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Abstract

Until now, stock market responses to a distress scenario for oil prices have been analysed considering
prices in domestic currency. This assumption implies merging the commodity risk with the exchange
rate risk when oil and stocks are traded in different currencies. This article proposes incorporating
explicitly the exchange rate, using the convolution concept, to assess how could change the stock market
response depending on the source of risk that moves oil prices. I apply this framework to study the
change in the 10th lowest percentile of the European stock market under an oil-related stress scenario,
without overlooking the role of the exchange rate. The empirical exercise shows that the same stress
oil-related scenario in euros could generate an opposite impact in the European stock market depending
on the source of risk. The source of risk is not incorporated when performing a bivariate analysis, which
suggests ambiguous estimates of the stock response. This framework can improve our understanding
of how the exchange rate interacts in global markets. Also, it contributes to reduce the inaccuracy in
the impact assessment of foreign shocks where the exchange rate plays a relevant role.

Keywords: Convolution, stress test, Exchange rate, spillover analysis
JEL code: E30, E37, E44, G10
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Non-technical summary

Until now, spillover analyses and stress test exercises have translated international prices into domestic

prices to build a distress scenario, merging the exchange rate risk and the asset risk. This paper proposes

a new framework to design scenarios for stress testing in international markets without overlooking the

role played by the exchange rate. This study uses the convolution concept to set the source of risk that

triggers the scenario, improving the design of tailor-made scenarios.

I perform an empirical exercise to quantify the response of the European stock market to extreme

movements in oil prices in euros, which depends on the variable that leads the shock. This could be,

for instance, extreme movements in oil prices triggered either by movements in the supply and demand

of the good, which concern the commodity, or by unstable exchange rates. I employ weekly data from

2000 to 2018. The time series includes several crises where the markets have experienced great oscilla-

tions. The convolution concept is combined with a copula approach and a Markov switching technique to

gather features exhibited by the sample as asymmetric relationship, tail dependence or structural changes.

Results show that the losses in the European stock market under a distress oil-related scenario might

increase up to 30% compared to the losses obtained by the benchmark analysis, i.e. the bivariate case.

Disentangling which variable leads the scenario could be as important as the general oil movement in

terms of the response of the European stock market. On the one hand, the dominant role of commodity

risk in scenarios where the oil prices in euros experience a downward movement can sharply increase the

losses of the European stock market. On the other hand, the exchange rate risk might exacerbate stock

losses if it triggers an extreme event where oil prices in euros increases. The decrease of oil demand

in economic crises and the depreciation of domestic currency, owing to political uncertainty and weak

economic fundamentals, may explain these results.

The proposed approach can improve our understanding of how exchange rate movements might affect

stress tests in global markets. These findings call for a careful design of stress tests, incorporating the

role played by the exchange rate in international shocks into the scenario. Setting the source of risk that

triggers the distress scenario can prevent from misleading conclusions when quantifying the response of

the domestic economy.
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1 Introduction

Stress test analyses provide a deeper understanding of the interconnections across international markets
in distress scenarios. The knowledge about the behaviour of financial variables in extreme scenarios is a
fundamental cornerstone to build a resilient financial system and prevent contagion spillovers. The ex-
change rate acts as a primary channel through which international markets connect to domestic economies.
Financial variables must be denominated in the same currency to perform a stress test analysis due to
magnitude issues, reflecting the actual price paid by domestic producers and consumers. This transfor-
mation implies merging two different sources of risk which may have an opposite effects on the domestic
economy, increasing model risk in the stress test design. Taking into account the interaction with the
exchange rate could prevent from misleading conclusions about the response of the domestic economy
while improving the design of tailor-made scenarios.1

In this paper, I estimate the conditional distribution of the European stock returns on a distress sce-
nario for oil prices in euros. The conditioning scenario is the result of two dependent stochastic processes
that could trigger the distress event but might condition the response of the stock market in a different
way. The goal is to disentangle how the response of the European stock market to the same scenario for
oil prices in euros could change depending on the degree of stress in the foreign exchange market. The
response is evaluated looking at the 10th percentile of the conditioned stock returns distribution, i.e. the
so-called Conditional Value-at-Risk (CoV aR). The focus on the tail of the distribution provides two main
advantages compared to other statistical measures, e.g. conditioned mean response. First, it provides
a more robust estimation to outliers than mean response results. Second, a focus on low percentiles is
consistent with the assumption that economic agents are risk-averse, hence they are more interested in
realising how adverse the behaviour of the portfolio could become than in knowing how its performance
may be on average.

I use the copula vine approach to get the multivariate joint distribution between oil, the European
stock market and the USDEUR exchange rate, while a Markov switching technique allows for structural
changes in this relationship. The convolution concept allows us to consider alternative combinations of
events for the USDEUR exchange rate and oil returns that lead to the same scenario in terms of oil
returns in euros, evaluating the stock market implications of those alternative combinations. As we will
see, the source of risk in the scenario for oil prices denominated in euros strongly conditions the response
of the stock market.

I propose using the convolution concept to incorporate the role of the exchange rate when estimating
the response of the stock market to a distress scenario for oil markets denominated in domestic currency.
I consider co-movements between oil and exchange rate returns when designing the stress test scenario
by combining the convolution concept with the copula approach. The complex network of connections
between oil, exchange rates and stock markets implies the need of considering the simultaneous depen-
dence between them.2 Overlooking one of these variables from the analysis could lead to misleading
conclusions on the stock market exposure due to the fuzzy transmission channel. I use the copula vine
approach to get the multivariate joint distribution between oil, the European stock market and the US-
DEUR exchange rate. To my knowledge, Aloui and Ben Aı̈ssa (2016) is the only article that considers

1For instance, BCBS (2013) recommends analysing the bank position on a currency-by-currency basis for stress test
purposes.

2Several studies state that oil price movements are partially due to the currency movements (Basher and Sadorsky 2006,
Samii and Clemenz 1988, Zhang et al. 2008) and also that stock market swings may be caused by exchange rate movements
(Dominguez and Tesar 2006, Francis et al. 2006, He and Ng 1998, Jorion 1990). Likewise, extreme movements in oil prices
could trigger trade imbalances leading to adjustments in exchange rates (Golub 1983, Krugman 1983) while oil spillovers to
stock markets may appear due to the change in production cost and indirect effects on inflation rates (Arouri et al. 2011,
Lee et al. 2012, Ojea Ferreiro 2019).
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the multivariate relationship between stock market, oil and exchange rate simultaneously. They employ
a vine copula approach to estimate the joint distribution between the US stock market, the US-trade
weighted exchange rate and oil returns using daily data. Their results from the Bai and Perron (2003)
test indicate the presence of a structural change during the 2008 financial crisis. Reboredo and Ugolini
(2016) and Ojea Ferreiro (2019) also find a structural change in the bivariate relationship between the
stock market and oil returns, using the Kolmogorov Smirnov test and Markov switching models. Wang
et al. (2013) point to a structural break in the relationship between stock markets and exchange rates.
Figure 2 provides two pieces of evidence about the existence of structural change in the data during the
period 2000-2018. A rolling windows analysis using a five-year length window on the weekly returns of
Brent oil, Eurostoxx and the USDEUR exchange rate depicts a general shift in correlation across the
variables between the period 2009 − 2014 that coincides with a general change in the volatility level of
those markets. These pieces of evidence indicate that a Markov switching model, where variance and
dependence move together across regimes, could explain the dynamic shown by the data. Also, a discrete
switch in variance might explain the excess of kurtosis and the presence of left skewness shown by Figure 3.

[Insert Figure 2 here]
[Insert Figure 3 here]

Results indicate that the composition of the scenario for oil prices in euros strongly conditions the
response of the European stock market. On the one side, when a downward movement in oil prices
materialises, highest 10% losses in the stock market could increase up to 20% if the oil market triggers the
scenario compared to the scenario where the source of risk is unknown. On the other side, when an upward
movement in oil prices materialises, losses in the European stock market could sharply increase up to 30%
if the exchange rate triggers the scenario, compared to the same oil-related scenario where the triggering
source is undefined. The findings indicate higher losses in the Value at Risk of the EUROSTOXX when
a bearish oil-related scenario materialises compared to its unconditional Value at Risk. Nevertheless, the
impact of a bullish oil-related scenario on the European stock market depends on the source of risk.

Empirical evidence shows an increase in the volatility of global markets jointly with a higher degree
of co-movement and tail dependence across financial variables. The study identifies these periods: firstly,
before 2003 at the same time of early 2000s recession; secondly, from 2008 to 2011, coinciding with the
financial crisis and the beginning of European sovereign debt crisis; lastly, between 2014 to 2016, when
2010s oil glut occurs.

These findings have implications: firstly, for risk management, investors and traders, who are inter-
ested in portfolio strategies that reduce the exposure of their stock positions to commodity and exchange
rate risk; secondly, for monetary and supervisory authorities, who need to build tailor-made stress test
scenarios taking into account the role played by exchange rates; thirdly, for policy makers, who wish to
understand the interactions between the main variables that drive the economy. Analysing the conse-
quences of a distress scenario for international commodities in euros, rather than in US dollars, has also
implications for the stability of prices for euro area producers and consumers.

The remainder of the article is laid out as follows: Section 2 presents three parts concerning the esti-
mation. First Subsection 2.1 presents the copula concept and introduces the idea of convolution copula.
Second, Subsection 2.2 refers to the modelling choice for marginal and joint distribution, paying special
attention to the time-varying structure. Third, Subsection 2.3 focuses on the conditional quantile under
a distress scenario, also known as Conditional Value at Risk (CoV aR). Section 3 presents the data em-
ployed for the empirical exercise in Section 4. Finally, Section 5 concludes.
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2 Methodology

This section is divided in three parts. First, Subsection 2.1 presents a general and brief introduction of the
copula and convolution concepts. The copula methodology is the backbone to model the joint dependence.
This approach provides a great flexibility to model the joint distribution between oil, stock market and
exchange rate, capturing tail behaviour and asymmetric dependence. Second, Subsection 2.2 studies the
structure model that better fits the data. Recent literature points to a change in the dependence between
these variables over time (Reboredo and Ugolini 2016, Ojea Ferreiro 2019, Reboredo 2012, Zhu et al.
2016, Aloui et al. 2013). A Markov switching approach helps us to identify potential structural changes in
volatility and dependence.3 A procedure similar to the one employed by Rodriguez (2007) and Hamilton
and Susmel (1994) allows us to link the marginal behaviour for each variable to potential changes in the
joint dependence in line with the evidence shown in Figure 2. Finally, Subsection 2.3 introduces how the
conditional quantile under a distress scenario, i.e. the Conditional Value at Risk (CoV aR), is built. This
risk measure indicates the quantile of the variable of interest in a stress test, where the triggering event is
defined by a distress scenario for another variable. This assessment translates the complex linkages and
connections between variables into potential losses.

2.1 Copula and convolution copula

The copula methodology allows for modelling marginal features and joint characteristics separately, which
entails higher flexibility to gather complex patterns exhibited by financial data, like asymmetric relation-
ship, joint tail dependence and non-linearities.4 The Sklar (1959)’s theorem states that the joint cumu-
lative probability can be expressed as the combination of the marginal cumulative distribution function
and the copula function, which gathers the dependence characteristics across variables, i.e.

F (x, y) = C (FX(x), FY (y)) , (1)

where Fk is the marginal cumulative distribution function of variable k = X,Y and C(. . . ) is the copula
function.

The conditional copula Cy|x (FY (y)|FX(x) = xk) expresses the conditional distribution function of
a variable Y given a realization for variable X (Joe 1996). Conditional copulas are essential for the
simulation process and for the construction of complex models, such as vine copulas. The conditional
copula is the results of the partial derivative of the copula function with respect to one of its input factors,
i.e.

