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Abstract

This paper analyzes the link between state-dependent pricing and cost-push inflation

in a multi-sector new-Keynesian model with input-output linkages and state-dependent

price rigidity. Empirically, I estimate sector-specific price flexibility and the degree

of its state dependence by fitting the model to sectoral price and wage series for the

US. I find a significant degree of state dependence in most sectors of the US economy.

Theoretically, I show that state-dependent pricing can change the size and reverse the

sign of cost-push inflation compared to the non-state-dependent pricing model. Based

on the empirical estimates of sector-specific state dependence, I evaluate the quantita-

tive importance of state-dependent pricing for the cost-push inflation in the US over

time. State dependence substantially affects model-implied cost-push inflation during

particular historical episodes - after the Great Recession and during and after the Covid

crises.
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1 Introduction

The observed inflation rate consists of the underlying demand and cost-push factors, and

discerning their relative contributions is vital for effective monetary policy. The multi-

sector New Keynesian literature establishes that cost-push inflation may result from sectoral

shocks and depends on the input-output structure of the economy and the price rigidity

distribution across sectors (Erceg et al., 2000; Aoki, 2001; La’O and Tahbaz-Salehi, 2020;

Rubbo, 2020). This literature, however, pays limited attention to the importance of the price

rigidity framework as it relies on non-state-dependent pricing approximation (e.g., Calvo).

The limitation of non-state-dependent pricing is that the degree of price rigidity in each

sector is fixed. Therefore, state-dependent pricing presents a more realistic approximation

of pricing behavior as it allows price rigidity to change with shock size. If state dependence

is a quantitatively important feature of pricing, a model with a fixed degree of price rigidity

could yield an incorrect assessment of the size and sign of the cost-push effect.

This project analyzes how sector-level state-dependent pricing shapes cost-push inflation

in a multi-sector New-Keynesian model. Specifically, it shows that the empirically plausible

degree of sector-specific state dependence can change the size and the sign of cost-push

inflation compared to the case of non-state-dependent pricing.

Figure 1 provides a three-sector example illustrating the possible implications of state-

dependent pricing for inflation in a multi-sector economy. Solid bars represent the desirable

price adjustment in each sector such that the aggregate desired inflation is zero. If pricing

is non-state-dependent, the degree of price flexibility in each sector is fixed in advance:

Sector 1 has fully flexible prices, while Sectors 2 and 3 have fully rigid prices. In this case,

Sector 1 is the only sector adjusting its price, and the aggregate inflation is negative. In

contrast, if pricing is state-dependent, the degree of price flexibility depends on the size of

the desired price change. In this case, only Sector 3 adjusts since its desired price change

is sufficiently large, and the resulting aggregate inflation is positive. In this example, non-

state-dependent pricing yields deflation driven by Sector 1 while state-dependent pricing

yields inflation driven by Sector 3.

The analysis of this paper relies on the New-Keynesian Input-Output framework (La’O

and Tahbaz-Salehi, 2020; Rubbo, 2020), which I extend to include state-dependent price

rigidity at the sectoral level. This contrasts the existing literature, which also considers

the I-O structure but relies on non-state-dependent price rigidity. State-dependent price

rigidity is both intuitive and empirically plausible framework1, but the conventional state-

dependent pricing models, such as the menu cost model, do not allow the analytical solution.

To overcome this problem, I model state dependence as a combination of a sticky information

model (Mankiw and Reis, 2002) with a heterogeneous inattention framework. This approach

1See Nakamura and Steinsson (2008); Eichenbaum et al. (2011); Campbell and Eden (2014); Cavallo and
Rigobon (2016); Carvalho and Kryvtsov (2021).
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Figure 1: Price adjustment with non-state-dependent and state-dependent pricing

Sector 1 Sector 2 Sector 3

Non-state-dep. pricing

State-dep. pricing

flexible

rigid! rigid

rigid rigid

flexible!

deflation!

inflation!

Hashed bars and πn cross-hashed bars and πs show price adjustment under state-dependent pricing; aggre-
gate inflation is a sum of price changes in each sector.

yields the degree of price flexibility that corresponds to information flexibility, which in turn

depends on the sector-specific state of the economy.

