forecast
functions of the agents are those associated with the REE.

In this paper our goal is to consider the stability of REE when both structural and
expectational heterogeneity is present. The basic framework will be a multivariate linear
model with two classes of agents. While the assumption of linearity is directly postulated
for some models in the literature, we can also justify this assumption by observing that
most applied studies are in any case based on linearization. The restriction to two
classes of agents in the main analysis is done only for simplicity of formulation, and we
also state the stability conditions for economies with a finite number of different classes
of agents. As already noted, heterogenous expectations can arise because of different
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initial beliefs or because the learning rules of the agents differ and we will analyze both
possibilities. The case of different learning rules is further subdivided into (a) situations
where the learning rules of the different agents are the same, except for their degree of
responsiveness to forecast errors and (b) when the learning rules take different forms.
In case (b) we assume that some agents use the RLS algorithm while others use the
stochastic gradient algorithm. We also take up the case in which one class of agents
has continually RE while others are learning as this case occasionally appears in the
literature.

The economy may be purely forward looking or it may also include lags of endogenous
variables. Though we will work out the details in the forward looking framework, the
main analytical steps for economies with lags will also be outlined. General convergence
conditions are derived in the different cases of heterogeneity. These conditions are used
in three economic applications: (i) Muth’s market model, (ii) a model of monetary policy
and (iii) Cagan’s inflation model. It is shown that structural heterogeneity does not
affect the stability conditions in models (i) and (iii). However, for model (ii) structural
heterogeneity can matter and the convergence conditions of the earlier literature are
only necessary, but not in general sufficient for convergence of heterogenous learning to
the REE. (A more detailed analysis of model (ii) is done in a companion paper.)
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1 Introduction

There has been a large amount of research into the implications of adaptive learning
behavior in expectations formation for economic dynamics.! Paralleling general macroe-
conomics, most of the research that uses adaptive learning has been carried out in models
with representative agents, i.e. in economies with structural homogeneity. In studies of
adaptive learning the assumption of a representative agent is usually interpreted to mean
that expectations and learning rules are also identical. These kinds of assumptions are
made mostly for analytical convenience rather than for their realism. In this paper we re-
consider stability of REE under adaptive learning when the economy exhibits structural
heterogeneity, i.e. the assumption of structural homogeneity is relaxed.?

In economies with structural heterogeneity the basic characteristics differ across con-
sumers (and firms), so that they respond to expectations in different ways. If this is the
case, it is natural to assume that expectations of different agents can also differ. We will
make the further distinction that heterogeneity in expectations can be due to different
initial beliefs or the use of different learning algorithms by the agents. Clearly, struc-
turally homogenous economies can exhibit heterogenous expectations (and this possibil-
ity is permitted in some studies, see the references below), but different agents respond
to expectations in the same way in economies with structural homogeneity.

While different approaches to adaptive learning exist, probably the largest concen-
tration of research has used what is called the statistical or econometric learning? In
this approach the economic agents are assumed to use forecast functions that depend
on some parameters and, at any moment of time, the economic decisions are made on
the basis of expectations/forecasts obtained from these functions. The values of the
parameters in these functions and expectations of the agents are adjusted over time as
new data becomes available. Parameter updating is assumed to be done using standard
econometric methods such as recursive least squares (RLS) estimation. A key issue of
interest is whether this kind of adaptive learning behavior converges to a rational ex-
pectations equilibrium (REE) over time. If this is the case, then eventually the forecast
functions of the agents are those associated with the REE.

In this paper our goal is to consider the stability of REE when both structural and
expectational heterogeneity is present. The basic framework will be a multivariate linear
model with two classes of agents. While the assumption of linearity is directly postulated
for some models in the literature, we can also justify this assumption by observing that

!(Evans and Honkapohja 2001) is a recent treatise on the subject. For overviews and surveys see
e.g. (Evans and Honkapohja 1999), (Marimon 1997), (Sargent 1993) and (Sargent 1999).

2This terminology is introduced in Chapter 2 of (Evans and Honkapohja 2001).

3Other approaches to adaptive learning include the use of computational intelligence (see e.g.
(Arifovic 1998)), models of discrete predictor choice (see e.g. (Brock and Hommes 1997) and (Brock
and de Fontnouvelle 2000)) and eductive learning (see (Guesnerie 1999)). In addition, adaptive learn-
ing is usually a part of the so-called agent based models, see e.g. (LeBaron 2001). These alternative
approaches rely heavily on simulation studies. Theoretical results are available for models of discrete
predictor choice and eductive learning.
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most applied studies are in any case based on linearization.! The restriction to two
classes of agents in the main analysis is done only for simplicity of formulation, and we
also state the stability conditions for economies with a finite number of different classes
of agents. As already noted, heterogenous expectations can arise because of different
initial beliefs or because the learning rules of the agents differ and we will analyze both
possibilities.” We also take up the case in which one class of agents has continually RE
while others are learning as this case occasionally appears in the literature.

The economy may be purely forward looking or it may also include lags of endoge-
nous variables. Though we will work out the details in the forward looking framework,
the main analytical steps for economies with lags will also be outlined. We will use
the general stability conditions in three economic applications: Muth’s market model,
a model of monetary policy and Cagan’s inflation model. Our analysis is focused on
models where different agents need to forecast a common vector of aggregate variables,
which is a very common setting in the literature. In other words, we will assume that
information is symmetric between the agents. This is done for simplicity and brevity,
though we conjecture that the approach can be generalized to models with informa-
tional asymmetries once the concept of equilibrium is suitably modified. Informational
asymmetries are obviously a further source for heterogeneity in expectations’

In the earlier literature, the bulk of the work on econometric learning has assumed
homogeneity in both expectations and structure, though there exist several studies that
permit heterogenous expectations in a homogenous structure, see e.g. (Bray and Savin
1986), (Evans and Honkapohja 1997), (Evans, Honkapohja, and Marimon 2001) and
(Giannitsarou 2001). Heterogenous expectations are also present in some of the other
approaches to adaptive learning cited in footnote 2 above. Structural heterogeneity
is permitted for a class of models in (Marcet and Sargent 1989a). Expectations are
heterogenous in the Marcet and Sargent setup, but this arises solely from informational
differences as different agents are assumed to use versions of RLS estimation as their
learning algorithms. Moreover, Marcet and Sargent do not provide explicit stability
conditions in terms of the structural parameters of the economy.’

4We conjecture that it would be relatively straightforward to extend our analysis to learning of steady
states, cycles and sunspots in the nonlinear setups considered in Part 4 of (Evans and Honkapohja 2001).

5In independent work (Giannitsarou 2001) considers similar forms of heterogeneity under the restric-
tive assumption of structural homogeneity, so that the economy depends only on the average expecta-
tions of the agents.

SFor recent work see e.g. (Evans and Honkapohja 2001), Chapter 13 and (Honkapohja and Mitra
2002), Section 5. An early paper by (Marcet and Sargent 1989a) has a setup with informational
asymmetries.

"They employ a restrictive version of the stochastic approximation methodology by using the so-
called projection facility. Its use has been criticized especially in connection with heterogenous expecta-
tions and differential information, see (Grandmont and Laroque 1991), (Grandmont 1998) and (Moreno
and Walker 1994). Ways to avoid a projection facility are discussed in (Evans and Honkapohja 1998)
and Chapter 6 of (Evans and Honkapohja 2001).
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2 The Framework

We consider a class of multivariate linear (or linearized) models where there are two
types of agents (1 and 2) with different forecasts and with structural heterogeneity. As
already noted, some economic models have a linear structure, but linearity also follows
from the common practice of linearization or log-linearization of a nonlinear model. For
brevity, we do not develop the details of the linearization around a non-stochastic steady
state.

The formal model is given by

Yy = a—+ AlEtlyt+1 + AQEtot+1 + By, (1)
Wy = F’LUt—l + &¢. (2)

Here y; is nx 1 vector of endogenous variables and w; is k dimensional vector of exogenous
variables that is assumed to follow a stationary VAR, so that ¢; is white noise. F' is a
diagonal matrix with all eigenvalues inside the unit circle® For simplicity, it is assumed
that F'is known to the agents (if not, it could be estimated). Let lim; o, Ew,w; = M,,.
As for the matrices, A; is n X n, Ay is n X n while B is n X k.

We let E’Zytﬂ,z' = 1,2, denote the (in general non-rational) expectations by agent
i of the endogenous variables in the economy. Expectations without ”~” refer to RE.
Naturally, some of the endogenous variables may not be of interest to an agent ¢ and in
this case the relevant entries in the matrix A; would be zero.

A key feature of model (1) is that both agents’ characteristics and forecasts differ.
If either agents or forecasts are identical, so that A; = A, or EtlytH = Efth the
model can be aggregated. In the former case the evolution of 3; depends only on average
expectations, which has been analyzed in the earlier literature. In the latter case only
the aggregate characteristics A; + A, matter and the model becomes homogenous.

We will focus attention on the learnability of the fundamental or minimal state
variable (MSV) solution to the class of models (1)-(2).? This REE takes the form

Yy = a + bwy, (3)

where the n vector @ and n x k& matrix b are to be computed in terms of the structural
parameters of the model. We will show a bit later that the MSV solution is generically
unique and it can be obtained by solving the following system of linear equations

= o+ (Al —+ AQ)(I
b = (A + A)bF + B,

8Diagonality of F is usually without loss of generality since a non-diagonal matrix can very often
be diagonalized. In that case the shocks w; would be some linear transformations of the original
fundamental shocks. Sometimes we will explicitly assume further that F' is both diagonal and positive.