F (y|X = x) = Cy|x (uy|ux)

=
∂C (ux, uy)

∂ux
, (2)

where ux = FX(x) and uy = FY (y).

The concept of copula convolution (C-convolution) appears when the interest of the analysis lies in
the distribution of a variable Z = X + Y , where X and Y are not independent (Cherubini et al. 2004).
The distribution of Z in terms of the joint distribution of X and Y is

FZ(z) =

∫ 1

0
Cy|x

(
FY
(
z − F−1

X (u)
)
|u
)
du, (3)

3A Markov switching approach employed to reflect time-varying dependence is robust to misspecification issues (Manner
and Reznikova 2012) and provides higher flexibility than other dynamic models (Ojea Ferreiro 2019).

4See, for instance, Joe et al. (2010), Nikoloulopoulos et al. (2012), Kim et al. (2013).
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where marginal characteristics and dependence features are combined to get the distribution of Z = X+Y .

We can use FY
C∗ FX to express that the distribution of variable Z (FZ) is the results of the convolution

of the distributions of X (FX) and Y (FY ).

Cherubini et al. (2004) show that the C-convolution is closed with respect to mixtures of copula
functions. If C(ux, uy) = πA(ux, uy) + (1 − π)B(ux, uy) where A,B are copula functions and π ∈ [0, 1],
then

FY
C∗ FX = FY

πA+(1−π)B
∗ FX

= πFY
A∗ FX + (1− π)FY

B∗ FX . (4)

The implications for modelling the time-varying dependence given by a Markov switching process are
direct. The copula and the marginal distributions functions in Equation (3) are assumed to be absolutely
continuous, so the probability density function of variable Z = X + Y is

fZ(z) =

∫ 1

0
cX,Y

(
u, FY

(
z − F−1

X (u)
)
fy
(
z − F−1

X (u)
))
du, (5)

where fy refers to the probability density function of variable Y and cX,Y (. . . ) is the density copula
between X and Y , i.e. the derivative of the copula function with respect to all its inputs.

The oil log-return denominated in euros is the sum of the logarithmic change of the oil denominated
in US dollars and the logarithmic change in the exchange rate USDEUR5. Hence, the financial variable of
oil denominated in euros is the result of the convolution of two dependent stochastic processes. The goal
of this article is to assess how the conditional distribution of the European stock market returns could
change when the same scenario for oil in euros materialises but the source of risk that leads the movement
is different, i.e. commodity risk or exchange rate risk.

2.2 Model and estimation

This section is divided into two stages. First, I present the marginal model and the dependence structure
across variables. Then, in a second stage, the focus is on the estimation process. The marginal model
takes into account a possible switch in the market stability, using a SWARCH model to gather potential
structural breaks, i.e. the transition probability to move between a tranquil and a distress state is the
same for all the assets but their parameters are not. This assumption is supported by the Figure2, where
a simple rolling windows approach shows an increase in volatility between 2009 and 2014 for all the assets,
while their correlation drastically changed. I impose a two-state model, which keeps the model tractable
and makes easier the interpretation of the state. Changes in dependence across variables would happen
together with volatility switches in the marginal models. The high-volatility state could be seen as an
instability period for trade, which would lead to a change in the relationship between markets.6 This way
of linking the states between the marginal distributions and the dependence structure allows us to reduce
significantly the numbers of parameters providing a parsimonious model, making easier the estimation of
a high-dimensional model.

Marginal model. The aim of this section is to select a parsimonious representation for the model,
allowing for changes across possible regimes while keeping the model tractable. A specification in which

5The euro is the quote currency and the US dollar is the base currency.
6There is evidence in literature regarding the link between the change between low-volatile periods and high-volatile periods

and the shift in dependence across assets. Edwards and Susmel (2001) find evidence of volatility co-movements across Latin
American countries, Boyer et al. (2006) link high-volatility periods to an increase in co-movement across markets and Baele
(2005) indicates a contagion effect between US market and European equity indices during high-volatility periods.
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all the parameters change with each regime would be numerically unwieldy and over-parametrized. I
consider potential structural changes in key parameters for the marginal distribution, i.e. changes in
variance, which would be related to changes in dependence.
I characterise the marginal densities of the stock (s), oil (o) and exchange rate (c) returns by an
ARMA(p, q) model, i.e.

rk,t = φk,0 +

p∑
j=1

φk,jrk,t−j +

q∑
i=1

ψk,iεk,t−i︸ ︷︷ ︸
µk,t

+εk,t, k = s, o, c (6)

where p and q are non-negative integers, φk,j and ψk,i are respectively the autoregressive (AR) and the
moving average (MA) parameters and εk,t = σk,tzk,t. zk,t is a Gaussian variable with zero mean and unit
variance, i.e. the probability density function of zk,t is

f(zk,t) =
1√
2π

exp(−z2
k,t/2). (7)

The variance of εk,t has dynamics given by a Markov Switching Autoregressive Conditional Heteroskedas-
ticity model (SWARCH(K,Q))7. The presence of structural breaks in variance might explain the high
persistence found in ARCH models (Lamoureux and Lastrapes 1990, Hwang and Valls Pereira 2008). The
structural changes during the estimation period might explain also the kurtosis presented in the financial
returns (Leon Li and Lin 2004). I employ the model specification by Hamilton and Susmel (1994) where
the variance of εk,t can be divided into two components, i.e.

σ2
k,t = κk,sthk,t, (8)

where κk,st is a scale parameter of the variance depending on the state at time t. st = l refers to the
regime l at time t where l = 1, . . .K. The regimes are not directly observable but the probability of
being on them can be implicitly estimated. The probability of switching across regimes evolves according
to a first order Markov Chain of size K where K represents the number of states or regimes. κk,st is
normalized at unity at state 1 (st = 1) while for the remainder states is higher than one. hk,t follows a
ARCH(q) process, i.e.

hk,t = αk,0 +

Q∑
q=1

αk,q

(
ε2k,t−q
κk,st−q

)
(9)

where αk,0 and αk,q are the ARCH parameters, which must be higher than zero. Note that when st = 1,
κk,st = 1 ∀k, i.e. the combination of a low-volatility regime in one market and a distress state in another
market is not allowed.
I assume two states to keep the model tractable, i.e. K = 2, while Q = 1 so a SWARCH(2, 1) is employed
to model the variance of the financial returns. It is worth noting that there are K(Q+1) potential realiza-
tions of the variance at time t, because Equation (9) depends on the Q most recent ε2k,t−q standardized by
κk,st−q for q = 1, . . . , Q. Each state of the Markov switching process has an economic interpretation. State
1 indicates a period of low volatility, which can be linked to tranquil periods. On the other side, State 2
presents a high-volatility period, where there is uncertainty about the future performance of assets. The
uncertainty would lead to a change in the relationship between the variables, i.e. co-movement in distress
periods would present stronger tail dependence due to contagion across assets, while in tranquil times
the relationship might be diverse. Appendix F provides further information about the Markov switching
specification that rules the shift in the variance of each variable and the joint dependence.

7K refers to the number of states and Q indicates the lags of the ARCH(Q) model.
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Dependence structure. Complex multivariate data can be modelled using bivariate copula in a hier-
archical way like bricks of a more elaborate building. The graphical representation of these constructions
are the vines. Depending on the pair-copula decomposition we could talk about Canonical vine copulas
(C-Vine) or Drawable vine copulas (D-Vine) . C-Vine copulas have a star structure while D-Vine copulas
have a path structure. Figure 1 represents the graph-based tree structure of the copula decomposition
of three assets (1, 2 and 3). The left figure shows the construction under a C-Vine copula while the
right figure represents a D-Vine copula structure. As a matter of fact, in a three-dimensional case the
copula decomposition is both a C-Vine and D-Vine. Note that the tree under the left copula structure is
equivalent to the right panel in Figure 1.
I start modelling the joint dependence as a truncated vine, assuming that the joint dependence could be
explained through a common exposure to the exchange rate. This structure for the vine copula is based on
the key role that the exchange market plays between the stock market and the international commodity
market. Indeed, an foreign exchange market is a conditio sine qua non for the stability in international
trade markets and the economic growth in stock markets. Oil and stock returns are assumed conditionally
independent once the dependence through the exchange rate is taken into account. Following Figure 1,
this assumption implies that the link in T2 step does not exist. In a second stage this assumption is
relaxed, studying the complete vine structure as a natural extension of the truncated vine approach. This
is the expected way to study the relationship because the structure chosen in the T2 step depends on the
structure in the T1 step.

Let us consider a three dimensions vector with joint distribution F (x1, x2, x3) to motivate how to
model the multivariate structure. The Sklar (1959)’s theorem from Equation (1) can be rewritten in a
three-dimension space as

F (x1, x2, x3) = C (F (x1), F (x2), F (x3)) , (10)

where subscripts of the cumulative distribution functions were omitted to avoid cumbersome notation.
The joint density function expressed in terms of copulas and marginal densities is

f(x1, x2, x3) = c (F (x1), F (x2), F (x3)) f(x1)f(x2)f(x3), (11)

where factorizing recursively we obtain

f(x1, x2, x3) = f(x1)f(x2|x1)f(x3|x1, x2), (12)

where the subscripts of density functions were also omitted. Equation (12) can be rewritten using Bayes’
theorem as

f(x1, x2, x3) = f(x1)
f(x2, x1)

f(x1)

f(x3, x2|x1)

f(x2)

= f(x1)c (F (x2), F (x1)) f(x2)c (F (x3|x1), F (x2|x1)) f(x3|x1), (13)

where f(x3|x1) = f(x3,x1)
f(x1) , which in terms of copulas is f(x3|x1) = c (F (x3), F (x1)) f(x3). Joe (1996)

demonstrates that F (xj |xk) = P (Xj < xj |Xk = xk) for j, k = 1, 2, 3 j 6= k is expressed by the

conditional copula, i.e. C (F (xj)|F (xk)) =
∂C(F (xj),F (xk))

∂F (xk) .
To sum up, the joint density distribution under the vine approach can be expressed as

f(x1, x2, x3) = c (F (x2), F (x1)) c (F (x3), F (x1)) c (F (x3|x1), F (x2|x1))︸ ︷︷ ︸
c(F (x1),F (x2),F (x3))

f(x1)f(x2)f(x3) (14)

In the current study, x1 represents the returns of the exchange rate USDEUR (rc), while x2 and x3

represent oil and stock returns respectively (ro, rs). Observe that c (F (x3|x1), F (x2|x1)) = 1 in the case
of a truncated vine approach. I choose between a set of copulas that present different features in terms
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of tail dependence, i.e. the probability of having very extreme realizations for one market given very
extreme realizations for another market. Gaussian copula does not present tail dependence but it allows
for positive and negative association, Student t copula also allows for positive and negative association but
it presents symmetric tail dependence. Gumbel and Clayton copulas allow only for positive asymmetric
association, while Clayton copula has lower tail dependence, Gumbel copula has upper tail dependence.
The 90 degrees rotated version of Clayton and Gumbel allows for gathering negative association and
asymmetric tail dependence. Further information about these copulas is provided in Appendix D.
I use graphical tools as bivariate histograms and analytical tools as the Akaike Information Criterion
Corrected for small-sample bias (AICC) to choose a suitable copula structure that fits the true data de-
pendence. AICC is chosen because of being the principal indicator for selection copulas in the conditional
risk measure literature8, i.e

AICC = 2k
T

T − k − 1
− 2 log(L̂),

where T is the sample size, k is the number of estimated parameters and L̂ is the Log-likelihood value.
Minimum AICC value indicates the best copula fit. Appendix G presents some robustness check con-
cerning the model selection.

I propose to use a EM algorithm (Hamilton 1990) for the estimation process, which allows for de-
compositing the optimization problem in a set of simpler problems where the transition probability of
the Markov Chain and the parameters within each regime are not estimated at the same time. The EM
algorithm simplifies the computational challenge of maximizing numerically an likelihood surface plagued
with multiple local optimum as happens in switching models.