The inattention framework requires establishing a set of variables tracked by inattentive

firms. Based on the equilibrium sectoral marginal cost equations, I assume that firms

in each sector track only one variable, which I call the relevant productivity state. The

relevant productivity state is a linear combination of sector-specific productivities that affect

marginal cost in a given sector directly or through the input-output network. Changes in

the relevant productivity state trigger a subset of firms to update their information about

the economy, and those who update receive the full information.

The model consists of two blocks of equations. The first block gives equilibrium sec-

toral prices and quantities for a given set of sector-specific markups. This block does not

depend on the price rigidity framework. The second block links sectoral markups to price

changes through sectoral price rigidities. The novel contribution of the present work lies

in exploiting this two-block structure to estimate sector-specific price flexibility and the

sector-specific degree of state dependence. I assume that sectoral price flexibility consists

of the average price flexibility component and the state-dependent component. Average

flexibility differs across sectors but is fixed over time. This component corresponds to a

non-state-dependent pricing framework with heterogeneous price flexibilities across sectors,

a framework widely used in the literature. The state-dependent component captures how

sector-specific price flexibility changes with the size of shocks affecting the sector directly

or through the production network, which is summarized by the changes in the relevant

productivity state.
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Sector-specific average flexibility and the degree of state dependence are required for the

realistic calibration of the state-dependent price rigidity in the model. The strategy behind

estimating these two groups of parameters exploits the properties of model-implied con-

temporaneous prices/markups response to sectoral productivity shocks. Intuitively, sector-

specific price flexibility is high if prices respond strongly to shocks. If the sensitivity of

prices to shocks depends on the shock size - price flexibility is state-dependent. I start

the estimation by calibrating the model block, which does not depend on price rigidity;

in particular, I use the US input-output table to calibrate sectoral shares. The calibrated

model consists of more than 360 sectors. I use monthly time series of sectoral prices and

wages for the US to compute the relevant productivity state required for price flexibility

and state-dependence estimation. The model with a calibrated I-O network allows the

compute model-implied sector-specific productivities and markups at monthly frequency.

The relatively high frequency of the data ensures that the contemporaneous price/markup

response to productivity shock contains information about price rigidity as opposed to the

policy reaction.

The average price flexibility and state-dependence estimates indicate that about 70% of

sectors in the US waited by consumption share exhibit a statistically significant degree of

state dependence in their price adjustment. The degree of state dependence differs strongly

across sectors. The non-state-dependent component of price flexibility is also strongly het-

erogeneous across sectors, with commodity-related sectors having a higher degree of price

flexibility on average.

The non-state-dependent component of price flexibility is positively correlated with the

volatility of the relevant productivity state across sectors, meaning that the sectors with

more volatile costs have more flexible prices on average. In contrast, the degree of state

dependence negatively correlates with the relevant productivity state volatility. Sectors with

the low volatility of relevant productivity state exhibit a higher degree of state dependence.

Theoretically, I show that the Phillips curve residual, which captures the cost-push ef-

fect in the model, can be decomposed into the main and input-output components. This

decomposition helps analyze the effect of a state-dependent pricing framework compared to

non-state-dependent pricing. The main effect captures the cost-push inflation in a counter-

factual economy where reset prices equal the efficient prices. The I-O component captures

the effect of “real rigidity” that arises in equilibrium due to the propagation of nominal

rigidity through input-output network. The propagation of nominal rigidity makes reset

prices differ from their efficient counterparts. While the I-O effect plays the amplifying

role, it is the main component that largely shapes the cost-push effect. State-dependent

pricing shapes the main component in significant ways. I show that state-dependent pricing

may reverse the sign of the main component of the cost-push effect compared to non-state-

dependent pricing.
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From the model with a price rigidity framework calibrated according to the empirical

estimates, I compute the cost-push effect for the US and the counterfactual effect without

a state-dependent pricing component. Overall, the state-dependent pricing model produces

a more volatile cost-push effect. State dependence plays a different role during different

historical periods. In 2009, just after the Great Recession, the cost-push effect was positive

in both state-dependent and non-state-dependent pricing models; state-dependence is an

amplifying mechanism that strengthens the cost-push effect. In contrast, after the Covid

crisis, which started in 2019, the state-dependent pricing model generated a cost-push effect,

often having a different sign than the non-state-dependent pricing model. For instance, the

state-dependent pricing model predicted a negative cost-push effect when the Covid crisis

started and a positive cost-push effect when the Ukraine war broke out. At the same

time, the non-state-dependent pricing model gives the opposite prediction. To validate the

model-implied cost-push effect, I show that it has significant explanatory power when added

to a standard Phillips curve regression and outperforms the oil prices and the non-state-

dependent counterpart in explaining inflation fluctuations.