9 As is well known, under certain conditions, known as indeterminacy of REE, there also exist other
well behaved REE in forward looking models and these could also be studied for learnability. See e.g.
(Evans and Honkapohja 2001), Part III for a discussion of the homogenous expectations case. The
techniques developed in our paper can be extended to the study of learnability of the other types of
REE under structural heterogeneity.
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where the latter equation can be vectorized to yield a system of linear equations.

It should be noted that the framework is restrictive in that the model (1)-(2) is purely
forward-looking. This is done solely to simplify the presentation of the theoretical results.
In Section 9 we will extend the analysis to the case of lagged endogenous variables:

ye = a+ A Elyi1 + AsE2yi1 + Dy 1 + Buy. (4)
We also note that the corresponding static model
Y = o+ A1Et1,1yt + A2EAIt271yt + Buwy, (5)

can be analyzed in the same way and the formal results apply to this case. Indeed, one
of our economic applications will fit the form (5).
In the extension to S > 2 classes of agents the model becomes

S

Y = a+ Z AsEAlfyt+1 + B"[Uta (6)
s=1

Wy = Fwt—l + E¢. (7)

We will give the convergence conditions for model (6)-(7) at the end of Section 6.

We also note that it is possible to extend the stability results in this paper to models
with proportions of agents of different types. In this setting the matrices in (1) would
have the form A; = s A; and Ay = 20 A, for 01, 75 > 0, 201+ 360 = 1. We do not provide
any explicit results on this last case, since it does not arise in our economic applications.
It would clearly be straightforward to work out the details.

2.1 Economic Applications

Here we outline three economic models that fit our general setup.

Example 1 (Market model with structural heterogeneity)!” The demand function
for a single good is assumed to be linear and downward sloping, that is

dt :l—]{?pt—f—é't.
Here k, [ are positive parameters and ¢; is a demand shock that follows the AR(1) process
et = fer—1 + vy,

where v; is white noise with variance o2 and |f| < 1.
It is assumed that there are L classes of suppliers with different linear supply functions
that depend on expected market price due to a production lag. Formally,

st =h; +niEZ_1pt, 1=1,...,L.

0The classic analysis of this model under RE and homogenous supplies was presented by (Muth
1961). Adaptive learning in the (homogenous) Muth model was studied by (Bray and Savin 1986) and
(Fourgeaud, Gourieroux, and Pradel 1986). The model is sometimes called the cobweb model.

10 ECB * Working Paper No 120 ¢ January 2002



where h;,n; are positive parameters and Ef_lpt denotes the (in general non-rational)
expectation of producer ¢ about the market price. Expectations for period ¢ are formed
at the end of period t — 1 before the demand shock ¢; is realized. We make the technical
assumption that fk~'n; +1>0foralli=1,...,L.

From market clearing d; = Zle s¢ we obtain the reduced form

L L
pe=k (- Z hi) — Z KB o+ ke, (8)
i—1

=1
which is of the form (5). The analysis of this model will be completed in Section 7.

Example 2 (A model of monetary policy). Recent studies of monetary policy are
often based on a model with representative consumer, monopolistic competition in prod-
uct market and stickiness in price setting.!’ This leads to a bivariate linearized model
of the form

2 = —¢lic — Efmen) + E 21 + g1, 9)
Ty = )\Zt + ﬁEtPﬂ'H_l + U, (10)

where z; is the “output gap” i.e. the difference between actual and potential output, 7 is
the inflation rate, i.e. the proportional rate of change in the price level fromt—1 tot and
1; 1S the nominal interest rate. E 1 and E z:+1 denote private sector expectations
of inflation and output gap next period. All the parameters in (9) and (10) are positive.
0 < B < 1 is the discount rate of the representative firm.

uy and g; denote observable shocks that follow first order autoregressive processes:

uy p 0 Ug—1 Uy
= + R , 11
(Eh) (0 N)(gt—1> (gt) (11)
where 0 < |u| < 1,0 < |p| < 1 and g, ~ iid(0,07), 14 ~ iid(0,02). g; represents shocks
to government purchases as well as shocks to potentlal GDP. u; represents any cost push

shocks to marginal costs other than those entering through z;.
The model is complete once an interest rate rule by the central bank, such as

i = Xo + Xe B P M1 + GBS P 201 + X1 + Xuls (12)

is postulated. This rule is forward looking, i.e. depends on forecasts E’f Bri1, E’f Bt
of inflation and output gap by the central bank. yx, are parameters set by the central
bank and they indicate how the bank responds to the values of the endogenous and
exogenous variables. Interest rate rules such as (12) can arise from implementing opti-
mal discretionary monetary policies, nominal GDP targeting or as a postulated Taylor

"See (Clarida, Gali, and Gertler 1999) for a survey. The original nonlinear model and its linearization
is given e.g. in (Woodford 1996). Price stickiness is modeled along the lines of (Calvo 1983). Learning
issues for these models are studied e.g. in (Bullard and Mitra 2001) and (Evans and Honkapohja 2000).
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rule, see (Evans and Honkapohja 2000), (Mitra 2001) and (Bullard and Mitra 2001),
respectively.!? Substituting (12) into (9) leads to a bivariate model of the form (1).

The above setting with private sector expectations and internal central bank forecasts
very naturally involves heterogeneity in both expectations and economic structure. We
will continue the analysis of this model in Section 8.1.

Example 3 (Cagan model with variable money supply)'® Assume that there are
two types of agents s = 1,2 in the generation born at time ¢ and having two-period life
spans. They have utility functions U® = u(c]) + fu(c;, ) with the budget constraint

Pi(cf — ws) + EfPt+1(c§+1 — ws) < 0, where w$,w$ denotes the endowments of agent
s and E;} P, is the expectations of the next period’s price of the good by agent s of
generation t. Maximizing utility leads to the first order condition

(B; Pt/ PO [w} — (B Pt /P (€} q — w3)] = Bu(cf,y),

which can be log-linearized and centered around a non-stochastic steady state to yield
demand functions for real balances that depend negatively on expected inflation.

Letting m; denote the log of the money supply and p; the log of the price level at
time ¢, the money market equilibrium takes the form

me — pe = —g1(Elpis — p) — g2(E2pey1 — po),

where g; are positive parameters. Money supply is assumed to respond to lagged price
level, so that

my = dp;—1 + ey,

where ¢, is an iid shock to money supply. On economic grounds, we assume that |d| < 1.
These equations can be solved for the reduced form

P = w1 + 0 Bl pia + 1o E2pe + o, (13)

where w = (14 g1 + ¢2) 'd, n; = (1 4+ g1 + g2) 'g; and v; is a linear function of the
shock e;. We will assume that v, is 4.i.d with zero mean and variance o2. Observe that
lw| < 1 given our assumptions. Model (13) is an example of the form (4) with lagged
endogenous variable. We will return to this application in Section 9.2.

3 Heterogenous Forecasts and Expectational Stabil-
ity

A mapping from the perceptions of the economic agents to the resulting temporary

equilibrium of the economy has turned out to be the key relationship in the study of

12These papers consider the case where private and central bank forecasts are assumed to be identical.
13This model is due to (Cagan 1956). For analysis of the model (with homogenous agents) under
learning, see e.g. Chapter 8 of (Evans and Honkapohja 2001).
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convergence of adaptive learning dynamics. In this section we develop the form of this
mapping in the framework with heterogenous expectations and structure and establish
the uniqueness of the MSV equilibrium.

It has been observed for a wide variety of different models that convergence of learning
to REE (under homogenous forecasts and learning) obtains if and only if the REE
satisfies certain stability conditions, known as E-stability conditions. In this section we
extend E-stability conditions for heterogenous forecasts. Later we show that the same
conditions govern convergence under actual real time learning as long as the two agents
use learning algorithms that are asymptotically identical in a sense defined later.

We now derive the (extended) E-stability conditions. We assume that the two types
of agents have different forecast functions, though they take the same parametric form.
During the learning dynamics the agents have different beliefs about the parameters
they are estimating, and these beliefs are adjusted over time. For given values of the
parameters of the forecast function of each agent i, called the perceived law of motion
(PLM) of agent i, one computes the actual law of motion (ALM) implied by the structure
of the economy. E-stability is then determined by the differential equation in which the
PLM parameters adjust in the direction of the ALM parameter values.

Define the vector of state variables z; = (1, w;)" and the matrix of parameters ¢, =
(a;, b;) with a; being an n dimensional vector and b; being an n X k matrix. Formally,
we assume that the two agents have PLMs

Yo = a1 +bw = gz, (14)
Yy = az+ bowy = @hz, (15)
with corresponding forecast functions

Elyyor = ay+ b Fuy, (16)

Etot—i—l = ag+ bngt. (17)

Note that the PLMs have the same form as the MSV solution (3), but in general a;, b;
are not at their RE values. Inserting these forecasts into the model (1), one obtains the
ALM

Y = « + A1a1 + AQCLQ + [(A1b1 + Ang)F + B]wt
1
= [Oz + Aja; + AQ(IQ, (Albl + AQbQ)F + B] [ w }
t
= T(p1, 95z (18)

We look at stability of the REE where the two agents have homogenous forecast
functions, i.e., when a; = as = a and by = by = b. Before obtaining the E-stability
conditions, we first show that this symmetric MSV solution is unique.