Estimation procedure. I employ the EM algorithm, proposed by Hamilton (1990), to obtain the
maximum likelihood estimates for our model, which are subject to a discrete shift. There are several
reasons that motivate the use of EM algorithm instead of using the full maximum likelihood estimation.
First, the maximization of a likelihood function with respect to a great number of unknown parame-
ters implies a computational challenge due to the possible existence of multiple local optimum, specially
in switching models. Second, It provides numerical robustness over other methods of optimization like
Newton-Raphson where, if the likelihood surface is not concave, might arrive to a local maxima/minima
(Dempster et al. 1977). The EM algorithm is numerically stable as the result of dividing the optimization
problem into a sequence of simpler optimization problems where the probabilities of switching between
regimes and the estimates within each regime are not jointly estimated. I use a large number of starting
values for the EM algorithm to ensure an improvement in efficiency. The EM algorithm has been em-
ployed already in copula-based models with Markov switching dynamics by Stöber and Czado (2014) and
Chollete et al. (2009).

To implement the EM algorithm, first compute the smoothed probabilities (Expectation step or E −
step) as shown by Kim (1994)’s algorithm. Then, employ these probabilities to reweigh the observed
data and maximize the reweighed log-likelihood to generate new estimates (Maximization step or M −
step). Employ the new estimates to reassess the smoothed probabilities in an iterative process. The EM
algorithm is an analytic solution to a sequence of optimization problems, where the solution in the n+ 1
iteration increases the value of the log-likelihood function in relation to the estimates in the n iteration,
achieving in the limit a optimum of the log-likelihood function.9

8Among others Brechmann and Schepsmeier (2013), Reboredo and Ugolini (2015a), Reboredo and Ugolini (2015b),
Reboredo and Ugolini (2016), Rodriguez (2007), Reboredo (2011) and Ojea Ferreiro (2018)

9Alternatively, we can see the new estimates in the following iteration of the EM algorithm as the results of the sum of
the weighted conditions over all possible states. In other words, the EM algorithm ”replaces” the unobserved scores by their
expectation given the estimated parameter vector in the previous iteration.
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Steps to perform the EM algorithm

• E−Step: Inference the expected values of the state process given the observation vector, i.e. assess
the conditional probabilities for the process being in a certain regimen at time t and t− 1 given the
full sample. Equation (28) provides

P (st = j, st−1 = i|IT ) for i, j = 1, 2

• M−step: Maximize the expected log-likelihood function using the smoothed probabilities to obtain
new and more exact ML estimates, i.e. instead of maximize

∑T
t=1 log (Lt(ro,t, rc,t, rs,t; It−1,Θ))

where Lt(ro,t, rc,t, rs,t; It−1,Θ) is given by equation (27) , we maximize

T∑
t=1

2∑
j=1

2∑
i=1

log
(
f(ro,t, rs,t, rc,t|Θst=j,st−1=i)

)
P (st = j, st−1 = i|IT ),

where P (st = j, st−1 = i|IT ) was obtained in the previous step. Notice that we are maximizing the
expected conditional log-likelihood, but not the log-likelihood. We use the new estimates to update
the smooth probabilities and the expected conditional log-likelihood to be maximized, we repeat
the iterative algorithm until some convergence criteria are meet, e.g. in terms of the new estimates

|Θn+1 −Θn| < ε,

where ε has a small value, e.g. ε = 10−4.

The EM algorithm prevents from estimating at the same time the parameters within each state and the
transition matrix between states, which simplifies the maximization problem. Reparametrizations are
used to guarantee that all iterates are in the parameter space. For instance instead of looking for values
of κk,st=2, I obtain the optimal estimate for a parameter x such that exp(x) + 1 = κk,st=2. Hamilton
and Susmel (1994) also employ this kind of transformations to estimate the parameters of its SWARCH
model. The transition probabilities between states for iteration n are obtained from

pnij =

∑T
t=2 P (st = j, st−1 = i|IT ; Θn−1)∑T

t=2 P (st−1|IT ; Θn−1)
, (15)

Further information regarding the EM algorithm for Markov switching models can be found in Hamilton
(1990) and Janczura and Weron (2012) among others.

2.3 Untangling the oil shock to the European stock market into commodity and
exchange rate risk

The actual oil price that European firms have to cope with is the product of the oil price in USD by the
exchange rate USDEUR10. The actual exposure to swings in oil prices is the sum of the logarithmic
changes in oil and in the exchange rate. The convolution of the distribution of oil and exchange rate
log-returns is the distribution of the oil log-returns denominated in euros.

Ojea Ferreiro (2019) analyses the impact of a oil shock denominated in euros into an extreme quantile
of the European stock market using the Conditional Value-at-Risk (CoV aR) (Adrian and Brunnermeier
(2016), Girardi and Ergün (2013)). The CoV aR measure indicates a percentile of the distribution of the
European stock market returns given a sharp change in oil prices. The change in oil prices denominated

10Note that USDEUR indicates how many euros are exchanged by one US dollar.
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in euros (roe) may come from different sources, i.e. commodity risk, exchange rate risk or a combination
of both. For instance, an increase in oil price denominated in euros might be due to the depreciation of
Euro or due to market-related reasons. In the first case, not only oil but every single imported product
would be more expensive while exports become more competitive. The second case would be related to
demand and supply reasons in the commodity. Depending on the variable that triggers the change in oil
prices in euros, we could expect a different conditional distribution for the stock market returns. The
existence of two underlying stochastic processes in the scenario design for oil prices in euros has been
overlooked by the literature, which might condition the response of the stock market.

Following Ojea Ferreiro (2019), the bearish CoV aRs|oe(α, β) of the stock returns would be obtained
implicitly from

P
(
rs < CoV aRs|oe|roe < V aRoe(α)

)
=

P
(
rs < CoV aRs|oe, roe < V aRoe(α)

)
P (roe < V aRoe(α))

= β, (16)

where P (roe < V aRoe(α)) = α.
Following Equation (3), r∗oe,t = V aRoe,t(α) is obtained from

Foe,t(r
∗
oe,t) =

∫ 1

0
Co|c,t

(
Fo,t

(
r∗oe,t − F−1

c (u)
)
|u
)
du

= α. (17)

We have infinitive combinations of exchange rate returns and oil returns denominated in US dollars such
that

r∗oe = rc + ro,

but notice that not all the combinations are equally probable11 nor their implications for the conditional
distribution of stock returns would be the same. Given a quantile qc of the distribution of the exchange
rate returns, there is an unique quantile qo of the oil returns in US dollars such that V aRoe(α) =
F−1
c (qc) + F−1

o (qo). Actually, conditioning to the oil returns in euros being below a quantile α and
the exchange rate USDEUR being below a percentile qc is the same than conditioning to the exchange
rate returns being below a quantile qc and to the oil denominated in US dollars such that its convolution
would be below the quantile α, i.e.

r∗oe ≥ F−1
c (qc) + ro,

hence oil returns denominated in dollars should be below

ro ≤ r∗oe − F−1
c (qc)

which in terms of quantiles would be

P
(
ro ≤ r∗oe − F−1

c (qc)
)

= Fo(r
∗
oe − F−1

c (qc))

= qo. (18)

Consequently, a different response of the stock market returns might occur given the same scenario for oil
returns in euros but different distress in the exchange rate returns. Incorporating the role of the exchange
rate in the oil-related scenario helps us to generate tailor-made stress test where the distress in global
market is tangled with the evolution of exchange markets.

11This would be only in the case of independent variables.
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CoV aRs|oe(α, β) in Equation (16) transforms into CoV aRs|oe,c(α, qc, β) when the exchange rate is also
considered in the scenario, getting

P
(
rs < CoV aRs|oe|roe < V aRoe(α), rc < V aRc(qc)

)
=

P
(
rs < CoV aRs|oe,c, ro < V aRoe(α), rc < V aRc(q)

)
P (roe < V aRoe(α), rc < V aRc(qc))

= β,

Equation (18) implies an equivalence between CoV aRs|oe,c(α, qc, β) and CoV aRs|o,c(qo, qc, β). Using
this equivalence we can obtain at each time t the upper threshold of the quantile of the oil returns in US
dollars such that for a certain upper threshold of the quantile of the exchange rate, the sum of returns
is at or below the quantile α of the oil denominated in euros. Setting a scenario for the exchange rate
to compute CoV aR provides additional information that can conditions significantly the response of the
stock market.

Vine structure We could express the CoV aRs|oe,c(α, qc, β) given the chosen vine structure as∫ qc
0 Cs,o|c

(
Cs|c(Fs(CoV aRs|oe,c)|u), Co|c(qo|u)

)
du

Co,c(qo, qc)
= β. (19)

where qo is given by Equation (18). To compared these results with the one obtained without any
information about the foreign exchange market, we combine Equation (3) and Equation (19) to get

CoV aRs|oe(α, β) =

∫ 1
0 Cs,o|c

(
Cs|c(Fs(CoV aRs|oe)|u), Co|c(Fo

(
V aRoe(α)− F−1

c (u)
)
|u)
)
du

α
= β, (20)

where V aRoe(α) is obtained from the convolution of the exchange rate and the oil in USD following
Equation (17). Appendix E provides information about how to build the CoV aR measure using copulas
conditioned to a bullish oil-related scenario.

3 Data

I employ weekly data of the European stock market, the USDEUR exchange rate and oil prices from
07 January 2000 to 07 September 2018. I obtain weekly returns from the log difference between two
consecutive Fridays. The time series includes several crises during this period, e.g. the dot-com crisis, the
2008 financial crisis and the European debt crisis, where both oil prices and exchange rates experienced
great oscillations.
Concerning commodity prices, I use the Europe Brent crude oil spot price sourced from the US Energy
Information Agency (http://www.eia.doe.gov), which is the main benchmark to settle the price of light
crudes. Brent crude oil is denominated in US dollars per barrel. The USDEUR exchange rate is obtained
from the European Central Bank Statistical Data Warehouse (https://sdw.ecb.europa.eu). Regarding the
European stock market, I employ the EUROSTOXX index from Datastream.

Table 2 shows some descriptive statistics for the full sample and two sub-sample that correspond to
the pre-crisis and the post-crisis periods. It indicates a clear change in higher moments, i.e. skewness and
kurtosis, and in the relationship between variables.

[Insert Table 2 here]
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4 Results

This section presents the results from the estimation of the final model in a first stage. The model
selection process and some robustness checks are shown in Appendix G. The backtesting tests provide
the model fit for different quantiles of the returns distribution, while the Akaike Information Criterion and
the bivariate histogram help us in the model selection process. The implications of the scenario design
for the conditional percentile of the Eurostoxx are analysed in a second stage.

4.1 Model diagnosis

The estimates of the model and their standard deviations are shown in Table 3. Oil in US dollars and
USDEUR exchange rate returns double the level of variance when we change from state 1 to state 2,as
seen in the estimate for the parameter κst=2. The variance of EUROSTOXX returns under the high-
variance regime triples the variance under the calm state. The student copula provides the best fit for the
dependence between oil and exchange rate under state 1. Within the high-variance regime, i.e. state 2,
the Gaussian copula suit better the co-movement between oil in USD dollars and the USDEUR exchange
rate. The dependence between these two assets is negative with a correlation around −20% regardless
the current state. There is no link between the exchange rate and the European stock market under
the calm regime, but under the high-variance regime there is a negative association with tail dependence
when the euro appreciates against the dollar and European stock market is in the upper tail of its returns
distribution. The relationship between oil in USD and the European stock market is positive within both
states. Nevertheless, the dependence is weak and without existence of tail dependence under the state 1.
The Gaussian copula with a correlation parameter with ρ < 0.1 between the oil in USD dollars and the
EUROSTOXX and the independence between the foreign exchange rate and the EUROSTOXX indicate
the low dependence of the European stock market to movements in the FX and oil markets under the
calm regime. However, the dependence between oil in USD dollars and the EUROSTOXX is positive and
presents a lower tail dependence under the regime 2. The presence of tail dependence under the high-
variance regime could be explained by the investors’ herd behaviour (Aloui et al. (2013)). The probability
of remaining in the same state for the next week is higher than 98%, indicating a high persistence in both
regimes.