Finally, the analysis of sector-specific contribution reveals that while the 2009 cost-push

effect was largely attributed to petroleum, the post-Covid cost-push episodes are attributed

simultaneously to many groups of sectors, including healthcare, financial and insurance,

and utilities.

2 Related literature

This paper relates to the literature on monetary policy trade-offs in multi-sector economies.

Aoki (2001) study a two-sector horizontal economy and show that with one sticky and one

flexible sector, cost-push inflation appears in response to sector shocks. Erceg et al. (2000)

show that upstream rigidity (sticky wages) results in a monetary policy trade-off in a two-

sector vertical economy. More recently, La’O and Tahbaz-Salehi (2020) and Rubbo (2020)

showed that monetary policy trade-off arises in a more general production network economy

under information-related price rigidity and Calvo-type price rigidity. The common feature

of all these studies is the time-constant degree of price rigidity in each sector. However,

Ball and Mankiw (1995) argue that what contributes to cost inflation is a combination of

state-dependent price rigidity with asymmetric distribution of desired relative price changes.

Building on Ball and Mankiw (1995) conceptual insight, I aim to understand the importance

of state dependence for cost-push inflation in a production network economy.

The paper relates the macroeconomic literature on production networks. Seminal con-

tributions include Long Jr and Plosser (1983) and Acemoglu et al. (2012) who develop the

framework for efficient production network economy and Baqaee and Farhi (2020), Bigio

and La’o (2020) who contribute to the analysis of inefficient network economy with ex-
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ogenous markups. Similarly to monetary models of La’O and Tahbaz-Salehi (2020) and

Rubbo (2020), I endogenize markups by introducing a price rigidity framework. However,

in contrast to these papers, I use a price rigidity mechanism based on ad hoc heterogeneous

inattention, which allows modeling state-dependent price rigidity at a sectoral level.

The empirical evidence of state-dependent pricing is extensive. Nakamura and Steinsson

(2008) show that the frequency of price increases positively depends on inflation in the

micro-data underlying the U.S. CPI index. Eichenbaum et al. (2011) and Campbell and

Eden (2014) report evidence of the state-dependent frequency of price changes in the U.S.

scanner data. Cavallo and Rigobon (2016) report a bi-modal distribution of price changes

in online price data; bi-modal distribution is a feature of state-dependent models. Carvalho

and Kryvtsov (2021) find evidence of strong selection effect into price adjustment in the

micro-data underlying CPI of the U.K., Canada, and the U.S. I contribute to the current

stock of evidence of state-dependent price adjustment by providing sector-specific (at the

BEA code level) measures of state-dependence. While existing evidence largely relies on

micro-level data, my estimation method relies on a production network model combined

with sector price and wage data.

In terms of approach towards modeling state-dependent price rigidity, this paper be-

longs to sticky information literature (Mankiw and Reis (2002)) and behavioral inattention

literature (Gabaix (2019)) as my state-dependent price rigidity combines these two features.

Compared to the two conventional rationality-based frameworks, that is menu-cost approach

(Dotsey et al. (1999), Caballero and Engel (2007)) and rational inattention approach (Sims

(2003), Reis (2006)) my model remains analytically tractable.

Finally, this paper relates to the literature on money non-neutrality. Nakamura and

Steinsson (2010) show that intermediate inputs can fix the weak money non-neutrality

feature of menu-cost models brought up by Caplin and Spulber (1987), Golosov and Lucas Jr

(2007)). The ability of intermediate inputs to increase money non-neutrality has also been

documented for production network models with a heterogeneous but time-invariant degree

of price rigidity by Shamloo (2010), Bouakez et al. (2014) and Pasten et al. (2020). The

non-neutrality of money literature deals with the real effects of monetary policy. In contrast,

this paper focuses on the state-dependence of monetary policy trade-offs.