Proposition 1 There exists a unique, symmetric equilibrium of the model (1)-(2) if the
matrices I, — Ay — Ay and I, — F' @ (A1 + Ag) are invertible.
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Here and in the rest of the paper I,, denotes the m—dimensional identity matrix.
Proof. The T—map, given by (18) and written out explicitly, is

a; — o+ Aja; + Asas, (

as — o+ Ara; + Asas, (20
by — (A1by + Axbe)F + B, (
by — (A1by + Asbs) F + B. (

It is clear that equations (19)-(20) are symmetric in (ai, as) and equations (21)-(22)
are symmetric in (by, be), respectively. Thus a1 = as = a and by = by = b provided
there exists a unique solution. For the a;,as system the solution is evidently unique if
I — A; — A, is invertible.
The b, by system needs to be vectorized'
vech; = (F' ® Ap)vech; + (F' ® Ag)vecby + vecB,
vechy = (F' ® Ay)vech, + (F' ® As)vecbs + vecB.

The vectorized system can be rewritten as
Ly —F A —-F'® A, vechy \ [ vecB
—F'® A, L —F @A vecby | \ weeB |’
which has a unique solution provided the left hand matrix is invertible. The determinant
of this matrix is easily seen to be non-zero if and only if the matrix I — F’ ® (A; + A»)

is invertible. m
We next formulate the differential equation defining E-stability:

a1 = a+ (A —1I)ay + Asas, (
by = Al F —by+ Ao F + B, (24
ay = o+ Aja; + (A — Ias, (
by = A1 F+ AsboF — by + B. (

The system involving @y, @, is independent from the system for by and by, and it can be

written as
dl . Al_In AQ aq (8
()= k) )+ () g

The system for 61, by needs to be vectorized and it can be written as

7)6061 _ FF® A — Ly F'® A, veeh; n vecB (28)
vechy | F'® Ay F'® Ay — I vecby vecB |-

We can now prove the following proposition:

4Here F’ denotes the transpose. As F is assumed to be diagonal, this notation is not really necessary.
We have kept the transposes as the same formulae then hold for a nonsymmetric F' matrix as well.
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Proposition 2 Consider the model (1)-(2) with the PLMs of the agents (14)-(15), their
forecasts (16)-(17) and the ALM (18). The E-stability conditions extended for heteroge-
nous expectations are the same as when the agents have homogenous forecasts. The sym-
metric equilibrium is E-stable if and only if the matrices Ay +As—1I and F'&(A1+Ay)—1
have eigenvalues with negative real parts.t

Proof. The differential equations defining E-stability (23)-(26) are locally stable at
the symmetric equilibrium if and only if the eigenvalues of the matrices on the right
hand sides of (27) and (28) have negative real parts. To shorten notation, define

_ Al_In AQ
A= (A 2 -

_<F’®A1—Ink F'® A, >
F = .

F'od  F @Ay — Iy (30)

The determinant for computing the eigenvalues of (29), |A — m I, |, may be simplified
as follows:

- Al — In(l + m) AQ
A = mlo| _‘ A Ay — I(1+m)
| —L(1+m) I,(1+m)
N Al AQ — In(l + m)
| —L(1+m) 0
N Al Al + AQ - In(l + m)

The computation shows that A has n eigenvalues equal to —1 and the remaining eigen-
values are those of A; + Ay — I,,. Hence, A has eigenvalues with negative real parts if
and only if A; + As — I,, has the same property.

Analogously, the determinant for computing the eigenvalue of the coefficient matrix
Fi in (30) can be written as (after subtracting the second row from the first)

F/®A1 F’®A2—(1+m)fnk

= {—(L+m)}"™|F' @ (A1 + A3) — (1 +m) L] .

so that F; has nk eigenvalues equal to —1 and the rest are the eigenvalues of F' ® (A; +
Ay) — I,x. Consequently, F; will have eigenvalues with negative real parts if and only if
F'® (A; + Ay) — Iy has so.

Finally, the result follows since when E}ytﬂ = E’fytH = EtytH, the matrix in front
of the common expectations Etytﬂ in (1) becomes A;+ As, which is the homogenous
case. H

5 Throughout the paper we ignore the non-generic cases where one or more relevant eigenvalues has
a zero real part.
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We remark that if F' is a positive, diagonal matrix, the E-stability conditions simplify
to condition that the eigenvalues of A; + As — I, have negative real parts.

The next section will demonstrate that the stability of the system under certain forms
of heterogenous learning rules obtains if and only if the above E-stability conditions
are satisfied. In actual real time learning the two agents use versions of (generalized)
recursive least squares in their updating of estimates of parameters which are relevant to
their forecasting. However, the learning rules can start with different initial beliefs about
the parameters so that they differ along the path. The E-stability conditions, therefore,
govern convergence to REE even when we allow this (limited) form of heterogeneity in
learning. The analysis thus shows that the stability conditions for the homogenous case
are not as restrictive as they may seem - homogeneity in forecasting and learning is a
good first approximation.

4 RLS Learning with Different Initial Beliefs

We now consider the learning by agents in real time when they use versions of (gener-
alized) recursive least squares in the updating of parameter estimates relevant to their
forecasting. Assume that the perceived laws of motion (PLM) of agents 1 and 2 are,
respectively,

Ye = aip+byyw = <P’1,t2t, (31)
Y = Qop+ bowy = SDIQ,tZta (32)

where we note that the estimates of parameters, ¢}, and 5, are now time dependent.
The corresponding forecast functions are

E’tlym = ay; + by Fwy, (33)
Efyt+1 = agy + bo Fwy. (34)

In this formulation the parameter estimates are assumed to depend on data up tot — 1,
but current observation on exogenous variables are allowed to be used in the forecasts.
(This is typically done in the learning literature.) Using these forecasts, the ALM of v
is then given (as before) by

Yt = T(Soll,ta (P,Q,t)zb (35)

where T' is the map appearing in (18).
We assume in this section that both types of agents use versions of recursive least
squares (RLS) but they can have different initial beliefs of the parameter estimates.
More specifically, agents 1 and 2 use the following learning algorithms
P = Pt 71,tR1_,t12t_1(Z/t—1 - SDll,t—lzt—l)/a (
Ri;y = Rij1+ Vl,t(zt—12271 — Ri1-1), (
Por = $ou1+VauRoiz 1Y — 91 ze1), (38
Ryy = Royq+ ’72,t(zt—122_1 — Roy1). (
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Different initial beliefs can be accommodated by different initial conditions for the dy-
namics. The gain parameters v, , > 0 indicate responsiveness of the change in parameter
estimates to forecast errors and new data. They satisfy lim; .o 7;; = 0 and ), , = oc.
RLS is the case where 7;, = ¢t 1. We allow for Y14 7 V2, for the gain parameters of the
learning rules and make the following assumption:

Assumption A: There exists a non-increasing positive sequence 7, with properties:
(i) vi¢ < Ky, for some constant K; > 0,

(i) > 7, = o0 and >~} < oo for some p > 2, and

(i) imsup(1/v,41 — 1/7,) < oo.

We remark that these conditions on «y, are commonly assumed in the literature.'® As-
sumption A can allow various weighting schemes for data in later periods relative to
early ones, see e.g. (Ljung and Soderstrom 1983) and (Marcet and Sargent 1989b).

However, we assume that asymptotically the gain sequences converge at the same
rate, that is,

Condition 1: 'yLﬁ;l — 6 and 72,,5%_1 — 6 ast — oo.
With these assumptions we have the following result:

Theorem 3 Consider the model (1)-(2) with the PLMs (31)-(32), the forecasts (33)-
(34), the learning algorithms (36)-(39), and the ALM (35). Assume furthermore that
Assumption A and Condition 1 hold. If the symmetric equilibrium is E-stable, then the
learning algorithms converge to this equilibrium.'”

Proof. This is a special case of Theorem 4, see Section 5. ®

We also note that under some (mild) regularity conditions, the RLS algorithm will
converge to an E-unstable symmetric (MSV) solution with probability zero, see (Evans
and Honkapohja 2001) for the details. The conclusion of this section is thus that con-
vergence with some forms of heterogeneity in learning continues to be governed by the
standard E-stability conditions.

As a technical remark we note that this kind of convergence and non-convergence
results are formally established by deriving the so-called associated ordinary differential
equation (ODE) of the stochastic recursive algorithm governing convergence and non-
convergence of learning.'® (Moreover, the ODE defining E-stability is directly linked

6We note that one can assume K; < 1 without loss of generality. If v, satisfies Assumption A
for K; > 1, then one can construct another sequence %, satisfying assumption A with the constant
K; <1,Vi.

1"We have not dwelled into the precise notion of convergence that obtains in these kinds of models.
The assumption of a “projection facility”, which was used in the early literature, can be relaxed at the
cost of the strength in the sense of convergence. See (Evans and Honkapohja 2001), Chapter 6, Sections
3 and 4 and (Evans and Honkapohja 1998) for detailed discussion.