[Insert Table 3 here]

The Figure 4 shows the time series of oil price in US dollars (left axis) and the USDEUR exchange
rate (right axis) jointly with those periods where the probability of being in a high-variance regime where
higher than 90% (grey area). It provides evidence about the role of the exchange rate in these periods.
A threshold model depending on the level of oil price could not explain the high probability of being in
state 2 before 2003, when oil prices were stable but the foreign exchange rate and the European stock
market experience great oscillations. The periods after 2008 where the probability of being in the regime
2 is high coincide with turbulences in all the markets.

[Insert Figure 4 here]

To observe how well the distribution of oil returns in euros is fitted by the convolution function in
Equation (17), Figure 5 plots the oil returns in euros together with its 5 − th and 10 − th percentiles
obtained from the convolution. The V aR adapts to the changes in volatility indicating an adequate fit
for the empirical data.

[Insert Figure 5 here]

ECB Working Paper Series No 2296 / July 2019 13



4.2 Stress test for the Eurostoxx given a distress scenario for oil returns in euros
and the role of the exchange rate.

This subsection starts looking at the conditional distribution of the exchange rate returns under different
scenarios for oil in euros. Lighter colours in Figure 6 indicates a higher probability for those values
of the exchange rate returns. If the exchange rate was independent from the scenario for oil prices
in euros, the conditional distribution would be identical no matter which oil-related scenario conditions
foreign exchange rate. However, the FX distribution exhibits skewness features depending on the scenario,
meaning that the literature has been implicitly assuming an expected response of the exchange rate when
defining an oil-related scenario in the bivariate analysis.

[Insert Figure 6 here]

An overview of the response in the returns distribution of the European stock market can be obtained
by simulation. Following Algorithm C we can generate realizations from the joint distribution to get the
properties when a certain event occurs.First, I generate 1000000 simulations from the joint distribution of
oil, foreign exchange rate and the European stock market. Then, I choose those observations that meets
some criteria, e.g. stock realizations on those simulations where the oil returns in euros is below its 10-th
percentile. Figure 7 shows in the left (right) chart the histogram of the European stock returns when
a downward (upward) movement in oil prices denominated in euros occurs. The blue bars presents the
conditional distribution of the EUROSTOXX when the oil-related scenario materialises. The red (yellow)
bars indicate the conditional distribution of the European stock market on an oil-related scenario triggered
mainly by the FX (oil) market. Two main findings should be highlighted looking at Figure 7. On the
one hand, the returns distribution of the European stock market when a bearish oil-related scenario
materialises presents higher losses if the exchange risk triggers the scenario. On the other hand, the
EUROSTOXX distribution under a bullish oil-related scenario presents higher losses if the oil market
triggers the conditioning event. The source of risk that triggers the scenario conditions strongly the
conditional distribution of the stock market returns.

[Insert Figure 7 here]

Figure 8 shows the combination of quantiles (top) / returns (bottom) of oil returns in US dollars and
USDEUR that provides the V aR(α) of the oil returns in euros. Note that bottom chart is a straight
line, because the oil return in US dollar is a linear function given a V aR(α) of the oil returns in euros and
a value for the exchange rate returns (see Equation (18)). The changes over time are due to variations in
the V aR(α) of the oil in EUR. Note that the relationship is not linear when we are dealing with quantiles
(top chart).

[Insert Figure 8 here]

Figure 9 shows the distribution of the conditional 10-th percentile of the Eurostoxx returns over the
sample 2000-2018. Left chart presents a scenario where the oil in euros is below its 10 − th percentile
(α = 0.1) while the right chart shows a scenario where oil in euros is above its 90−th percentile (α = 0.9).
X-axis compares the same scenario depending on the upper (left chart) or lower (right chart) threshold
for the quantile of the exchange rate (qc). On the one side, left figure shows a scenario where oil prices
denominated in euros experience a downward movement and the USDEUR returns are below its qc100-
th percentile. On the other side, right graph presents a scenario where oil prices denominated in euros
experience a upward movement and the USDEUR returns are above its qc100-th percentile. Label C in
the x-axis refers to the convolution of oil and the exchange rate, i.e. without any assumption about the
source of risk that triggers the conditioning event following Equation (20). The bearish CoV aR of the
EUROSTOXX returns presents higher dispersion over time than the bullish CoV aR. For both scenarios
CoV aR increases for higher quantiles of the exchange rate returns. This implies than bearish CoV aR
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where the main source of risk is the movement in oil prices denominated in US dollar and bullish CoV aR
where the source of risk comes from the exchange rate are the most harmful scenarios for the European
stock market.

[Insert Figure 9 here]

Figure 10 presents the Value at Risk of EUROSTOXX (black dashed line), the Value at Risk of the
EUROSTOXX under a distress scenario for the oil price in euros (red solid line) and its range of potential
responses depending on the source of risk that triggers the distress scenario (grey area). Left figure
shows a bearish scenario for oil denominated in euros, i.e. below its 10-th percentile, while the right
chart indicates a bullish scenario, i.e. oil returns in euros above its 90-th percentile. The response of the
EUROSTOXX V aR might be different depending on the source of risk that triggers the event, i.e. the
foreign exchange market or the oil market. The grey area indicates how the source of risk could change
the response of the European stock market when a oil-related scenario materialises. This are provides a
magnitude regarding the uncertainty of the conditional behaviour of the stock market due to the trigger
of the conditioning event.12 On the one side, the bearish CoV aR is lower than the V aR of EUROSTOXX
returns no matter which is the source of risk, although the magnitude of the difference between CoV aR
and V aR might vary. On the other side, bullish CoV aR returns are higher than the V aR returns of
EUROSTOXX, but this could change depending on the source of risk that triggers the scenario.

[Insert Figure 10 here]

To assess how the source of risk could condition the losses in a stock portfolio, let us assume that the
V aR and the CoV aR losses of the EUROSTOXX occur. Then, given that rs,t = log(Ps,t) − log(Ps,t−1),
the losses in a EUR100 portfolio would be 100(1 − exp(V aR)) and 100(1 − exp(CoV aR)) respectively.
Figures 11 and 12 show in the right axis the losses on a EUR100 portfolio when the distress scenario
materialises. Grey line indicates the losses in the portfolio when the CoV aR scenario occurs. The CoV aR
losses come from a downward movement in oil prices denominated in euros (Figure 11) or from an upward
movement (Figure 12). The CoV aR is obtained setting an undefined the source of risk using Equation
(20). Black dashed line indicates the losses that comes from the V aR of the EUROSTOXX returns. Grey
areas indicate periods where the smoothed probabilities of being at the high-variance state are higher
than 90%. This regime is identified in three main periods: before 2003, coinciding with the dot-com
crisis; between 2008 to 2011, when the financial crisis and the European sovereign debt crisis occur; and
between 2014 to 2016, matching with the oil glut period.

Left axis presents the changes in percentage of the nominal losses on the EUR100 portfolio depend-
ing on the source of risk, compared to the CoV aR losses with an undefined source of risk. The losses
decrease between 1%− 9% compared to the bearish CoV aR if the exchange rate triggers the downward
movement in oil prices. Indeed, the 10% highest EUROSTOXX losses under a bearish oil-related scenario
alleviate if the appreciation of the euro generates the decrease in oil prices. On the other side, CoV aR
losses increase between 4%− 20% when oil movements are generating the downward trend in oil price in
euros. The bearish CoV aR triggered by the exchange rate depicts a scenario where the appreciation of
the euro indicates a high foreign demand of European goods, which appreciates the domestic currency.
The bearish CoV aR triggered by the oil market might be related to an economic slump scenario where
the oil demand decreases, coinciding with higher losses in thestock market. Regarding the bullish scenario
for oil returns in euros, CoV aR losses decrease around 4% when the event is led by the oil returns in
US dollars. This could be explained by the fact that economies in the expansion phase of the economic
cycle present a high demand of energy products (Fernández Casillas et al. 2012). Losses increase between
3% − 30% when the depreciation of the euro explains the bullish trend in oil prices. The depreciation
of the euro could be indicative of an economic crisis in the euro area and the existence of trade imbalances.

12To build the range of uncertainty I choose a set of quantiles of the exchange rate returns (qc) from 10−8 to 1 − 10−8.
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The findings in this section prove that the same scenario for oil in euros might describe very differ-
ent economic frameworks depending on the source of risk. Hence, identifying the trigger that leads the
distress scenario is relevant to build tailor-made stress tests and to get a better understanding about the
relationship between variables in extremes scenarios.

[Insert Figure 11 here]
[Insert Figure 12 here]

5 Conclusion

The academic literature has not distinguished the trigger of a distress scenario in international markets
when analysing the response of a domestic economy. Leaving the source of risk undefined may affect the
consistency of estimates of the response of a given market because it may be strongly conditioned by the
trigger that led to the distress scenario. On the contrary, having more detailed information on the scenario
will generally lead to more accurate estimates of the response of the domestic economy. This article sug-
gests combining the vine copula approach with the convolution concept, getting the most out of financial
data to design stress test scenarios where the global markets and the exchange rate interact to define the
distress event. The convolution approach allows us to take into account not only the degree of distress in
the conditioning event but also the trigger that generates such event. The vine copula approach allows
for modelling complex multivariate distributions while the convolution copula can capture the interaction
between oil prices and the exchange rate. This framework allows for considering tailor-made scenarios,
reducing the uncertainty regarding the role that the foreign exchange rate plays in the distress scenario.

I perform an empirical exercise using weekly returns of EUROSTOXX, Brent oil in US dollars and the
foreign exchange rate for the period 2000-2018 to analyse the dependence of the European stock market on
the foreign exchange rate under an oil-related scenario. A given event for oil prices in euros is consistent
with different combinations of scenarios for the euro dollar exchange rate and oil markets. Whether it is
exchange rate risk or commodity risk that triggers the conditioning event should be expected to have an
impact on the response of the European stock market to an energy-related scenario. I employ a SWARCH
model where the copula and the variance switch jointly across regimes to reflect the structural change
observed in the data. Indeed, empirical evidence shows periods of increased volatility in global markets
jointly with a higher degree of co-movement and tail dependence across financial variables. These struc-
tural changes have been identified before 2003, between 2008-2011 and between 2014-2016, in coincidence
with the early 2000s recession, the financial crisis with the consequent European sovereign debt crisis, and
the 2010s oil glut. The EM algorithm provides the estimates of the model following an iterative process,
reducing the complexity of the optimization problem.

The results indicate that when an upward movement in oil prices in euros materialises, the magnitude
of the 10% highest losses in the European stock market depends on the source of risk triggering the
scenario. Such extreme losses increase when a downward movement in oil prices in euros materialises,
with independence of the trigger. However, the size of the increase depends on the source of risk. Stock
responses to oil-related scenarios present a higher dispersion under downward swings than under upward
movements. On the one hand, the dominant role of commodity risk in scenarios where the oil prices in
euros experience a downward movement can sharply increase the losses of the European stock market.
On the other hand, the exchange rate risk might exacerbate stock losses if it triggers an extreme event
where oil prices in euros increases. A simulation exercise shows that the conditional distribution of stock
returns in a scenario where oil prices sharply decrease is more left-skewed when the oil market triggers
the conditioning event. The distribution of stock returns also presents a left-skewed feature in scenarios
where a upward swing in oil prices occur due to extreme movements in the foreign exchange market. The
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decrease of oil demand in economic crises and the depreciation of the domestic currency, due to political
uncertainty and weak economic fundamentals, may explain these results.