3 Model description

The model is a multi-sector general equilibrium model with prodution network and state-

dependent sectoral price rigidity. Two features are specific to the present model 1) sector-

sepcific labor, allowing to make use of sectoral wage data, 2) custom price rigidity framework

based on behavioral inattention and sticky information, allowing for a relatively simple

treatment of state-dependent sectoral price rigidity. Next, I describe the model setup.
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3.1 Firms

There are N production sectors. In each sector, there is a continuous number of monopo-

listically competitive firms indexed by k ∈ [0, 1]. Sectoral output and price indices are the

CES sums across all firms within a sector. Sectoral output index is Yt,i =

(∫ 1
0 Y

ϵ−1
ϵ

t,i,k di

) ϵ
ϵ−1

and sectoral price index is Pt,i =
(∫ 1

0 P 1−ϵ
t,i,kdi

) 1
1−ϵ

. The firm-specific demand is

Yt,i,k =

(
Pt,i,k

Pt,i

)−ϵ

Yt,i (1)

Production technology is constant returns to scale and is given by

Yt,i,k = At,iL
αi
t,i,k

∏
j

X
ωij(1−αi)
t,ij,k

where At,i is sector-specific productivity, Lt,i,k is labor used by firm k of sector i, Xt,ij,k is

input of sector j used by firm k in sector i; αi corresponds to the labor share in production

costs and ωij corresponds to the share of input j in the intermediate input costs. Sectoral

productivity follows

log(At,i) = log(Āi) + log(Ai−1) + ϵt,i (2)

where ϵt,i is productivity shock in sector i; productivity shocks may be correlated across

sectors; log(Āi) is the growth rate of productivity, which is set to 0 in the model.

The combination of inputs is chosen to minimize the unit cost of production, given input

prices. Let MCt,i be the marginal cost in sector i, which is the same for all firms within

sector i. Cost-minimizing resource allocation yields sectoral labor demand and intermediate

input demand

Wt,iLt,i = αiMCt,iYt,i (3)

Pt,jXt,ij = (1− αi)ωijMCt,iYt,i (4)

Then, marginal cost of production in sector i is

MCt,i =
1

ααi
i

∏
j
(ωij(1− αi))ωij(1−αi)

· 1

At,i
·Wαi

t,i

∏
j

P
ωij(1−αi)
t,j (5)

Input-output matrix Ω is such that Ωij is a share of input j in total cost of product j,

Ωij = (1−αi)ωij . L = (I−Ω)−1 is the corresponding Leontief inverse matrix capturing the

total effect of shocks (see Baqaee and Farhi (2020)). The total effect consists of the direct

effect and the effect arising through the production network.
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Firms have imperfect information (to be precised below) such that firm k in sector i has

sectoral marginal cost belief M̃Ct,i,k. Firm k sets the price Pt,i,k to maximize its perceived

profits

Pt,i,kYt,i,k − (1− τ̄)M̃Ct,i,k

subject to demand constraint (1); τ̄ = 1
ϵ is a subsidy correcting the inefficiency stemming

from monopoly power. The price set by firm k is

Pt,i,k = M̃Ct,i,k

Firm price can be expressed as Pt,i,k =
M̃Ct,i,k

MCt,i
MCt,i. Undesired firm-specific markup

resulting from information rigidity is
M̃Ct,i,k

MCt,i
. I define Mt,i to be the average markup in

sector i, such that

Pt,i = Mt,i ·MCt,i (6)

3.2 Information structure

Information updating by firms relies on sticky information framework (Mankiw and Reis

(2002)) altered by an ad hoc heterogeneous inattention across firms to allow for state-

dependence in the intensity of information updating.