18See e.g. Chapters 6 and 7 of (Evans and Honkapohja 2001) or (Evans and Honkapohja 1998).
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to the associated ODE of the algorithm.) The just noted relationship between sta-
bility or instability in the associated ODE and the convergence or non-convergence of
the algorithm also applies to other settings below. Thus, below we only state stability
and convergence results, but it should be kept in mind that corresponding instabil-
ity /nonconvergence results also exist.

5 RLS Learning with Different GGain Sequences

We now analyze asymptotic heterogeneity in gain sequences in the learning algorithms.

The formulation includes and generalizes the heterogeneities in the weights considered in

the preceding section. Our formulation includes inertia in updating of forecast rules and

even independent random fluctuations in adaption speeds.!” Otherwise, we assume that

the algorithms of the two agents are of the RLS type, i.e. they are given by (36)-(39).
The individual gain sequences are assumed to satisfy:

Condition 2: v,, = %,,,;, where the random gains ¥, , are positive, independent of
past information and across agents, and &;; is a Bernoulli random variable equal to 0
with probability p,, € [0,1) and equal to 1 with probability 1 — p; ;. &;, is independent
of past information and ¥;,. In addition, limy .. E(§; /7)) = 6; > 0, where the
deterministic sequence v, satisfies Assumption A in the preceding section.

This condition allows for significant amounts of heterogeneity, including both random-
ness and inertia indicated by 9;, and §,, respectively, in the adaption speeds of the
different agents. A similar formulation of heterogeneity in learning was used in (Evans,
Honkapohja, and Marimon 2001). Effectively, the above condition means that the gain
sequences of the two agents converge (in mean) at different rates even asymptotically.

Formally, the dynamics continues to be given by the system (36)-(39), except that
the gain sequences now have different properties. The technical analysis of the algorithm
is outlined in Appendix A.1 and in this case the associated ODE is

d@l/dT = 515;1MZ(T(90/17 (AOIQ)/ - ()01)’ (40)
dSl/dT = 51(M2 — Sl),
dpy/dr = 6555 M.(T (¢}, ¢5) — ¢a),

dSQ/dT = 52(MZ - Sg)

where the 7" map continues to be given by (18) and

) 1 0
limiooFEz 12, 1 = M, = ( 0 M, ) ) (41)

YTnertia in the formation of expectations is observed in experimental data, see for instance (Marimon
and Sunder 1993) and (Evans, Honkapohja, and Marimon 2001).
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Note that M, is a diagonal, positive definite matrix, since F' in (2) was assumed to be
diagonal. Since S; — M, and Sy — M, stability is governed by the smaller differential
equation

d@l/dT = 61(T(90,17 90/2), - 901)7 (42)
dpy/dT = 62(T(#), ¢5)" = ¢3)- (43)
We first note that if §; = - then the stability conditions obtained from (42)-(43) would

be identical to the E-stability conditions, which proves Theorem 3.
Returning to the general case and rearranging (42)-(43), we get

@) = [61(e+ Arar + Azas — a1),61(A1b1 F + AsboF + B — by)),
90/2 = [62(0& + Alal + A2a2 - (12), 62(A161F + AQbQF + B — bg)],

so that

ar = 61(A1 — I)ay + 61Aza0 + 61,
by = 61A10F + 61 AsboF + 6.8 — 61by,
s = 02A1a1 + 62(A2 — Ias + 620,
by = 63A101F + 65A5boF + 65B — 65bs.

We look at stability of the symmetric equilibrium where a; = a; = a and by = by = b.
The system for a; and @, can be written as

(il . 61(141 — In) 51142 aq + 6104
(ig o 62141 62(142 - In) a9 620&
- 61]n 0 A1 — In AQ aq 610&
o < 0 62]n > ( A1 AQ - In > ( a9 ) * ( 620& > (44)
aq 610&
ma(n )+ (5)

where D, is the diagonal matrix appearing in (44) and A is the matrix in (29). For
stability we need the matrix D; A to have eigenvalues with negative real parts.

The system for b; and by needs to be vectorized as before to yield (ignoring constant
terms)

7)80[)1 . F X 61141 — 61[nk L’ & 61142 7)€Cb1
vechs - ' ® 6,4, F' ® 69Ag — 691ny) vecby
. 61]nk 0 F/ X A1 - ]nk F, X Ag Uecbl
o 0 62Ink F’ X A1 FI & AQ — Ink 1)60[)2
o vechy
= Dk < vecby ) (45)

where F} is defined as in (30). The eigenvalues of Dy F; must have negative real parts
for stability of the above system. We have thus obtained the following result:
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Theorem 4 Consider the model (1)-(2) under modified recursive least squares (RLS)
learning, given by (36)-(39), and assume Condition 2. If the matrices D1 A and Dy Fy,
given in (44) and (45), have eigenvalues with negative real parts, then the learning
algorithms converge to the symmetric equilibrium.

This theorem shows that the stability conditions are in general affected by 6; and 5.
In some cases it is, however, possible to provide sufficient conditions for stability that
do not depend on §; and 8. For this we need the notion of D-stability.?’ A matrix A
is said to be D-stable if the matrix DA has all eigenvalues with negative real parts for
any positive diagonal matrix D. Using this one has the following corollary:

Corollary 5 Consider the model (1)-(2) under RLS learning, given by (36)-(39), and
assume Condition 2. If the matrices A and Fy, given in (29) and (30), are D-stable,
then the learning algorithms converge to the symmetric equilibrium.

The proof of this corollary is immediate from (44)-(45). Evidently, the requirement
of D-stability is restrictive and, indeed, the monetary model of Example 2 does not
satisfy this definition. However, the matrices in Example 1 do satisfy D-stability, as will
be shown later in Section 7.

6 RLS Learning and SG Learning

We now consider the case when the agents are using quite different algorithms in their
updating schemes. The broad aim is to consider settings where one class of agents is
using a learning algorithm that is either more or less sophisticated than the algorithm
used by the other class of agents. Specifically, we assume that there are two possible
types of learning algorithms, the RLS and the stochastic gradient (SG) algorithms that
the agents might use. (The RLS algorithm is more commonly employed than SG in the
literature.)

The SG algorithm is computationally much simpler than the RLS algorithm; however
the latter is more efficient from an econometric viewpoint since it uses information on the
second moments of the variables. For parameter estimation of fixed exogenous stochastic
processes, both the RLS and SG algorithms yield consistent estimates of parameters
but the RLS, in addition, possesses some optimality properties. For instance, if the
underlying shock process is itd normal, then the RLS estimator is minimum variance
unbiased.?!

Formally, we assume that agent 1 updates the parameter estimates using an RLS
algorithm while agent 2 updates using a stochastic gradient (SG) type algorithm. The

20This concept has been used earlier in the literature on Walrasian tatonnement dynamics, see (Arrow
and McManus 1958), (Enthoven and Arrow 1956), and (Johnson 1974).

21See (Evans and Honkapohja 2001), Section 3.5 for a discussion and references to SG learning. We
note that these properties refer to the usual statistical analysis that involves parameter estimation for
€X0genous Processes.
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SG algorithm is simpler than RLS as it does not make use of the matrix of second
moments, see Chapter 3 of (Evans and Honkapohja 2001) for further discussion.
For agent 1 the algorithm is given by

10 = Y11+ (e DRz (o — P 1zm1) (46)
Ry = Req+7v(vvi ') (ze1ziy — Reca), (47)

while for agent 2 it is given by

a0 = Pas 1+ (V27 )1 (Y1 — @y 1 2) (48)
In addition, we assume
Condition 3: limy_o (7,7, ") — 1 and limy_oo (75,7, ") — 1.

The technical analysis of the algorithm (46), (47) and (48) is given in Appendix A.1.
In this case the associated ODE governing convergence of the algorithm boils down to

doy/dr = STIM(T(¢1, ) — ¢1),
dS/dr = M, - S,

dpy/dr = M(T (4], ¢5) — ©y)-

Since the second set of equations is globally stable with S — M, from any starting point,
stability is determined entirely by the smaller dimensional system

do/dr = (T(¢,¢5) — ¢1),
dpy/dr = M (T (), h) — a).

This immediately shows that the E-stability conditions are no longer sufficient for con-
vergence of learning dynamics although they continue to be necessary. In particular, the
moment matrix M, affects the stability conditions.

By usual arguments,

@) = |a+ Ay + Ayay — ay, (Arhy + Agbo) '+ B — by, (49)
90/2 = [Oé + Ajaq + Asas — ao, (A1b1 + Agbg)F + B — bQ]MZ
[ + Ayay + Azas — ag, {(A1by + Agbe) F + B — by} M)

as well as

a = a+ (A —IL,)a + Asas,

by = AL F —b + AbF + B,

ay = a+ Aja; + (Ay — I,)as,

by = AibyFM, + AsbyF M, — byM,, + BM,,.