The proposed approach can improve our understanding of exchange rate movements might affect stress
test exercises in global markets. Possible extensions of the methodology could study the interactions be-
tween the European stock market and the international markets where the foreign exchange rate plays
a role regardless of whether the effects emerge contemporaneously or with some lags. Combining the
convolution and the copula methodology (Cherubini et al. 2016) we could build a flexible VAR model
that allows for non-linearities. The copula approach establishes the link between current and past re-
turns, while the convolution provides the distribution of the current returns as the sum of past returns
and an innovation. The VAR model would be enhanced by the possibility of analysing the mean effect
of an oil-related shock on the tail of the European stock market distribution. Additional studies could
deal with interactions of exchange rate to foreign economies where there is a significant exposure. For
instance, Spanish financial institutions have a large exposure to Latin American countries. Analysing the
response of the financial firms to extreme events in these countries depending on the source of the shock,
i.e. foreign stock markets or exchange rates, will be useful to design better hedging strategies, increasing
the resilience of the financial sector to instabilities in the region.

Thus, these findings have consequences, firstly, for risk managers, investors and traders, who wish to
control the exposure of its stock positions to commodity and exchange rate risk; secondly, for regulatory
authorities and supervisors, who look for tailor-made stress test scenarios that consider the role of the
foreign exchange rate; thirdly, for monetary authorities, who are interested to quantify stock market losses
if scenarios of unstable energy prices materialise; lastly, for policy makers, who wish to understand the
interactions between the main variables that drive the economy.
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Appendices

A Figures

Figure 1: Example of a three-dimensional C- (left-top panel), D-vine (right-top panel) with edge indices.
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C-Vine tree-structure D-Vine tree-structure

Structure graphs gives the representation of the joint probability density function in the form of a nested set of trees (T1, T2).
Each node corresponds to a density distribution, each edge corresponds to a pair-copula density and the edge label corresponds
to the subscript of the pair-copula density. distribution. Note that C-Vine and D-Vine in this example show the same way of
decomposing the density. Under the vine structure, variable 1 is connected to variable 2 and 3 in a first stage (T1). Variable
2 and 3 are connected through the relationship that both have with variable 1 in T1, and conditioned to the value of variable
1 they present an additional link between them in the second stage (T2). Note that if the model is limited up to T1, variable
2 and 3 would be unconditionally dependent through variable 1 but conditioned independent given a realization of variable
1.
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Figure 2: Time-varying correlation and volatility.

These figures show the evolution of the correlation and volatility using a rolling window with a window length of five years, i.e. at
each time t I assess the correlation and the volatility of the weekly returns between t− 260 and t. The figures depict two set of
evidence. First, there is a general shift in correlation across the variables between the period 2009− 2014. Second, this period

coincides with a general change in the volatility level of those markets. This evidence indicates that a Markov switching model, where
variance and dependence move together across regimes, might explain the dynamic shown by the data. Volatility value is obtained

annualizing the standard deviation shown in percentage, i.e. standard deviation is multiplied by
√

52100.

Figure 3: Histogram and scatter plots for the bivariate relationships.

This figure shows the histogram for each variable and the scatter plot between each pair of variables. Concerning the histograms, they
indicate an excess of kurtosis and the presence of left skewness which could be explained by a discrete switch in variance.

ECB Working Paper Series No 2296 / July 2019 23



Figure 4: Time series of assets prices and high-volatility periods.

This figure shows the time series of the price of oil in USD dollars (left axis) and the USDEUR exchange rate and EUROSTOXX
(right axis), while the grey area indicates those periods where the smoothed probability of being in the high-variance regime is higher

than 90%. The price at the beginning of the sample is 100 for the three assets.

Figure 5: Oil returns denominated in euros and its 5-th and 10-th percentiles

Historical time series of the oil returns denominated in euros and its 5-th and 10-th percentile obtained from the convolution function
from Equation (5) and the model from Figure 3.
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Figure 6: Distribution of USDEUR returns under different scenarios for Oil in EUR.

(a) Oil in EUR below 5-th percentile (b) Oil in EUR above 95-th percentile

This figure shows the distribution of the exchange rate returns under different scenarios for oil in euros. The distribution of exchange
rate returns exhibits skewness features depending on the scenario of oil in Euros. The lighter colour indicates a higher probability for

those values. The conditional distribution of the exchange rate is obtained as
f(rc|roe < V aRoe(α)) = Co|c(Fo(V aRoe − rc)|Fc(rc))f(rc)

1
α

where the subscript t is ignored for notational convenience.

Figure 7: Conditional distribution of the EUROSTOXX on the scenario for oil price in euros and the FX.

(a) Bearish oil-related scenario (b) Bullish oil-related scenario

These figures show the histogram of the EUROSTOXX returns when a bearish (a) or bullish (b) scenario for oil prices in euros
materialises. The returns are obtained following the simulation process shown in Appendix C. I simulate 1000000 realizations taking
the values of the parameters at the end of the sample period. The blue histogram represents the conditional returns distribution for

the European stock market when the source of risk that triggers the event scenario is unknown. The red histogram shows the
conditional distribution of the stock market when the exchange rate triggers the scenario for oil prices in euros, while the scenario is
triggered by the oil market in the yellow histogram. Looking to the left tail of the distribution we can observe that the variable that
triggers the conditional scenario could be as important as the scenario for oil in euros. Taking into account the source of risk could

enhance the precision in the response of the European stock market to the materialisation of the scenario.
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Figure 8: Combination of oil in US dollars and USDEUR such that the sum is the V aR(α) of the oil
denominated in euros

(a) Quantile combination to get V aR(α) of oil returns in euros

(b) Returns combination to get V aR(α) of oil returns in euros

This figure shows the combination of quantiles (top) / returns (bottom) of oil in US dollars and USDEUR that provides the V aR(α)
of the oil returns in euros. Note that the bottom figure is a straight line, because oil return in US dollar is a linear function of the

V aR(α) of the oil returns in euros and the exchange rate return. The changes over time are due to the changes in the V aR(α) of the
oil in euros. Note that when we are dealing with quantiles (top chart) the relationship is not linear.

ECB Working Paper Series No 2296 / July 2019 26



Figure 9: Boxplot of the CoVaR distribution of the EUROSTOXX over the full sample

This figure shows the distribution of the CoVaR over the sample 2000-2018. Left chart presents a scenario where the oil returns in
euros is below its 10− th percentile (α = 0.1) while right chart shows a scenario where oil returns in euros is above its 90− th

percentile (α = 0.9). X-axis compares the same scenario depending on the quantile of the exchange rate (qc). Left figure shows a
bearish scenario for oil returns in euros and USDEUR is below its qc100-th percentile, while right graph presents a bullish scenario for

oil returns in euros where the USDEUR is above its its qc100-th percentile. Label C in the x-axis refers to the convolution of oil
returns and the exchange rate, i.e. without doing any assumption regarding the stress in the exchange rate.

Figure 10: Value at Risk of the EUROSTOXX under different oil-related scenarios

This figure shows the Value at Risk of EUROSTOXX (black dashed line), the Value at Risk of the EUROSTOXX under a distress
scenario for oil in euros (red solid line) and its range of potential values depending on the source of risk that triggers the distress

scenario for oil prices in euros (grey area). Left figure shows a bearish scenario for oil in euros, i.e. below its 10-th percentile, while the
right chart indicates a bullish scenario, i.e. oil returns in euros above its 90-th percentile. The response of the EUROSTOXX VaR
might be different depending on the source of the shock, i.e. arising from the exchange rate or from the oil trade. Grey areas show

how the response of EUROSTOXX could vary under the same scenario for oil in euros depending on the source of the scenario. This
allows us to build a range of uncertainty regarding the impact of the scenario.
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B Tables

Table 1: Main tail dependence features for each copula

Family τL τU

Gaussian − (if ρ = 1 then 1) − ( if ρ = 1 then 1)

Student t 2tη+1

(
−
√

(η+1)(1−ρ)
1+ρ

)
2tη+1

(
−
√

(η+1)(1−ρ)
1+ρ

)
Clayton 2−1/θ −
Gumbel − 2− 21/θ

Note:
− represents no tail dependence.

Source: (Ao et al., 2017, p. 22), Jiang (2012), Joe and Hu
(1996), Fischer (2003) and (Joe, 1997, p. 193–204).
Let u1 and u2 denote two uniform-distributed variables across
(0,1).

The lower tail dependence, τL, is defined as τL =
limq→0P (u2 < q|u1 < q).

The upper tail dependence, τU is defined as τU =
limq→1P (u2 > q|u1 > q).

Table 2: Descriptive statistic for the variables

Full sample Pre-crisis period Post-crisis period

A B C A B C A B C
µ 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
σ 0,05 0,01 0,03 0,05 0,01 0,03 0,05 0,01 0,03
skewness -0,50 0,08 -0,96 -0,60 -0,01 -0,23 -0,41 0,17 -1,38
kurtosis 5,19 4,10 9,94 3,95 3,03 4,81 6,77 5,04 12,30
q=95% 0,07 0,02 0,04 0,08 0,02 0,04 0,07 0,02 0,04
q=5% -0,09 -0,02 -0,05 -0,09 -0,02 -0,05 -0,09 -0,02 -0,05
ρUSDEUR -0.1933 - -0.0513 -0.1271 - 0.1649 -0.2554 - -0.2188
ρo - -0.1933 0.2153 - -0.1271 -0.0379 - -0.2554 0.4326
ARCH test 0,0000 0,0007 0,0000 0,0000 0,6604 0,0000 0,0000 0,0031 0,0251
LBQ test 0,4992 0,7454 0,0090 0,4223 0,5941 0,8540 0,1537 0,2942 0,0125

A: Oil in USD, B: USDEUR exchange rate, C: EUROSTOXX. All the series are shown in returns.
LBQ test refers to the p-value of the Ljung-Box Q-test for autocorrelation performed with 20 lags.
ARCH test refers to the p-value of the Engle’s ARCH Test for heteroscedasticity performed with 1
lag.
The 15 September 2008 is chosen as breakpoint to define a crisis date.
ρUSDEUR and ρo shows the Pearson’s linear correlation coefficient of the variables against the
USDEUR and the Oil in USD respectively.
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Table 3: Model with a complete vine structure

A B C

φ0 0.00 ** -0.00 0.00 ***
(0.00) (0.00) (0.00)

φ1 0.06 * 0.04 -0.05 *
(0.04) (0.03) (0.04)

κst=2 2.16 *** 2.17 *** 3.77 ***
(0.24) (0.23) (0.43)

α0 0.00 *** 0.00 *** 0.00 ***
(0.00) (0.00) (0.00)

α1 0.12 *** 0.09 ** 0.15 ***
(0.04) (0.04) (0.06)

State 1 State 2

T1 (A,B)

ρA,B -0.20 *** ρA,B -0.18 ***
(0.05) (0.05)

νA,B 12.54 ***
(0.41)

T1 (B,C)

θB,C 0.06 **
(0.03)

T2 (A,C—B)

ρA,C 0.08 * θA,C 0.14 ***
(0.05) (0.05)

p11 0.99 *** p22 0.98 ***
(0.01) (0.01)

LL -6671.80

The table reports the estimates and the standard deviation (in parenthesis) for the parameters of the marginal
model in Equations (6) and (9) and for the parameters of the best copula choice according to the AICC value
reported by Table 9.
LL is the log-Likelihood value.
A: Oil in USD, B: USDEUR exchange rate, C: EUROSTOXX. ρA,B and ηA,B is the correlation and number of
degrees of freedom between oil in USD and USDEUR returns. θB,C is the estimate of the 90◦ Rotated Clayton
under state 2 between USDEUR and EUROSTOXX. ρA,C is the correlation between oil in USD and EUROSTOXX
under state 1 once the dependence between those variables and USDEUR has been considered. ρA,C is the estimate
of the Clayton copula between oil in USD and EUROSTOXX under state 2 once the dependence between those
variables and USDEUR has been considered.
Vine structure: Oil-USDEUR- State 1: Student, State 2: Gaussian. USDEUR-EUROSTOXX -State 1: Indepen-
dence, State 2: 90◦ Clayton. Oil-EUROSTOXX|USDEUR-State 1: Gaussian, State 2: Clayton.
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C Algorithm for the simulation process