3.2.1 Sticky information

Let Ft,i be share of firms in sector i updating their information in the period t. Those

firms who update observe the true sectoral marginal costs MCt,i and set their prices to

Pt,i|t = MCt,i. The share of firms which last updated their information 1 periods ago is

Ft−1,i · (1−Ft,i). The share who has updated h periods ago is Ft−h,i ·
h−1∏
s=0

(1−Ft−s,i). Those

who updated their information h periods ago set their price to the perceived marginal costs

under h-periods outdated information Pt,i|t−h = Et−hMCt,i. The average price in sector i

consists of individual prices

P 1−ϵ
t,i = Ft,i · (MCt,i)

1−ϵ +

∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · (Et−hMCt,i)

1−ϵ

}
(7)

3.2.2 Inattention

In a conventional sticky information model the share of firms updating their information at

any given period is constant over time. In contrast, I assume that this share is affected by
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the fluctuations in the underlying relevant productivity state as these fluctuations lead to

the time-varying the intensity of information acquisition.

Definition 1 (Relevant productivity state). Relevant productivity state for sector i, de-

noted as st,i, is a combination of sectoral productivities st,i = −
∑
j
lij · log(At,j), such that

each sector enters this combination with the weight corresponding to the strength of its ef-

fect on the equilibrium marginal costs in sector i; weights lij are the elements of the Leontief

inverse matrix.

Intuitively, if sector i is strongly connected to sector j through input-output network,

then productivity changes in sector j affect marginal cost in sector i, making sector j

productivity changes relevant for sector i marginal cost. Later, I show how change in st,i

may be computed in a log-linearized model from productivity innovations and the input-

output parameters. For now, let me denote the sector i relevant productivity state by st,i.

I assume that changes in relevant productivity state affect the intensity with which firms in

sector i update their information. Next, I describe the inattention framework which results

in such outcome.

Let firms in sector i have heterogeneous degree of inattention. That is, every period

the degree of inattention of firm k in sector i is drawn from a cumulative distribution

x ∼ Fi. Firms in sector i track absolute size of fluctuations is the relevant state |∆st,i|
where ∆st,i = st,i − st−1,i. Only firms with low enough degree of inattention x < |∆st,i|
update their information set. As a result, the share of firms updating their information set

in sector i is

Ft,i = Pr{x < |∆st,i|} = Fi(|∆st,i|) (8)

The big-sized changes in the relevant productivity state push more firms to update their

information set2. The time-varying share of firms updating their information each sector

distinguishes the present model from the previous literature and allows addressing the role

of state-dependent pricing without losing the tractability of the model.

3.3 Households

Representative household chooses final consumption good Yt and hours worked Lt,i in each

sector to maximize utility subject to budget constraint. Household utility is

u(Yt)−
∑
i

v(Lt,i)

2Similar technique for modeling partial adjustment within a group has been applied in generalized menu-
cost models. In these models the cost of price adjustment is heterogeneous across firms which results in
partial price adjustment (Caballero and Engel (2007)).
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where final consumption Yt good is a combination of sectoral consumption goods Ct,i

Yt =
∏
i

Cβi
t,i (9)

with
∑
i
βi = 1. The household’s budget constraint is PtYt =

∑
i
Pt,iCt,i =

∑
i
Wt,iLt,i + Tt,

where Pt is the consumer price index, Wt,i are sectoral wage rates, Tt are net transfers

(including lump sum taxes and subsidies as well as profits from firm ownership). Optimal

allocation of consumption across sectors yields sectoral consumption demand

Pt,iCt,i = βiPtYt (10)

Consumer price index is

Pt =
∏
i

(
Pt,i

βi

)βi

(11)

The functional form of utility is u(Y ) = ln(Y ) and v(Li) =
L1+γ
i
1+γ . Then, optimal consumption-

leisure trade-off yields sectoral labor supply

Wt,i = Lγ
t,iPtYt (12)

3.4 Monetary policy

Monetary policy controls money supply which equals nominal spending, that is

Pt · Yt = Mt (13)

3.5 Equilibrium

In equilibrium, all markets clear given the described behavior of firms and households.

Product market clearing in sector i implies that product of sector i is either consumed or

used as intermediate input.