ECB * Working Paper No 120 * January 2002 21



As before, we consider stability of the symmetric equilibrium. The system for a; and
s is the same as (27). This system is, therefore, stable if the eigenvalues of A; + A
have real parts less than 1. The system for b; and b, needs to be vectorized, so

vech, = (F' ® Ay — Ly)vech) + (F' @ As)vechy + vecB,
vechy = (M,F @ Aj)vech, + (MLF' @ Ay — M, @ I,))vechy + (M., @ I,)vecB,

or ignoring constant terms
vech, _ F'® Ay — I, F'® A, vech;
vech, N M Fr® A M F'® Ay — M, ® 1, vecby
o Ink: 0 FI & Al — Inkz F/ X AQ ’U€Cb1
o 0 Mw®fn F/®A1 F,®A2_Ink ’U€Cb2

DwFl ( Uerl ) ) (50)

vecby

where D,, is the diagonal matrix in the second line of (50). We can then prove the
following theorem:

Theorem 6 Consider the model (1)-(2) where agent 1 uses recursive least squares
(RLS) learning given by (46)-(47) and agent 2 uses the stochastic gradient algorithm
(48). Assume, furthermore, Condition 3. If the matrices A and D, F have eigenvalues
with negative real parts, then the learning dynamics converges to the symmetric equilib-
TIUM.

We can also obtain a result analogous to Corollary 5 in Section 5. Since M, is a
diagonal, positive definite matrix, we have the analogy of Corollary 5:

Corollary 7 Consider the model (1)-(2) where agent 1 uses recursive least squares
(RLS) learning given by (46)-(47), agent 2 uses the stochastic gradient algorithm (48),
and assume Condition 3. If A is stable (i.e. has eigenvalues with negative real parts) and
Fy is D—stable, then the learning algorithms converge to the symmetric equilibrium.??

A common theme emerges from Corollaries 5 and 7. If both A and F; are D—
stable, then the learning rules converge locally to the symmetric equilibrium irrespective
of whether they are characterized by differential gains asymptotically, as in Section 5,
or are of different types as in this section.

Finally, we note some extensions of the results to economies with more than two
classes of agents and to global convergence of learning.

22We note that that if the matrix M, is not diagonal, then F; would need to be S—stable, see (Arrow
and McManus 1958) for the definition of S—stability.
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Remarks on the model with S > 2 classes of agents: Consider the model
(6)-(7) with S classes of agents. The E-stability condition is that the eigenvalues of the
matrices

s s
ZAS_I” and F'®ZAS— nk
s=1 s=1

have negative real parts. This is also the convergence condition in the case of heteroge-
nous beliefs but identical learning rules. If agents’ learning rules have different gain
sequences 7, ¢, the stability condition is that the matrices

ol, --- 0 A -1, --- Ag

DA = : : : : and (51)
0 - bgl, Ay oo Asg— 1,
o1l - - 0 FreoA —ILy, - F'® Ag

DyFy = : : : : (52)
0 - b5l F'® Ay oo FP® Ag — Iy

have eigenvalues with negative real parts, where 6, = lim; ., E(7,,/7;). D-stability of
A and F; continues to be a sufficient condition for stability. In the case where some
agents use RLS rules and others SG rules the stability condition is that the real parts
of the eigenvalues of the matrices

S
ZAS — I, and
s=1

Q) - 0 Flod —Ly - FoAg
QF, = el : :
0 - Qs F'® Ay oo FP® Ag — Ing

are negative, where Qs = I, or M, ® I, if agent s is using RLS or SG, respectively. Sta-
bility of matrix A and D-stability of matrix F} are a sufficient condition for convergence
in this case.

Remark on global vs. local convergence: In view of the linearity of the framework
(1)-(2) it is evident that in Theorems 3, 4 and 6 convergence to the MSV REE is in fact
global.?> However, it should be borne in mind that in several applications the model
is in fact a linearization around a steady state, and the study of learning is necessarily
local in such settings. We have thus not specified in these theorems whether convergence
is local or global.

23The conditions for global convergence of the resulting algorithms can be easily verified, see Section
7, Chapter 6 of (Evans and Honkapohja 2001).
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It should be recalled that the model (1)-(2) can sometimes have other REE besides
the MSV solutions that we have considered here. (The static model (6)-(7) does not have
other REE.) For such equilibria, the forecast functions of the agents have additional
parameters, so that dynamics do not operate in the same parameter space as here. It
is also possible to inquire whether the MSV equilibrium remains stable under learning
if such extra parameters are permitted (so that they would converge to zero over time).
This issue has been considered using the concept of strong E-stability in frameworks with
structural and expectational homogeneity, see e.g. Chapter 9 of (Evans and Honkapohja
2001) for discussion and references.

7 Application to Market Model

We now apply our results to the market model in Example 1. Note that the market
model is of the form (5) with A, = —k~'n,, s=1,... L.
Assume that the suppliers have PLMs of the form

A

Efflpt =as+ bsgtfl-

Substituting these into the ALM (8) we get the reduced form

L L
pro= K=Y ha) =k 'na(as + besior) + e
s=1

s=1
L L L
= k(- Z hs — Znsas) — k:_l(z nsbs — fer + kg
s=1 s=1 s=1

The implied forecasts are (i = 1,2)

L L L
qupt =k (- Z hs — Znsas) o kil(z nabs = f)er
s=1 s=1 s=1

and the 7" map is then

L L
a; — k_l(l - Zhs - Znsas)y
s=1 s=1

L
b — =k nds— f).
s=1

The fixed points of the 7' map above give us the REE solution and it is easy to show
that the symmetric solution (where a; = ... =ay =a and by = ... = by, = b) is unique.
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7.1 E-Stability of the REE

We now consider E-stability of this symmetric equilibrium. Dropping constant terms,
for E-stability we can consider the differential equations

d ay ny --- Ny ay ay
- : = —k! : " : : — :
dT . . . . . . J (53)
ar, ny - Ny ar, ar
b, ny .- ng by by
d . N : . .
e : = —k - : - : . (54)
-
br, ny -+ nNp br, br,
The eigenvalues of
ny - nr,
—k!
”’7/1 PEEEY n/L

are obviously 0 and —/{:’1(25:1 ns). This proves the following result.

Proposition 8 The symmetric equilibrium of the market model (8) under heterogenous
forecasts is E-stable.

7.2 Heterogenous Learning in the Market Model

Consider now the case when the suppliers have algorithms of the form (36)-(39) with the
gain sequences satisfying Condition 2, i.e. they have differential gains asymptotically.
The key matrices (51) and (52) for stability in this case are

—61(1{371’”1 + ].) —61]{37177/2 s —6114371’)’1/[1
—621437177/1 —62(1{371’”2 + 1) o —6114371’)’1/[1
. . , , (55)
—62k’1n1 _61]{71”2 s —61(]5717’]/[/ + 1)
5 ..o 0 —(k~'ny +1) —k~'ny e —k7'ng
.1 ] —k‘lnl —(k_l’l’l/g + 1) oo —k‘lnL
0 - 65 —k:’lnl —k’il’l’bg <. —(kilTLL + ].)

ECB * Working Paper No 120 * January 2002 25



and

—61(_}0]{37177/1 + ].) —51fk*1n2 s —61'][‘]{37177/[1
—62fk_1n1 —62(fk'_1n2 + 1) R —51fk_17’LL
. | | | (56)
—62Fk_1n1 —(Sle‘_lTLQ s —6[(Fk_17’LL + 1)
S -0 —(fk7'n1 4+ 1) —fk™tng - —fk™'ny,
_ 1 [kt —(fE Iy +1) - —fk 'y
o ---. 55 —fk_lnl —fk_lng —(fk:_lnL—i— 1)

We can apply Corollary 5, since the matrices A and F; in (51) and (52) reduce to

—(k™tny +1) —k 1ny e —kn;
—k:1n1 _(kliw + 1) _kzlnL | (57)
—k;ln,l —k;lng . —(k:_17.7,L +1)

—(fk™'ny + 1) —fk™n, e —fk™ng
—fk‘:_lnl —(fk:_lzng +1) —fk::_lnL (58)
—fk‘.*lnl —fk'*lng . —(fk‘*l.nL +1)

Both of these matrices clearly have negative diagonals. Moreover, for column 7 of, say,
the latter matrix (58) we compute the expression

| Fii| — Zfi |Fyji| = (’fk‘_lni + 1’ —(L—=D&|f|k™'n;) >0
i

for some k > 0 sufficiently small, which shows that matrices A and F; for the mar-
ket model are quasi-dominant diagonal. (For the first matrix (57) set f = 1 in this
argument.) The matrices are, therefore, totally stable and consequently D—stable.?!

The same argument applies in the case of RLS and SG learning by the different types
of agents. Thus we can state:

Proposition 9 The symmetric equilibrium of the market model (8) is globally stable
under learning

(i) when the agents use RLS learning with differential gains (i.e. algorithm (36)-(39)
under Condition 2);
or

(ii) when some suppliers use RLS and other suppliers use the SG algorithm.

24See e.g. pp.165-168 of (Quirk and Saposnik 1968) for these auxiliary concepts and results.
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These results show that stability of the symmetric REE in the market model under
the assumption of homogenous forecasts and learning rules is not at all restrictive. This
model continues to be stable in the presence of the use of heterogenous learning rules
by different heterogenous suppliers of the good.?

8 Case with Rational and Learning Agents

We continue with the class of models in Section 2 with two types of agents. However,
we now assume that one type of agent has rational expectations (RE) while the other
type of agent is learning. Such situations have occasionally been considered in the
previous literature, see for example (Sargent 1999), (Cho, Williams, and Sargent 2001)
and (Carlstrom and Fuerst 2001).26 We now provide general conditions for stability in
this case and then apply them to the model of monetary policy in Example 2.