Algorithm 1 Simulation of dependence under a Vine in dimension N=3 over a time period τ and a
copula structure that follows a two-state Markov switching.

procedure Sim-Dependence(θ, P (st−1 = 1|IT ), P (st = 1|IT ), p11, p22)
2: for ω ← 1, . . . ,W do

if rand < P (st−1 = 1|IT ) then
4: state1,ω = 1

else
6: state2,ω = 2

end if
8: if rand < P (st = 1|IT ) then

state2,ω = 1
10: else

state2,ω = 2
12: end if

for t← 1, . . . , τ do
14: if statet+1,ω = 1 then

if rand < p11 then
16: statet+2,ω = 1

else
18: statet+2,ω = 2

end if
20: else

if rand < p22 then
22: statet+2,ω = 2

else
24: statet+2,ω = 1

end if
26: end if

ut,ω,1 = rand
28: ut,ω,2 = C−1

2|1
(
rand|ut,ω,1; θstatet+2,ω

)
for n← 3, . . . N do

30: ut,ω,n = rand
for k ← 1, . . . , n− 1 do

32: ut,ω,n = C−1
n|k
(
ut,ω,n|ut,ω,k; θstatet+2,ω

)
end for k

34: end for n
end for t

36: end for ω
Return u and state

38: end procedure

θs are the set of parameters for the copula structure under regime s. P (st−1 = 1|IT ) and P (st = 1|IT )
are the smoothed probabilities of being in state 1 at t− 1 and t.
p11 and p22 are the diagonal values from the transition matrix (see Equation (25)).
rand refers to an uniform-distributed random realization.
The OUTPUT u is a uniform-distributed matrix that has the joint dependence presented in the model.
The OUTPUT state is a matrix that indicates in which regime is the model at each time within each
simulation.
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Algorithm 2 Simulation from a AR(1)-SWARCH(2,1) over a time period τ and Gaussian distribution
assumption for the innovation process.

procedure Sim-Path(u, state, φ0, φ1, α0, α1, κ2, rT−1:T )
for n← 1, . . . , N do

3: for w ← 1, . . . ,W do
for t← 1, . . . , τ do

if t = 1 then
6: ε = rn,T − φn,0 − φn,1rn,T−1

end if
if statet,ω = 1 then

9: ht,ω,n = αn,0 + αn,1ε
2

else
ht,ω,n = αn,0 + αn,1

ε2

κn,2
12: end if

if statet+1,ω = 1 then
σt,ω,n =

√
ht,ω,n

15: else
σt,ω,n =

√
κn,2ht,ω,n

end if
18: ε = Φ−1(ut,ω,n)σt,ω,n

if t = 1 then
rt,ω,n = φn,0 + φn,1rn,T + ε

21: else
rt,ω,n = φn,0 + φn,1rt−1,ω,n + ε

end if
24: end for t

end for w
end for n

27: Return r
end procedure

u is a N-dimension matrix (TxWxN) obtained from Algorithm 1.
φ0 and φ1 are vectors of parameters of length N that drive the dynamic in Equation (6).
α0, α1, κ2 are vectors of parameters of length N that drive the dynamic in Equation (9).
The OUTPUT r is a N-dimension matrix (τxWxN) of W simulated paths of length τ for the N returns.

D Copula set for modelling joint distribution

Gaussian and Student copula are elliptical copulas, i.e., the bivariate joint density under these copulas
has elliptic isodensities.
Gumbel and Clayton are Archimedean copulas, which implies that can be expressed as a function of the
generate function φ and its inverse φ−1, i.e. C(u1, u2, θ) = φ−1 [φ(u1; θ) + φ(u2; θ); θ] where θ is the copula
parameter.
To enhance the features of copulas that only allow for positive dependence, they are rotated to capture
negative tail dependence. The next table shows the tail dependence for the 90◦ rotated copulas. The 90◦

rotated copulas are built modifying slightly the standard copula, i.e.

C90(u1, u2) = u2 − C (1− u1, u2)
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Table 4: Tail dependence for the 90◦ rotated copulas

τL|U τU |L

90◦R Clayton 2−1/θ -

90◦R Gumbel - 2− 21/θ

θ is the parameter from the original copula. Further information about the rotated copula can be found in
Brechmann and Schepsmeier (2013), Cech (2006), Georges et al. (2001) and Luo (2010).

Let u1 and u2 denote two variables uniformly distributed across (0,1).
The negative lower tail dependence, τL|U , is defined as τL|U = limq→0P (u2 < q|u1 > 1− q).
The negative upper tail dependence, τU |L is defined as τU |L = limq→1P (u2 > q|u1 < 1− q).

Figure 13 shows an example of how change the distribution and the tail joint behaviour when the 90◦ rotated copula
is employed. See Zhang (2008) for further details about negative tail dependence.

Figure 13: Rotated copulas employed to capture negative tail dependence
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This figure shows 800 simulations from the same seed but under different copula assumptions. Rotating 90 degrees allows us to
capture negative upper tail dependence (90◦ rotated Gumbel), negative lower tail dependence (90◦ rotated Clayton). The red line
indicates the threshold below which the 5% of the u2 are found given the values taken by u1. Gumbel and Clayton copula has a

copula parameter θ = 2.

Gaussian copula. This copula has a parameter ρ that gathers linear correlation. When ρ = 1 the
tail dependence is 1, otherwise this copula does not present tail dependence. There is not a closed form
expression due to the fact that Gaussian copula is an implicit copula. Meyer (2013) takes a in-depth look
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at this copula.
The copula probability density function is

c(u1, u2; ρ) =
1√

1− ρ2
exp

{
−ρ

2Φ−1(u1)2 − 2ρΦ−1(u1)Φ−1(u2) + ρ2Φ−1(u2)2

2(1− ρ2)

}
,

where Φ−1 stands for the Gaussian inverse cumulative distribution function.
The conditional copula C2|1(u2|u1; ρ) is

Φ

(
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

)
.

Student copula. This copula allows for positive and negative symmetric tail dependence. The parame-
ter ρ measures correlation and the parameter η, the number of degrees of freedom, controls the probability
mass assigned to extreme joint co-movements of risk factors changes.13 When η →∞ corresponds to the
Gaussian copula.14 Student copula has not a closed form because it is aN implicit copula.
The copula probability density function is

c(u1, u2; η, ρ) = K
1√

1− ρ2[
1 +

T−1
η (u1)2 − 2ρT−1

η (u1)T−1
η (u2) + T−1

η (u2)2

η(1− ρ2)

]− η+2
2

[
(1 + η−1T−1

η (u1)2)(1 + η−1T−1
η (u2)2)

] η+1
2 ,

where K = Γ(η2 )Γ(η+1
2 )−2Γ(η+2

2 ).
The conditional copula C2|1(u2|u1; ρ, η) is

Tη+1

(√
η + 1

η + (T−1
η (u1))2

T−1
η (u2)− ρT−1

η (u1)√
1− ρ2

)
where Tη is the cdf of a t-Student with the numbers of degrees of freedom equal to η and T−1

η represents
its inverse 15

Clayton copula. This copula allows positive dependence and asymmetric lower tail dependence. The
Clayton copula has a dependence parameter θ ∈ (0,+∞). When θ → 0 implies independence and when
θ →∞ implies perfect dependence.
The Clayton copula is

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ
,

and the copula probability density function is

c(u1, u2; θ) = (θ + 1)
(
u−θ1 + u−θ2 − 1

)−2− 1
θ

(u1u2)−θ−1.

The conditional copula C2|1(u2|u1; θ) is(
u−θ1 + u−θ2 − 1

)− 1+θ
θ
u−θ−1

1

13For more information about the properties of the t-Student copula see Demarta and McNeil (2005)
14The Gaussian copula underestimates the probability of joint extreme co-movements in high volatility and correlation

scenarios (see Aussenegg and Cech (2011))
15See for instance Cech (2006)
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Gumbel copula. This copula allows for positive dependence and asymmetric upper tail dependence.
The Gumbel copula has a dependence parameter θ ∈ [1,+∞). When θ = 1 implies independence and
when θ →∞ implies perfect dependence.
The Gumbel copula is

C(u1, u2; θ) = exp

(
−
{

(− log u1)θ + (− log u2)θ
}1/θ

)
,

and the copula probability density function is

c(u1, u2; θ) = (A+ θ − 1)A1−2θ exp(−A)

(u1u2)−1(− log u1)θ−1(− log u2)θ−1,

where A =
[
(− log u1)θ + (− log u2)θ

] 1
θ .

The conditional copula C2|1(u2|u1; θ) is

exp

(
−
{

(− log u1)θ + (− log u2)θ
}1/θ

){
(− log u1)θ + (− log u2)θ

}1/θ−1
(− log u1)θ−1 1

u1

E Considering the role of the exchange rate in a bullish scenario for oil returns in
euros

Following Ojea Ferreiro (2019), I define the bullish CoV aRs|oe(α, β) as the β100% lowest stock returns
given that oil returns in euros are above its α quantile, i.e.

P
(
rs < CoV aRs|oe|roe > V aRoe(α)

)
=

P
(
rm < CoV aRs|oe, roe > V aRoe(α)

)
P (roe > V aRoe(α))

= β,

where P (roe > V aRoe(α)) = 1− α.
Following the same reasoning that in Subsection 2.3 for a given lower bound qc for the quantile of the
exchange rate returns we get

r∗oe(α) ≤ F−1
c (qc) + ro,

where r∗oe = V aRoe(α). Consequently, oil returns denominated in US dollars should be greater

ro ≥ r∗oe − F−1
c (qc)

which in terms of quantiles would be

P
(
ro ≥ r∗oe − F−1

c (qc)
)

= 1− Fo(r∗oe − F−1
c (qc))

= 1− qo. (21)

Hence, the bullish CoV aR(α, β) when the exchange rate returns are above its qc100-th quantile would be
obtained implicitly from

P
(
rs < CoV aRs|oe|roe > V aRoe(α), rc > V aRc(qc)

)
=

P
(
rs < CoV aRs|oe,c, roe > V aRoe(α), rc > V aRc(qc)

)
P (roe > V aRoe(α), rc > V aRc(qc))

= β.

Taking into account the chosen vine copula structure, where the first link between the variables arises
from a common exposure to the exchange rate while the direct relationship between oil and stock returns
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is modelled once this connection through the exchange rate has been considered, we get the following
expression ∫ 1

qc
Cs|c(Fs(CoV aRs|oe,c)|u)− Cs,o|c

(
Cs|c(Fs(CoV aRs|oe,c)|u), Co|c(qo|u)

)
du

1− qo − qc + Co,c(qo, qc)
= β, (22)

where the probabilities of being above the threshold are obtained considering the rotation of copulas.16

F Markov switching specification

Let us define Ψ as a vector 2x2 that gathers the conditional joint density function of ro,t, rc,t, rs,t given by
a low-volatile or high-volatile regime at t and t− 1, where the relationship across variables might change,
i.e.