Yt,i = Ct,i +
∑
j

Xt,ji (14)

3.6 Log-linear model

The model is given by equations (1)-(14). I log-linearize the model around the efficient

steady state. Efficient steady state is an equilibrium in which productivities are Ai = 1 and

markups are Mi = 1 for every sector i.
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Throughout the paper, I denote column vectors [X1, ..., XN ]′ with corresponding bold

letters X. Log-deviation of X is denoted by small x, so that x = log(X)− log(X̄). Next, I

list the key log-linear equations which are used in the further analysis. All derivations are

available in Appendix A.

Sectoral wages. Log-linear equilibrium link between wages and markups is obtained by

combining the product market clearing condition (14) with the conditions for optimal input

allocation (3)-(4), and the link between sectoral prices and marginal costs (6). The resulting

system of wage equations is

wt = (pt + yt) · 1− γ

1 + γ
I−1
ξ L′Iξ · µt (15)

where µt is vector of log-deviations of markups; L = (I − Ω)−1 is Leontief inverse, Ω is

input output matrix; Iξ = diag{ξ} is diagonal matrix with sectoral Domar weights ξi =
PiYi
PC

(computed in steady-state) on the diagonal; 1 is the vector of ones.

Sectoral prices. Sectoral prices expressed through sectoral markups are obtained by

combining sectoral marginal cost equations (5), wage equations (15) and the link between

sectoral prices and marginal costs (6). The resulting system of price equations is

pt = (pt + yt) · 1− Lat + L̃µt (16)

where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ), Iα = diag{α} is diagonal matrix with labor shares in

sectoral costs αi on the diagonal.

Equilibirum sectoral marginal costs are mct = pt −µt = (pt + yt) · 1−Lat + L̃µt −µt

where mt = pt+yt is money supply and st = −Lat is a vector of sector-relevant productiv-

ity states, which I defined above. The i-th element of this vector st,i is the combination of

sectoral productivities affecting sector i equilibrium marginal costs, implying that firms in

sector i should devote their attention to tracking fluctuations in st,i rather than the whole

vector of sectoral productivities.

Final output. Final output in terms of productivities and markups is obtained by multiply-

ing both sides of price equations (16) and summing across equations with the corresponding

consumption weights. This yields

yt = ξ′ · at −
1

1 + γ
ξ′ · µt (17)

where the first term yet = ξ′ ·at is the efficient output and the second term ỹt = − 1
1+γ ξ

′ ·µt

is output gap arising due to non-zero markups.

Price-markup link. The link between prices and markup which endogenously arises

due to price rigidity is obtained from Equations (7)-(6) the using partial log-linearization
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operation, that is, treating all Ft−s,i as time-varying coefficients

(I − Ft) · (pt − pt−1) = −Ft · µt + (I − Ft) · et−1 (18)

where Ft is a diagonal matrix with sectoral flexibililities Ft,i on diagonal; the parameters

governing Ft,i are estimated from the sectoral price and wage data in the next section; et−1

is vector collecting past expectations about the present marginal cost growth, such that

et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{
Ft−1−h,i ·

[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Et−1−h∆mct,i

}
is prede-

termined in period t; ∆mct,i = mct,i − mct−1,i. Note, that log-linearization is partial for

this equation. That is, the sequence {Fh,i}th=−∞ of past and present shares of information

updating firms is treated as given. Note that in the sticky information framework, prices

depend not on current expectations about the future, but on past expectations about the

present. This means that the sequence of past price flexibilites, which has already occurred,

rather than the expected sequence of future price flexibilites, influences the equilibrium

prices.

The system of equations (18) has time-varying coefficients Ft,i. The time-average of each

Ft,i determines the average degree of price flexibility in a given sector over time, encountered

in non-state-dependent pricing models. The variability of Ft,i over time determines the

strength of state-dependent pricing mechanism in sector i. Both these characteristics of

secrotal price flexibility are estimated below for the disaggregated sectors of the US economy.

All further analysis relies on equations (15) - (18).

4 Empirical evidence of state-dependent pricing

In this section, I parameterize and estimate sectoral price flexibility Ft,i for the disaggre-

gated sectors of the US economy. To this end, I employ a two-step procedure. In the

first step, I combine model equations and sectoral price and wage time series to construct

sectoral productivity and markup series and compute sectoral productivity innovations. In

the second step, I estimate the average price flexibility and the degree of state dependence

in price adjustment for each sector by fitting the contemporaneous model response of sec-

toral markups to sectoral productivity innovations to a corresponding empirical response.