Consider the class of models (1)-(2) and assume now that agent of type 1 is learning
via RLS, while agent of type 2 has RE at every point of time (even outside the equi-
librium). Obviously, the MSV solutions continue to take the same form as before and
we examine stability of this class of solutions. Assume that the agent of type 1 has the
PLM and corresponding forecast

v o= a1+ biw = ¢z, (59)
Etlyt—i—l = aj + blet.

Agent 2 has RE and knows that agent 1 is learning and the influence of the learning on
the actual outcome of the economy. He makes use of this knowledge in forming his own
forecasts. Given the forecast of agent 1, the ALM of the economy is

Y = & + A1a1 + Alblet —+ AQEfyt+1 —+ Bwt,

U~y

where we no longer use the symbol for agent 2’s forecast since he has RE. Agent 2
knows the above ALM and makes use of this to form his own forecast.
Guessing that the MSV solution for y; takes the same form as before, his forecast is

Etot+1 = a9 + bQFU)t (60)
Plugging this into the ALM yields

Y = & + A1a1 —+ AQCLQ + (AlblF —+ AQbQF + B)wt

25We remark that the (Lucas 1973) Aggregate Supply model, discussed e.g. in Chapter 2 of (Evans
and Honkapohja 2001), can also be shown to be stable when different suppliers use heterogenous learning
rules.

26(Evans, Honkapohja, and Sargent 1993) analysed the structure of equilibria with rational and
boundedly rational agents in the standard overlapping generations model. See (Bomfim 2001) for refer-
ences on other models of economies with heterogenous agents in terms of sophistication in forecasting.
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The rational forecast for agent 2, given this ALM is,
Etot—i—l = o+ A1a1 + AQ(ZQ + (AlblF + AQbQF + B)Fwt (61)

Given aq, and by, we require agent 2 to have always RE at every point of time. This will
be so if the coefficients in (60) and (61) are equal, i.e. if

ay = o+ Al(ll + AQ(IQ, (62)
by = AibF + Ay F + B. (63)

One can then solve for as and by from (62)-(63) after vectorizing the latter equation.
This yields

ay = (I — Ag)_1<05 + Alal), (64)
vechy = (I — F' ® Ay) ' (F' ® Ajvech, + vecB). (65)
Note that (64)-(65) determine the RE values of a; and by as functions of a; and by.
Solving (64)-(65) with a; = as and vech; = vecb, just gives the symmetric RE value for
ay, bl .
The right-hand sides of (64)-(65) lead to the T—mapping
a; — AQ(I — Ag)il(a + Alal) + o+ Alal,
vech; — (F' ® Ay)(I — F' @ Ay) " HF' ® Ajvech; +vecB) + (F' ® Ay)vech; + vecB.

For E-stability, we proceed as before. Given the PLM of agent 1, stability of learning
dynamics is governed by the ODE for a4, i.e.

éll = [A1 + AQ(I — Ag)_lAl - I]CLl + o+ AQ(I — Ag)_lOé (66)
and that for b; given by

vechy = [F'® A+ (F' @ A)(I — F' @ Ay)"HF' ® Ay) — Ivech, + (67)
[(F'® Ao)(I — F' ® Ay) ™ + I]vecB.
The symmetric equilibrium will be locally stable under learning iff the differential equa-

tions (66)-(67) are locally asymptotically stable at the point, which proves the following
proposition:

Proposition 10 Consider the class of models (1)-(2), where agent 1 uses RLS learning
and agent 2 has RE. The symmetric equilibrium of this model is stable under learning
iff the eigenvalues of the matrices

Ay + Ag(I — Ay)7T A — 1,
F'oA 4+ (F'@A)(I — F' @A) (F' @ Ay) — 1,

have negative real parts.
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8.1 Application to Monetary Policy

We now apply Proposition 10 to our Example 2 on monetary policy. Appending the
interest rule (12) to equations (9) and (10), the reduced form of the model takes the

form
2 _ —¢ 1 ¢ Etp Zt+1
(7)) = (555 ndie ) (B )
( _d)Xz _¢X7r ) < EtCBZFFl ) 4
_)‘QSXZ _)\¢X7r EtC’B7Tt+1
. 68
For future reference, we write the above system in a general form

Yy = a+ APEthtH + ACBEtCBytH + Buwy, (69)

wy = Fwi_1+ v

where y; = (2;, ), wy = (ug, g¢) and AP, A°P B denote the right hand matrices in
(68), and F' is the (diagonal) matrix appearing in (11), namely

F:<82> (70)

We assume that x, > 0 and x, > 0 in (12).

8.1.1 Central Bank Has RE While Private Sector is Learning

When the central bank has RE and the private sector is learning, the two matrices in
Proposition 10 reduce to

AP 4 A9B(T — AYPYTTAP — ] (71)
= (L ex. +Apxa) 1< A —[(1—5)(1+¢Xz)+>\¢(xﬂ—1)]>
and
FFoA" + (FF o APYI - F' @ APy W(F'o AP -1 = ( %” g > (72)
where
B, = [L+p(dx. + \ox,)] ™! (73)
( —[L = p+ pd(x. + Ax.)] pp(1 = Bpx,) >
A\p —[1 = Bp+ (1= Bp)pdx, + Apd(xz —1)] )’
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and B, takes the same form as B, with u replacing p. The trace and determinant of
(71) are, respectively,

—(14¢x. + Adx,) 'L = B+ (2= B)ox, + Ad(2x, — 1)),

It is easy to check that the determinant is positive iff (1 — )y, + A(x, — 1) > 0 and
this also suffices to make the trace negative. As for the matrix (72), we note that it is
block diagonal so that its eigenvalues are those of B, and B, and since the latter two
matrices are, respectively, symmetric in p, u it suffices to look only at B, for stability.
The trace and determinant of (73) are respectively

—[1+ p(px. + Axe)] M2 = p(L 4 B) + pd{(2 — Bp)x. + A(2x, — 1)},
[1+ p(dx. + Adx)] (L= p)(1 = Bp) + pd{(1 — Bp)x. + Mxxr — 1)}

It is easy to check that (1—3)x, +A(x, —1) > 0 implies that the trace above is negative
and determinant positive for (73). This proves the following corollary.

Corollary 11 Assume that for the model (69), the private sector is learning via RLS
while the central bank always has RE. The dynamics of the economy is then locally stable

if and only if (1 — B)x, + A(x, — 1) > 0.

Condition (1—/)x,+A(x,—1) > 01is precisely the Taylor principle that characterized
learnability in (Bullard and Mitra 2001), where both the central bank and the private
sector were learning via RLS with identical learning rules. The same principle determines
stability also when only the private sector is learning as above. Since the central bank
has now so much more information than the private sector, it is able to neutralize the
destabilizing influence of the latter (which arises since A" has an eigenvalue more than
1) by subscribing to the Taylor principle in its interest rule. See (Honkapohja and
Mitra 2002) for more on the intuition behind the stabilizing influence from the central
bank and the de-stabilizing effect arising from the behavior of the private agents.

8.1.2 Central Bank is Learning While Private Sector Has RE

Consider now the situation when the central bank is learning while the private agents
always have RE in the sense defined above.?” In this case we have

AC’B _}_AP(]_AP)flACB g g ( )‘71(1 _ﬁ)Xz -1 )‘71(1 _ﬁ)Xﬂ’ )
Xz Xr — 1

The determinant and trace of the above matrix equal, respectively,

2TThis is the situation which is sometimes assumed in the literature, for instance, in (Sargent 1999),
(Cho, Williams, and Sargent 2001) and (Carlstrom and Fuerst 2001).
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The determinant is positive if and only if (1 — 3)x, + A(x, — 1) < 0 and this also makes
the trace negative. Therefore, a necessary condition for the equilibrium to be stable is
that the Taylor principle be violated.

As before, it can be shown that the matrix corresponding to (72) (after inter-changing
the roles of AP and AP there) is block diagonal with the diagonal matrices being
symmetric in p and p. The eigenvalues of the diagonal matrix corresponding to p are
given by —1 and

—[(1 = p) (1 = Bp) — pA] (1 — ) (1 = Bu) + pe{(1 — Bu)x, + Axy — 1)} >0

provided (1 — u)(1 — Bu) — pA¢ # 0. This enables us to prove the following corollary.

Corollary 12 Assume that for the model (69), the private sector always has RE while
the central bank is learning via RLS. The necessary and sufficient conditions for the
symmetric equilibrium to be locally stable are

(1=08)x, +Alx, — 1) <0,
[(1— p) (1= Bu) — pAg) (1 — ) (L = Bu) + pd{ (L — Bu)x, + A(x, — 1)}] >0,
(L= p)(1 = Bp) — pAd] (1 — p)(1 = Bp) + pp{(1 — Bp)x. + A(xx — 1)}] > 0.

The result in (Bullard and Mitra 2001) and in the previous section has now been
turned on its head by this extreme assumption of rationality of the private sector vis-a-
ws the central bank. We note that, in general, violation of the Taylor principle is not
sufficient for stability of the equilibrium. This is because the latter two conditions in
Corollary 12 depend also on p and p. In fact it can be checked numerically for plausible
values of parameters used in (Woodford 1999) that equilibrium may be either stable or
unstable even when (1 — 5)x, + A(x, — 1) < 0.