Ψ =

[
f
(
ro,t, rc,t, rs,t; Θst=1,st−1=1

)
f
(
ro,t, rc,t, rs,t; Θst=1,st−1=2

)
f
(
ro,t, rc,t, rs,t; Θst=2,st−1=1

)
f
(
ro,t, rc,t, rs,t; Θst=2,st−1=2

)] , (23)

where Θst,st−1 is the vector of parameters under the regime st at time t and regime st−1 at time t − 1.
Note that st−1 is only considered for the variance given by the SWARCH(2, 1), while the dependence
across variables only depends on the current state st.
The conditional densities depend only on the current regime st and the previous regime st−1, i.e.

f
(
ro,t, rc,t, rs,t; It−1, st = j, st−1 = i; Θst,st−1

)
= f

(
ro,t, rc,t, rs,t; It−1, st = j, st−1 = i, st−2 = k...; Θst,st−1

)
,

for i, j = 1, 2 and It−1 refers to the information set at t − 1. I assume that the evolution of st follows a
first order Markov chain independent from past observations, i.e.

pij = P (st = j|st−1 = i) = P (st = i|st−1 = j, st−2 = k, It−1), (24)

for i, j, k = 1, 2.
The transition matrix defined by the Markov Chain is

P =

[
p11 1− p22

1− p11 p22

]
, (25)

where each column i indicates the probability of remaining on the state i (pii) or moving to state j (pij)
conditioned to the fact that we are currently at state i for i, j = 1, 2 and i 6= j. Obviously, pii + pij = 1
because only two states exist. That is the reason why pij is presented as 1− pii.
Let us assume that the set of parameters Θ are known. Let us gather the probability assigned to the
observation at time t of being the result of regime j, i.e. P (st = j|It; Θ), in a vector ξ̂t|t,

ξ̂t|t = [P (st = 1|It; Θ), P (st = 2|It; Θ)]′ .

ξ̂t|t comprises the inference about the regime at time t given the information available at that period. The
probability assigned to the observation at time t+ 1 of being the result of regime j given the information
at time t is collected in vector ξ̂t+1|t,

ξ̂t+1|t = [P (st+1 = 1|It; θ), P (st+1 = 2|It; θ)]′ .

ξ̂t+1|t is the probability forecast of being in the next period t + 1 at each regime given the information
available at t. The forecast probability for the next period is obtained as the product of the inference
probability by the transition matrix, i.e.

ξ̂t+1|t = P ξ̂t|t.

16See Ojea Ferreiro (Ojea Ferreiro) as a reference on this topic.
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The link between ξ̂t|t and ξ̂t+1|t is obtained by the updated probabilities, including the new available
information through Bayes’ theorem, i.e.

P (st = j|It; Θ) =

∑2
i=1 P (st = j, st−1 = i|It−1; Θ)f(ro,t, rc,t, rs,t|It−1; Θst=j,st−1=i)

Lt(ro,t, rc,t, rs,t; It−1,Θ)
, (26)

where P (st = j, st−1 = i|It−1; Θ) = P (st−1 = i|It−1; Θ)pij and Lt(ro,t, rc,t, rs,t; It−1,Θ) is the likelihood
function at time t. To get the likelihood at time t we have to assess the sum of the product of the joint
density conditioned to the occurrence of each possible set of states at t and t − 1 by their probability
given the information set at t− 1, i.e.

Lt(ro,t, rs,t, rc,t; It−1,Θt) =
2∑
j=1

2∑
i=1

f(ro,t, rs,t, rc,t|Θst=j,st−1=i, It−1)P (st = j, st−1 = i|It−1), (27)

where Θst=j,st−1=i stands for the set of parameters of the joint distribution at regime j at time t and

regime i at time t− 1. Rewriting Equation (26), that connects ξ̂t|t and ξ̂t+1|t, in a matrix form

ξ̂t|t =
(P � [ξ̂t−1|t−1, ξ̂t−1|t−1]�Ψ)′12

1′2{(P � [ξ̂t−1|t−1, ξ̂t−1|t−1]�Ψ)′12}
,

where Ψ was defined in Equation (23) while � represent the element-wise product.
To start the iteration we need a value for ξ̂1|0, for which I use the unconditional probabilities of each state
that can be expressed in a matrix form as

ξ̂1|0 = π = (A′A)−1A′(0, 0, 1)′

where

A =

[
I2 − P

1′2

]
=

1− p11 p22 − 1
p11 − 1 1− p22

1 1

 .
and IN is the identity matrix of size NxN and 1N is a (Nx1) vector of ones. To finish this subsection I
present the Kim (1994)’s algorithm for smoothed inferences, which are used to present the probabilities
of being in each state at each time t given the complete information of the sample T , i.e.

ξ̂t|T = ξ̂t|t �
{
P ′
[
ξ̂t+1|T (÷)ξ̂t+1|t

]}
,

where � and (÷) represent the element-wise product and division respectively. Taking into account that
current set of parameters depends on the state at t and t− 1, we can rewrite previous equation as

ξ̂t|T = 1′2

{
[ξ̂t|t, ξ̂t|t]

′ � P �
[
ξ̂t+1|T (÷)ξ̂t+1|t, ξ̂t+1|T (÷)ξ̂t+1|t

]}
︸ ︷︷ ︸

ξt+1,t|T

,

where ξt+1,t|T =

[
P (st+1 = 1, st = 1|IT ; Θ) P (st+1 = 1, st = 2|IT ; Θ)
P (st+1 = 2, st = 1|IT ; Θ) P (st+1 = 2, st = 2|IT ; Θ)

]
.

The smoothed probability of being in state j at t and in state i at t− 1 is

P (st = j, st−1 = i|IT ; Θ) =
P (st = j|IT ; Θ)

P (st = j|It−1; Θ)
pijP (st−1 = i|It−1; Θ), (28)

for t > 1.
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G Robustness check

Regarding the model choice, this appendix goes from the simplest model to the most sophisticated one.
Simplest model, i.e. a truncated vine structure using Gaussian copulas, provides useful information
concerning the data fit to implement further improvements. Performing a likelihood ratio test against
the Student copula provides essential information concerning the significance of tail dependence in the
model structure. The analysis using graphical tools help us to infer the actual dependence between the
percentiles of the variables given by their estimated marginal distributions. The analysis obtained from
the simplest model would point to a truncated model where the dependence could be different between
states. This intermediate model, where the truncated vine structure could be non-elliptic and different
between states, is the cornerstone to build more complex structures. Indeed, following Figure 1, the
copula choice in step T2 depends on the copula choice in step T1, i.e. the truncated vine. The analysis of
the conditional distribution of oil and stock returns given the exchange rate returns would give us an idea
about the dependence between oil and stock returns once considered a common exposure to the exchange
rate. This analysis would lead to the last model, the most complete one, to get a comprehensive idea
about the links between these three key variables in the economy.

G.1 Simplest model: truncated vine structure using elliptical copulas

I present first the results for the elliptical models. Table 5 reports the estimate of the model, where the
exchange rate is linked to oil in USD and EUROSTOXX, but EUROSTOXX and oil in USD are not
directly connected, i.e. a truncated vine structure. Left table presents the results under Gaussian as-
sumptions while right table shows the estimates under Student copula. The link between EUROSTOXX
and the USDEUR exchange rate is quite weak, |ρB,C | < 0.1, while the relationship between Oil in USD
and USDEUR is statistically significant and negative in both regimes. Hence, there is a link between
the increases in oil prices and the appreciation of the euro against the US dollar. The table also shows
the likelihood ratio statistic between the Student model and the Gaussian model. Its p-value is lower
than 5%, indicating the significance of the tail dependence to explain the relationship between the set of
variables.

Figure 14 presents the histogram and the likelihood under the Gaussian distribution where the vari-
ance within each state might differ following the SWARCH model. The excess of kurtosis in the Gaussian
distribution could be explained by a realization from a Gaussian distribution with higher variance. This
feature of SWARCH models was already underscored by Leon Li and Lin (2004).

Figure 15 presents the unconditional coverage backtesting test proposed by Kupiec (1995). The x-axis
shows different quantiles of the marginal distribution chosen as threshold to count exceedances. The right
axis presents the p-value where the null hypothesis is that α100% of the sample is below the threshold
shown by the V aR(α). This analysis provides a useful robustness check regarding the fitting of the model
for several quantiles. Left axis indicates the number of exceedances. Black line presents the current num-
ber of exceedances while the red lines are the bounds at 10%, 5% and 1% under the null hypothesis. These
charts help us to check how well the model suits the data. The subgraph related to oil returns indicates
that our model presents less outliers than expected in the data for quantiles between 0.45 and 0.15, but
the model fits well the tail below quantile 0.15. On the other side, the model fits well EUROSTOXX
distribution above quantile 0.05. The USDEUR returns is fitted well by our model, even for extreme
quantiles the p-value is higher than 0.05.

Figure 16 presents the conditional coverage backtesting test proposed by Christoffersen (1998), where
the null hypothesis is that V aR violations are independent while the alternative hypothesis is that V aR
violations follows a first order Markov Chain. Right axis shows the p-value of the Christoffersen (1998)’s
test while left axis presents the number of exceedances. Left axis presents the number of observation.
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Red solid line presents the number of observations without exceedances at t and t − 1. Red dashed line
shows the number of pairwise observations where we have an exceedance at t but not at t − 1 while the
black dotted line shows the opposite. Red dotted line shows the number of pairwise observations with
two consecutive exceedances. The p-value is higher than 0.10 for most of the quantiles. Hence, there is
no evidence of a clustering of exceedances.

Finally, Figure 17 presents the bivariate histogram between oil in USD and USDEUR returns (top
figures) and the bivariate histogram between USDEUR-EUROSTOXX (bottom figures). The probability
integral transform is chosen from state j if the smoothed probability of being at regime j is higher than
90% where j = 1, 2. The oil in USD - USDEUR relationship presents a cluster of data in high quantiles
of oil returns and to a lesser extent in the opposite tail. These features could be explained by a Student
or a 90◦ rotated Clayton. The oil in USD-USDEUR link shows some degree of higher dependence in
high quantiles of exchange rate and low quantiles of oil returns under state 2. Gaussian copula or a
90◦ rotated Gumbel might fit well the data as potential copulas. The USDEUR-EUROSTOXX link is
quite homogeneously distributed under state 1, so a Gaussian or independent copula could match the
data, while there is a higher dependence in high quantiles of exchange rates returns and low quantiles
of EUROSTOXX returns under state 2, which could be consistent with a 90◦ Gumbel copula. These
potential copulas are analysed and compared in the next subsection.
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Table 5: Gaussian and Student t models

Gaussian model Student model

A B C A B C

φ0 0.00 ** -0.00 0.00 ** 0.00 * -0.00 0.00 ***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

φ1 0.06 ** 0.04 -0.05 0.06 ** 0.04 * -0.06 *
(0.04) (0.03) (0.04) (0.04) (0.03) (0.04)

κst=2 2.27 *** 2.25 *** 3.74 *** 2.21 *** 2.21 *** 3.64 ***
(0.32) (0.26) (0.32) (0.26) (0.29) (0.08)

α0 0.00 *** 0.00 *** 0.00 *** 0.00 *** 0.00 *** 0.00 ***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

α1 0.12 *** 0.08 ** 0.15 *** 0.12 *** 0.09 ** 0.16 ***
(0.04) (0.04) (0.05) (0.04) (0.04) (0.05)

Gaussian Student

S
ta

te
1 ρA,B -0.23 ***

S
ta

te
1

ρA,B -0.22 ***
(0.05) (0.05)

ρB,C -0.09 * ηA,B 13.35 ***
(0.05) (0.24)

S
ta

te
2 ρA,B -0.17 *** ρB,C -0.08 *

(0.05) (0.05)
ρB,C -0.03 ηB,C 24.80 ***

(0.05) (0.24)
p11 0.99 ***

S
ta

te
2

ρA,B -0.17 ***
(0.00) (0.05)

p22 0.98 *** ηA,B 100.00 ***
(0.01) (1.17)

LL 6668.53 ρB,C 0.07
(0.07)

ηB,C 7.35 ***
(0.52)

p11 0.99 ***
(0.00)

p22 0.98 ***
RL 5,51 (0.01)
RL p-value 0,0263 LL 6674.04

The table reports the estimates and the standard deviation (in parenthesis)
for the parameters of the marginal model in Equations (6) and (9) and for the
parameters of the Gaussian and Student t copula.
LL is the log-Likelihood value. RL is the logarithm of the likelihood ratio be-
tween the Student (unrestricted model) and the Gaussian (restricted model).RL
p-value is the probability a results at least as extreme as the one obtained under
the null hypothesis. The likelihood ratio is distributed under the null hypothesis
as

−2(log(LikelR)− log(LikelUR)) ∼ XkUR−kR

A: Oil in USD, B: USDEUR exchange rate, C: EUROSTOXX.
ρA,B is the correlation between Oil in USD and USDEUR returns. ρB,C is the
correlation between USDEUR exchange rate and EUROSTOXX returns.
∗ ∗ ∗/∗∗/∗ indicates statistical significance at 1/5/10%
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Figure 14: Histogram and Marginal distribution within each state

(a) Oil returns (b) EUROSTOXX returns

(c) USDEUR returns

The histogram (green bars) is scaled to be equivalent to the probability distribution function within each state. Although at time t we
have only 2 states we have four pdf because the current variance according to the SWARCH model in the equation (9) depends on the
state at t and the state at t− 1. Note that higher moments can be obtained given higher probability to the distribution with higher

dispersion for extreme values.
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Figure 17: Bivariate Histogram

This figure shows the bivariate histogram of the probability integral transforms of oil returns in US dollars and USDEUR returns (top
figures) or USDEUR returns and EUROSTOXX returns (bottom figures). We suppose that observation at time t beyond to a regime j

if the smoothed probability of being at t in state j is higher than 90%. These figures give us an idea about the type of relationship
that we could expect from each set of two variables within each regime.