Intuitively, a strong contemporaneous response of markups to shocks points to a low degree

average price flexibility and the dependence of the response on the shock size captures the

presence of state dependence in price adjustment.

4.1 Methodology

Model-implied markups and productivities From Equations (15) and (16) I construct

the unobserved sectoral markups and productivities in terms of the observed wages and
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prices. Having period t observations of sectoral prices and wages as well as aggregate

output and consumer price index, I compute period t sector markups and productivities

implied by the model. The caveat is that in any period t, the number of sectors where we

observe prices and wages is k ≤ N . Hence for any t, I compute sectoral markups µt and

productivities at only for those sectors for which wages and prices are observed. The details

of these computations are provided in Appendix C. Having computed sectoral productivities

at, I then compute sectoral productivity innovations ϵt from Equation (2).

Markup response to productivity shocks. Sectoral markups and productivity inno-

vations are then used to estimate sectoral price flexibility and its state dependence. The

following proposition establishes the contemporaneous link between sectoral productivity

shocks and markups obtained by combining price equations (16) with price rigidity equa-

tions (18).

Proposition 1 (Link between productivity shocks and markups.). Productivity shocks ϵt

and markups µt are related as

(L̃+ (I − Ft)
−1 · Ft) · µt = Lϵt + ṽt (19)

where ṽt = −pt−1 +mt · 1− et−1 − Lā− Lat−1.

The derivations are available in Appendix C. Note, that the term ṽt contains only

predetermined variables pt−1, at−1, et−1 and monetary policy variable mt and hence is

independent from ϵt as long as monetary policy does not react ti productivity shocks within

one month period.

The change in the relevant states for each sector under the shock ϵt is ∆st = −Lϵt. The

matrix Ft = diag{Ft,i} is dioganal with Ft,i = Fi(|∆st,i|) determined according to Equation

(8). I impose a linear functional form on sectoral of Fi such that

Fi(|∆st,i|) = F̄i + fi · log
|∆st,i|
E|∆st,i|

(20)

where E|∆st,i| is the time average of the absolute size of the relevant productivity state

fluctuations. With this functional form of Fi, the parameter F̄i corresponds to the average

price flexibility over time in sector i, that is, the degree of price flexibility under the average

size of relevant state fluctuations ins sector i. The parameter fi measures the degree of state

dependence in price adjustment. This parameter shows how much price flexibility varies

with the size of the absolute changes in the relevant productivity state.

The goal of the empirical exercise is to estimate the average price flexibility F̄i and

the degree of state dependence fi for each sector of the US economy, that is, to estimate

2×N parameters by evaluating System (19) of N interlinked equations. This task is non-
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trivial. To make estimation possible, I rearrange the terms in System (19) to make equations

independent from each other with respect to the estimated parameters in Ft

Lϵt − L̃µt = Ft ·
[
Lϵt + (I − L̃)µt

]
+ (I − Ft) · ṽt

Since matrix Ft is diagonal, i-th equation in the above system contains only sector i price

flexibility parameters, which means that this system can be estimated equation-by-equation,

with one equation per sector. Denoting yt = Lϵt − L̃µt, xt = Lϵt + (I − L̃)µt and

vt = (I −Ft) · ṽt and using the expression for Fi in terms of estimated parameters, I get N

equations of the form

yt,i = F̄i · xt,i + fi · log
|∆st,i|
E|∆st,i|

xt,i + vt,i (21)

These equations can be estimated independently from each other. The only compli-

cation is that xt,i is endogenous as it contains markups. At the same time, the relevant

productivity state changes ∆st,i are exogenous and can serve as an instrument for xt,i. As

long as monetary policy mt does not react within a month to productivity shocks, ∆st,i is

uncorrelated with ṽt,i. In Appendix C, I formally show that ∆st,i is not correlated with

residual vt,i = (1− Fi(|∆st,i|)) · ṽt,i and hence is a valid instrument for xt,i.

Estimating Equations (21) using IV approach yields a set of average sectoral flexibilities

{F̄i}Ni=1 and the sensitivities to a state change {fi}Ni=1 which measures the degree of state-

dependence of price flexibility in each sector. Since vt,i is heteroskedastic and autocorrelated

I use consistent standard errors.