A case of stability arises when the policy does not react at all to forecasts, i.e.
X, = Xx = 0. This is natural, since by assumption the private economy has already
converged to the MSV REE and so the choice of the interest rate instrument rule need
not then be based on considerations of stability under learning. However, we note that
interest rate rules that react only to exogenous observables are problematic, as they lead
to indeterminacy (and also instability under learning if in fact private agents do not
have RE).

9 Lagged Endogenous Variables

9.1 General Analysis

The analysis discussed in the previous sections can be extended to cover models with
lagged endogenous variables. We develop this only briefly since most of the formal analy-
sis in the previous sections goes through with only minor changes. There is one important
difference though: the sense of convergence is only local also for linear frameworks. This
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is evident already from the observation that in most cases there are two MSV solutions
to the model, so that neither of them can be globally stable under learning.
Consider the class of models

¥y = a+ AlEAtlytﬂ + AQEtotH + Dy;—1 + Bwy, (74)
wy = Fwt_l + &;.

The MSV solutions are now of the form
Yy = a+ bw, + cy; 1

and in general there are two (or zero) such solutions. It should be noted that such a
solution may or may not be stationary and we will keep track of this issue.
Agents forecast using the PLMs

Y = a1 +byw + iy = SOllzt
Y = ag+bowi + cayi 1 = Poz
where 2z, = (1,w},y; ;)" and ¢ = (a;, b;,¢;) for ¢ = 1,2 in this section. (We have kept

the same general notation z; and ¢} for the state variable and parameters. This should
not cause any confusion.) The corresponding forecast functions are

Efytﬂ = a; +b;Fw, + CiEtiyt

= a; +ca; + C?yt—l + (b, F + c;ibi)wy, (75)
where we have assumed that the contemporaneous y; is not available in the information
set of the agents. (This assumption is often used in the literature.)

Inserting the forecasts (75) into the model (74), one obtains the ALM
Yy = a+ Ai(ar + ciar) + As(ag + e2a0) + (A6 + Ascs + D)y—1 +
[A1 (b1 F + c1b1) + Ag(boF + cobs) + Blwy
= T(golla §0/2)2t7

where the T" map is now given by

a; — a+ Ai(a; + cra1) + As(ag + caas),
bi — Al(blF + Clbl) + Ag(bgF + Cgbg) + B,
c;i — Alcf + AQC% + D.
We assume that agents use versions of RLS and their algorithms continue to be given

by (36)-(39) and the gain sequences furthermore satisfy Condition 2. As before, local
stability of learning dynamics is governed by the associated ordinary differential equation

doy/dr = 6157 M. (1, 05) (T (1, ) — ¢1),
dSi/dr = 61(M.(p1,¥) — S1),
dpy/dr = 6255 M. (01, 02) (T(£}, 05) — o),
dSy/dr = 6a(M. (1, ps) — S2).
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The only difference from Section 5 is that the moment matrix M, (¢;, ¢,) now de-
pends on ¢, and ¢,. Nevertheless, it can be shown that local stability is finally governed
by the smaller system

d%/dT = 51(T(g0'1,90/2)’—g01),
d802/d7' = 52(T(90,17%0/2),—802)-

When 6; = 6, = 1 as in standard RLS, stability would be governed solely by the E-
stability equations. In general, however, 6; and d, affect stability.

One can also consider the case when agent 1 uses RLS and agent 2 the SG algorithm
in their estimation, i.e., the learning algorithms are given by (46), (47), and (48). Repli-
cating the arguments in Section 6, one can show that local stability is governed by the
following system

doJdr = (T(g1,¢5) — ¢1),
dpy/dr = M, (p1,02)(T (&}, 05) — ¢y).

9.2 Application to Cagan Model

We now apply the preceding considerations to Example 3 of Section 2.1, i.e. the Cagan
model (13). Assume that the PLM of agent ¢ = 1,2 is of the form

pr = a; + bive + cipr
with the corresponding forecast

Etiptﬂ = a;+ CiE;pt = a; + ¢;(a; + cipr—1 + bivy)

2
= a; + cia; + c;pi—1 + c;ibivy.

(We have again assumed that agents do not use the contemporaneous price to make
their forecasts.) Plugging the forecasts above into (13) yields the ALM of p;

2
P = atwp 1+ Z ni(a; + cia; + cps_1 + cibvy) + vy
i=1
= a+mna(l+e1) +mnaa(l +e2) + (77163 + 77263 +w)pi1
+(1 + nyc1by + nycabo)vy
= T(#h ¢2),

where z; = (1, v, pr—1)" and ¢} = (a;, b, ¢;) for i = 1,2.
The map from the PLM to the ALM, i.e., the T' map is

Ty, b)) = [+ mnai(l +c1) + nyaa(l + c2), ycf + 1565 + w,
1 + nlclbl + 7726262]

ECB * Working Paper No 120 * January 2002 33



and the symmetric equilibria are

aq ar = a = 0,
by = by=b= [1—¢(n, + 772)]_17
o = =c=[20n +n)] 1 \/1 — 4(ny + ng)w].

Note that there are usually two such solutions, as exemplified by the expression for ¢ and
we denote them by ¢, and ¢_ for the time being. Correspondingly, we use the notation
by and b_.

We first observe that, given our assumptions on the structural parameters, ¢_ is the
uniquely stationary solution. This follows as a special case for the same class of models
considered in (Evans and Honkapohja 2001), p. 203, since

d+ g1+ go <
1+g1+90

|771+772+W|:’

It can be shown that the ¢_ solution is always E-stable (and hence stable under RLS
learning) in the case of homogenous learning rules.?® For this point onwards we refer to
the E-stable REE as (0, b, ¢) without the subscript “~” to simplify the notation. In our
case the condition for stability is given by (see (Evans and Honkapohja 2001), p. 204)

_\/1 —4(ny +my)w <1 —=2(n; +1n5,)

which reduces to

—V/(L+ g1+ 92)> — 4d(g1 + g2) <1— (g1 + g2) (76)

If g1 + go < 1, (76) is automatically satisfied. If g; + g2 > 1, (76) is equivalent to (after
squaring both sides and simplifying)

41 —d)(g1 +g2) > 0
which is obviously true since |d| < 1. Thus we have:

Proposition 13 The uniquely stationary, symmetric equilibrium in the Cagan model is
E-stable.

In the next section we check whether this symmetric equilibrium continues to be
locally stable under heterogenous learning rules.

28The b, solution is always unstable, see (Evans and Honkapohja 2001) p. 204.
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9.2.1 RLS and SG Learning in Cagan Model

We now analyze heterogenous learning in the Cagan model when agent 1 uses RLS
learning and agent 2 uses the SG algorithm as follows

Pt = Pri—1T %Rt_lzt—l(pt—l - 90,1,t—12t—1)',
Ry = Ri1+ ’Yt(ztflzéfl - Rtfl)a

Pot = Poi1 T Yezt—1(Pi—1 — 90/2,t—12t—1)/a
1
where T'(¢), ¢5)ze. Now M, (@, ps) =limy Ezi_q2z,_; =lim; E | pr_o ( 1 pi—o v ) ,
Vt—1
so that
1 Pr—2 (] 1 0 0
M.(¢r, o) =UmE | po  ply  pavia | =[ 0 op 0
V-1 Pt—2Vt—1 v7 0 0 0'3
where
op = [L— (¢} +ny¢5 +w)? 7o (77)

As was shown in Section 9, local stability is governed by the system

d‘Pl/dT = T(QO/DQOIQ)/_SOI
dpy/dr = M, (p1,02)(T (&}, 05) — ¢y).

Simplifying this, one can show that the symmetric equilibrium (0, b, ) is locally stable
provided the eigenvalues of the following 6 x 6 matrix

n(1+¢e) —1 0 0 ny(1 + ) 0 0
0 ome—1 0 0 2,0 0
0 mb  me—1 0 M2b M2
(1 +2) 0 0 m(l+e) -1 0 0
0 mboy,  oime 0 1500, (n,¢ — 1)o

(78)
have negative real parts. Appendix A.2 proves the following proposition.

Proposition 14 The unique, stationary, symmetric equilibrium of the Cagan model
continues to be locally stable when one agent uses RLS and the other the SG algorithm
in their learning rules.
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10 Concluding Remarks

Most macroeconomic models are based on the assumption of structural homogeneity, i.e.
of the representative agent, and in the literature on learning this assumption is usually
extended to include the learning rules of the agents. In this paper we have considered
the significance of this assumption for stability of learning dynamics by studying the
implications of structural heterogeneity, which is captured by the differential effect of
the expectations of the different agents on the economy. The class of models we consider
includes forward looking models with or without lags. Several cases of structural and
expectational heterogeneity were analyzed.

We started by showing that introducing heterogeneity only in beliefs but not in
learning rules has no significant consequences, as the convergence conditions are the
same as in the corresponding model with homogenous expectations. This result was
then extended by analyzing the implications of heterogeneity in learning rules (and
not only forecasts) when agents are boundedly rational and are learning about key
parameters of the economy. We also briefly considered the case, where some agents have
RE continuously while other agents are learning.

In general, the stability conditions for learning are affected by this kind of hetero-
geneity, but this is not always the case. Some standard models, which have been found
to converge to REE under homogenous expectations and learning, continue to do so
in the presence of heterogenous expectations and learning rules. This shows that the
assumption of homogenous expectations and learning rules is not always as restrictive
as it may seem at first sight.