G.2 Intermediate model: truncated vine structure

Table 6 shows the AICC values for the potential copulas indicated by Figure 17. Lowest value indicates
the best copula fit for the truncated vine structure. According to AICC results, the best fit is provided
by the Student copula (state 1) and the Gaussian copula (state 2) for the Oil-USDEUR link and the
independence copula (state 1) and the 90◦ rotated Clayton (state 2) for the EUROSTOXX-USDEUR
dependence. Table 7 indicates the estimates for the best copula model within the truncated vine struc-
ture. Figures 18 and 19 present the uncoverage and coverage backtesting test for the CoV aR(α, β) of oil
returns (top figure) and EUROSTOXX (bottom figure) given that the exchange rate returns are below its
V aR(α).17 X-axis shows the joint probability of observing an exceedance, i.e. αβ, where α = β. Figure
18 and 19 indicate that the copula choice meets the criteria in terms of number of exceedances and the
independence of these V aR violations.

17Further information on how to build backtesting tests for the CoV aR can be found in Appendix A of Ojea Ferreiro
(2018).
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Table 8 presents the results of the independence test based on the empirical Kendall’s τ . The con-
ditional distribution of EUROSTOXX and Oil in USD given exchange rate returns are assumed to be
independent by the truncated vine structure. This hypothesis is rejected at 1% significance level. Hence,
the vine structure should include a direct link between oil and EUROSTOXX returns, even once the ex-
change rate connection is taken into account. The copula choice for this conditional dependence between
oil in USD and EUROSTOXX is studied in the next subsection.

Table 6: AICC values to choose the best model fit

A B C D E
-13294.01 -13296.70 -13298.53 -13292.29 -13293.90

F G H I J
-13287.44 -13298.66 -13293.60 -13293.43 -13288.06

Notes: AICC denotes Akaike Information Criterion corrected for small sample bias.

AICC = 2k T
T−k−1 − 2 log(L̂) where T is the sample size, k is the number of estimated parameters and L̂ is

the Log-likelihood value. Minimum AICC value (in bold letters) indicates the best copula fit.

A: Oil-USDEUR- State 1: Gaussian, State 2: Gaussian
USDEUR-EUROSTOXX - State 1: Gaussian, State 2: Gaussian.

B: Oil-USDEUR- State 1: Student, State 2: Student
USDEUR-EUROSTOXX - State 1: Student, State 2: Student.

C: Oil-USDEUR- State 1: Student, State 2: Gaussian
USDEUR-EUROSTOXX -State 1: Gaussian, State 2: 90◦ Clayton.

D: Oil-USDEUR-State 1: 90◦ Clayton, State 2: Gaussian
USDEUR-EUROSTOXX -State 1: Gaussian, State 2: 90◦ Clayton.

E: Oil-USDEUR-State 1: Student, State 2: 90◦ Gumbel.
USDEUR-EUROSTOXX -State 1: Gaussian, State 2: 90◦ Clayton.

F: Oil-USDEUR-State 1: 90◦ Clayton, State 2: 90◦ Gumbel.
USDEUR-EUROSTOXX -State 1: Gaussian, State 2: 90◦ Clayton.

G: Oil-USDEUR- State 1: Student, State 2: Gaussian.
USDEUR-EUROSTOXX -State 1: Independence, State 2: 90◦ Clayton.

H: Oil-USDEUR-State 1: 90◦ Clayton, State 2: Gaussian.
USDEUR-EUROSTOXX -State 1: Independence, State 2: 90◦ Clayton.

I: Oil-USDEUR-State 1: Student, State 2: 90◦ Gumbel.
USDEUR-EUROSTOXX -State 1: Independence, State 2: 90◦ Clayton.

J: Oil-USDEUR-State 1: 90◦ Clayton, State 2: 90◦ Gumbel.
USDEUR-EUROSTOXX -State 1: Independence, State 2: 90◦ Clayton.
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Table 7: Model with a truncated vine structure

A B C

φ0 0.00 * -0.00 0.00 **
(0.00) (0.00) (0.00)

φ1 0.07 ** 0.04 -0.05 *
(0.04) (0.03) (0.04)

κst=2 2.17 *** 2.13 *** 3.78 ***
(0.31) (0.33) (1.54)

α0 0.00 *** 0.00 *** 0.00 ***
(0.00) (0.00) (0.00)

α1 0.13 *** 0.08 ** 0.15 **
(0.04) (0.04) (0.07)

State 1 State 2

ρA,B -0.20 *** ρA,B -0.18 ***
(0.06) (0.05)

ηA,B 12.22 *** θB,C 0.07 **
(1.40) (0.04)

p11 0.99 *** p22 0.98 ***
(0.00) (0.01)

LL -6670.82

The table reports the estimates and the standard deviation (in parenthesis) for the parameters of the marginal
model in Equations (6) and (9) and for the parameters of the best copula choice according to the AICC value
reported by Table 6.
LL is the log-Likelihood value.
A: Oil in USD, B: USDEUR exchange rate, C: EUROSTOXX. ρ1,2 and ηA,B is the correlation and number of
degrees of freedom between Oil in USD and USDEUR returns. θB,C is the estimate of the 90◦ Rotated Clayton
under state 2.
Vine structure: Oil-USDEUR- State 1: Student, State 2: Gaussian. USDEUR-EUROSTOXX -State 1: Indepen-
dence, State 2: 90◦ Clayton.

Table 8: Conditional independence test result

st = 1, st−1 = 1 st = 1, st−1 = 2 st = 2, st−1 = 1 st = 2, st−1 = 2

τ̂ 0.1062 0.1080 0.1103 0.1130
a 4.9582 5.0422 5.1518 5.2778
p-value 0.0000 0.0000 0.0000 0.0000

The p-values of the the independence test is built as p − value = 2(1 − Φ(a)) where Φ is the Gaussian c.d.f. and

a =
√

9T (T−1)
2(2T+5) |τ̂ | where T is the sample size, and τ̂ is the empirical Kendall’s τ of the conditional distribution of

oil and EUROSTOXX returns given a certain quantile of the returns of USDEUR exchange rate (see Brechmann
and Schepsmeier (2013)). The conditional distribution is obtained given the best copula fit according to the AICC
criterion from Table 6. The conditional independence is rejected for the four regimes.
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Figure 18: Kupiec’s POF test

(a) Oil returns

(b) EUROSTOXX returns

These figures present the unconditional coverage backtesting test proposed by Kupiec (1995) to check the number of exceedances of a
CoV aR(α, β) with a β% significance level given than exchange rate returns are below V aR(α). This figures sets α = β while x-axis

shows the joint probability, i.e. αβ.
Right axis shows the p-value of the Kupiec (1995)’s test while left axis presents the number of exceedances. Confidence intervals for

the null hypothesis are presented in the red lines for the 1%,5% and 10% significance level. Black line presents the current number of
exceedances.
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Figure 19: Christoffersen test

(a) Oil returns

(b) EUROSTOXX returns

Conditional coverage backtesting test proposed by proposed by Christoffersen (1998) are used for testing the number of exceedances of
a CoV aR(α, β) with a β% significance level given than exchange rate returns are below V aR(α). This figures sets α = β while x-axis

shows the joint probability, i.e. αβ.
Right axis shows the p-value of the Christoffersen (1998)’s test while left axis presents the number of exceedances. Left axis presents

the number of observation. Red solid line present the number of observations without exceedances at t and t− 1. Red dashed line
shows the number of pairwise observations where we have an exceedance at t but not at t while the black dotted line shows the

opposite case. Red dotted line shows the number of pairwise observations with two consecutive exceedances.

G.3 Advanced model: vine structure

Figure 20 shows the conditional bivariate histogram given the exchange rate returns under the truncated
vine structure. The conditional copula is set to be obtained from state j if the probability of being at state
j is higher than 90%. There is a higher dependence between low quantiles of oil returns and high quantiles
of EUROSTOXX returns under state 1. A Clayton copula could fit the lower tail dependence presented
under state 2. Table 9 presents the values of the Akaike Information Criterion with a correction for small
sample size (AICC) for a set of models where the Clayton copula defines the dependence between oil in
USD and EUROSTOXX conditional on the exchange rate under state 2, while under state 1 we consider
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the 90◦ rotated Clayton copula , the Gaussian copula and the independent copula, i.e. the product of the
copula inputs. The best fit according to the AICC value is given by the Gaussian copula under state 1
and the Clayton copula under state 2.

Figure 20: Bivariate histogram conditioned to the exchange rate returns

This figure shows the bivariate histogram of the probability integral transforms of oil returns in US dollars and EUROSTOXX returns
given the realization of USDEUR returns, i.e. conditional histogram. We suppose that the realization at time t beyond to a regime j if
the smoothed probability of being at t in state j is higher than 90%. These figures give us an idea about the type of relationship that

we could expect from each set of two variables within each regime, once the dependence through the exchange link is taken into
account.

Table 9: AICC to choose the best model fit for the stage 2 within the vine structure (T2)

Model

A B C
-13316,45 -13316,39 -13313,64

Notes: AICC denotes Akaike Information Criterion corrected for small sample bias.

AICC = 2k T
T−k−1 − 2 log(L̂) where T is the sample size, k is the number of estimated parameters and L̂ is

the Log-likelihood value. Minimum AICC value (in bold letters) indicates the best copula fit.

A: Oil-USDEUR- State 1: Student, State 2: Gaussian
USDEUR-EUROSTOXX - State 1: Independence, State 2: 90◦ Clayton .
Oil-EUROSTOXX|USDEUR- State 1: Gaussian, State 2: Clayton.

B: Oil-USDEUR- State 1: Student, State 2: Gaussian
USDEUR-EUROSTOXX - State 1: Independence, State 2: 90◦ Clayton .
Oil-EUROSTOXX|USDEUR- State 1: Independence, State 2: Clayton.

C: Oil-USDEUR- State 1: Student, State 2: Gaussian
USDEUR-EUROSTOXX - State 1: Independence, State 2: 90◦ Clayton .
Oil-EUROSTOXX|USDEUR- State 1: 90◦ Gumbel, State 2: Clayton.
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