There are, of course, models for which heterogenous learning affects the conditions
for convergence of learning. An important case is the basic forward looking model of
monetary policy commonly considered in the New Keynesian literature. In this paper
we considered this model for the case in which one class of agents has RE while the
other is learning. The companion paper (Honkapohja and Mitra 2002) provides a thor-
ough analysis of this model and examines to what extent heterogeneity can affect the
desirability of different interest rate rules advocated in the literature.

The analysis and the results in this paper are based on the assumption of symmetric
information, so that agents observe and make forecasts on the same set of “macro”
variables in the economy. This setting is natural in many models, but extensions to
our analysis are going to be needed for some specific settings. For example, we have
not considered the learnability of non-MSV REE. Perhaps more importantly, we stress
that adaptive learning in economies with asymmetric information should be considered
further as the existing literature is far from comprehensive.
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A Appendix

A.1 Convergence of the Learning Algorithms

We now develop the technical details that were also used in the previous sections. We
will work out the details in the case where one agents uses RLS and the other SG learning
and then indicate the necessary modifications for the case of different gain sequences.

Details for Theorem 6: We begin by rewriting (46), (47), and (48) as a stochastic
recursive algorithm after making a timing change in (46) and (47) by defining S; | =
R;.?Y These algorithms start from the general form

0y =01+ ’VtH(thla Xt) + 73%(9#17 Xt) (79)

where 0, is a vector of parameter estimates and X; is the state vector. In our case we
have 0y = () 4, ¢, vee(Sy)) and Xy = (1w}, w;_y).
Since the T'—map continues to be given by (18), we substitute (35) into (46) and get

Pt = Pri—1 T VtStillztfl(T(So,l,t—17 90/2,7:—1)21&71 - <P’1,t—12t71)l
+(’71,t - 'Yt)Stillztfl(T(gp,l,tfla <P,2,t71)zt71 - ‘Pll,tflztfl)l-

This gives us the ¢, components of the function H(6; 1, X;) in (79), which we denote
by Hi(zi-1,%14-1,%24-1,51). In other words,

— !/

Hi (21, P1t-15P2.t-1> Si-1) = Stfllzt—lztfl(T(spll,t—lv 90/2,1571)1 - ‘Pl,t—l)- (80)
Regarding the second order in 7y, term in (79), we have

Y1t = Yt oo
) = —QStfllztfl(T(Sp,l,tfh ()0,2,1571)275*1 - ‘Pll,tflztfl)la

ng,t(etfla Xi "

and the validity of the method requires that this be bounded in ¢. This is easily estab-
lished as by Assumption A (with K; < 1 without loss of generality) we have v, ,/v, <1

= Y14/ < 1+ K, for any K >0 = % < 1.
For (47) we can write

Sy = Sia+v(zz — Si1) + (i — V) (22 — Sio1)
Y -7
= S+ v(zz — Si1) + 73(41’”;2 _t)(ztzi — Si-1).

t

Thus the S components of the function H(0; 1, X;) are given by

Hs(2z,811) = 202, — Si 1 (81)

29Gee Chapters 7 and 8 of (Evans and Honkapohja 2001) for an exposition of the technique.
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while the second order in v, term

Y -
pss(0i-1,X;) = <%)<ztz; —Si1)
t

is bounded in t since

Y11 — Ve _ Y11 <7t+1)2 1 1 < 1 1

%2 Yer1 Vi Yer1 Ve Ver1 o Ve

by Assumption A.

Finally, in a similar manner we get the ¢, components of the function H(0; 1, X;)
in (48), which for future use we denote by Hs(t, 21,9 41, ¢2,-1,St-1)-

Now

lim EHI(thla ®1, P, S) = Sile(T((plla QOIQ)I - (pl)

t—o0

where M, is defined in (41). Similarly

lim EHg(z-1,S,t) = M, — S.

t—o00

and
M BHy (21,1, 02,5, 8) = Ma(T (¢, 05)" = ).
The associated differential equation is then defined by
df/dr = h(0) =lim, .. EH(t,0,_ 1, X})
and in our case it boils down to

doy/dr = STIM(T (&), ¢h) — ¢1),
dS/dr = M, — S,

dpy/dr = M (T (4}, ¢5) — @)

Since the second set of equations is globally stable with S — M, from any starting
point, stability is determined entirely by the smaller dimensional system

dp,/dr = (T(¢1,¢5) — ¢1),
dpy/dr = M (T (), h) — ¢s).

The rest of the proof is given in the main text, from equations (49).

Details for Theorem 4: In this case, one proceeds for both agents as above for agent
1, but one can write the gain sequence as v, , = v,(§; Y17 ') and treat Eit V1Vt as
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an additional state variable that evolves exogenously from the rest of the system. With
random gain sequences in (80) and (81) we get for agent 1

lim EHy(& 070 215 01002, S) = 615 ML(T (1, 5)' — 1)
and

tliglo EHS(fi,t’Yl,t’Y;17 z-1,5,t) = 61(M, — S)

since limy—o E(71,7; ') = 61. Doing the same for agent 2 we arrive at the associated
ODE for this, given as (40) in the main text.

A.2 Proof of Proposition 14

We first determine the sign of ¢_ which depends on d. Note that the expression for ¢_
is given by the solution of

qb)=c* = (ny+my) e+ (n+ny) lw=0

Consequently,

0) = (7714‘772)_1@0»

1) = 1+ +mn) (w—1),
q(=1) = 1+ (g +ny) (w+1).

When —1 < d < 0, so that —1 < w < 0, we have ¢(0) < 0, ¢(1) < 0 and ¢(—1) > 0
which means that —1 <¢_ < 0. When 0 < d < 1, ¢(0) > 0 and

q(1) = (m +772)71(771 +ny+w—1)<0

since 1, + 15 +w < 1. Consequently, 0 < d < 1 implies that 0 < ¢ < 1.

We now move to an analysis of stability under learning when agents use heterogenous
learning rules. Using Mathematica, one can show that two eigenvalues of the matrix,
(78), when evaluated at any symmetric equilibrium ¢, are given by —1 and (1 + ¢)(n; +
n) — 1 and the remaining four eigenvalues are given by the following two characteristic
polynomials

I(m) = m® + m[l —n,¢+ (712;(1 —150)] + ‘712;[1 —¢(ny +ny)] =0, (82)
and
p(m) = m*®+mag+a; =0, (83)
ag = 1—=2mc+ (1—2n0)[1 — {(ny + ny)& +w}?] o,
ar = [1=2(n, +ny)d[l — {(n + ny)& + w}? "ol
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Here (77) implies that o2 = [1—{(1; +7,)¢° +w}?|~'o7 when evaluated at the symmetric
equilibrium ¢. ¢7 > 0 implies that 1 — {(n; 4+ 7,)¢ + w}* > 0. We first examine the
polynomial (83). Both eigenvalues of p(m) have negative real parts iff ¢y > 0 and a; > 0.

When —1 < d < 0, we have —1 < ¢_ < 0 and hence ap > 0 and a; > 0 in p(m),
(83). For the same reason, the constant term and the coefficient of m in [(m) in (82)
are positive. Finally, (1 + ¢ )(n; +15) — 1 < 0 since n; + 1, < 1. So all eigenvalues of
the matrix, (78), have negative real parts and the symmetric equilibrium is stable when
-1<d<0.

We now examine the case when 0 < d < 1 so that 0 < ¢_ < 1. Note that

c. = [2(m+ 772)]71[1 - \/1 — 4(ny + ny)w]

l+gi+g2 _ 4d(g1 + g2
2(g1 + 92) (I+g1+g2)*"

Also

_ 4d(g1 + 92)
2 + c_=1—4/1 - ———="— < 1.
(771 772) \/ (1 7 92)2

Since 1 — 2(n; + ny)c— > 0, it follows that 1 — 2n;c_ > 2n,¢c_ > 0 and analogously
1 — 2ny¢_ > 0. This implies ag > 0 and a; > 0 in p(m) of (83).

In addition, for the same reason, the characteristic polynomial I(m) has eigenvalues
with negative real parts. Finally, we still need to show that the eigenvalue (1+¢_)(n, +
n,) — 1 is negative, which is not obvious since 0 < ¢_ < 1. In terms of structural
parameters, we have

(L4+c-)(m +mny) — 1
1 4d
_ g1+ g2 [ T t9ge 1_\/1_ (91 + 92) -1

1+ g1+ g2 2(q1 + g2)
_q_ 2 ) 4dlatg)
L+g1+ g2 (14914 92)%

Consequently, (14 ¢_)(n, +n,) — 1 < 0 if and only if

—1 4d
g1t 92 <.J1- (91 + g2) g (84)
1+ g1+ g2 (14+ g1 + go)

If g1 + go < 1, inequality (84) is immediate. If g; + g2 > 1, square both sides of (84) to
get

g1t+g2—1 2 4 4d(g1 + 92)

< 1. 85
1491+ go (14 g1+ g2)? (85)
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(85) is equivalent to

(91 +92)2 +142(g1 + 92)(2d — 1)
(91 +92)% +1+2(g1 + g2)

< 1. (86)

It is easy to see now that the inequality (86) is satisfied iff 2d — 1 < 1, i.e., d < 1, which
is true by assumption. This proves the proposition.
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