4.2 Data

To compute the intermediate goods, labor, and consumption shares in each sector, I employ

the 2007 “Use table” from the BEA inputs-outputs account data. In this table, sectors are

classified using BEA codes. I assume that each sector produces only one commodity and

remove commodities that do not have a sector correspondence and vice-versa. Further, I

remove sectors related to government spending, non-comparable imports, and the rest of

the world adjustment. I also remove sectors for which the sum of intermediate and labor

costs is zero. I compute labor shares in each sector as a ratio of labor costs to total costs. I

compute intermediate input share as a ratio of a given intermediate input cost to the total

cost. Finally, I compute consumption shares as the ratio of consumption expenditure on a

given commodity to the total consumption expenditure.

To compute model-implied sectoral productivities and markups I employ monthly time

series for sectoral wages and prices. Monthly wages by sector are available from the “Cur-

rent Employment Statistics” (CES) from the US BLS and classified with a specific CES
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classification. Monthly sectoral producer price indices are from the US BLS and classified

according to the NAICS classification. Since BEA input-output matrix uses BEA sector

classification codes, I convert the wage and price data to the BEA classification to match

the sectors of the input-output matrix. The details are provided in Appendix C.

The final dataset contains BEA-coded monthly wages and prices. Figure 2 plots the

number of sectors for which both price and wage are available in a given year and month

(left Panel) and the consumption share coverage (right Panel) for each year and month. The

data availability improves over time and starts covering the majority of sectors by 2007.

Figure 2: Availablility of sectoral price and wage data
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Left Panel: number of sectors for which price and wage observations are available in a given month. Right
Panel: share of consumption covered by the available sectors in a given month. Vertical dotted lines mark
the period for which the large and stable number of sectors is available (2007-2023).

4.3 Estimation results

The estimation procedure yields two sets of sectoral parameters: sectoral average price

flexibility measures F̄i and sectoral state dependence of price flexibility fi. These parameters

determine sectoral price flexibility Ft,i at time t according to Equation (20). Table 1 shows

the share of sectors with statistically significant parameter estimates. Around 87% of sectors

have a statistically significant degree of price flexibility. suggesting that even within a short

one month period most sectors react to shocks to a certain extent. Around 70% sectors

have a statistically significant degree of state dependence, meaning that many sectors in

the US economy exhibit some degree of sstate dependence in price adjustment.
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Table 1: Share of statistically significant estimates

signif. at 90% level signif. at 95% level

Average flex. (F̄i) 0.87 0.86
State-dep. param. (fi) 0.70 0.65

Note: Sectors are weighted by their corresponding consumption shares βi

Table 2 plots a summary of cross-sectoral distribution of estimated parameters. The

estimates of average price flexibility vary between 0 and 1 with the median of around

0.27, which means that, on average, around 27% of firms reset their information within

one month period; in other words, the half of prices remain unchanged at least for four

months, which corresponds to the evidence of Bils and Klenow (2004) who report median

price duration of 4.3 months. However, the range of the average price flexibility estimates

across sectors is quite broad. Figure 3 Panel (a) plots the histogram of the average price

flexibility estimates in each sector. The pattern of average price flexibility suggests that

commodity-related and upstream sectors such as oil and metals have more flexible prices,

while various manufacturing sectors have less flexible prices.

The distribution of state dependence parameters in Table 2 suggests the median degree

of state dependence of 0.17, which means that the absolute relevant productivity state

fluctuation of 1 percentage point above its average leads to an increase in price flexibility

by 0.0017 price flexibility units. Figure 3 Panel (b) plots the histogram of the cross-sectoral

distribution of state dependence estimates. Sectors with both low and high degree of state

dependence include manufacturing and services, hence this histogram does not reveal any

pattern for the link between state dependence and the broad type of sector.

Table 2: Distribution of statistically significant estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.

Average flex. (F̄i) 0.061 0.180 0.275 0.352 0.481 0.993
State-dep. param. (fi) 0.012 0.081 0.172 0.192 0.269 0.731

Note: Only sectors with statistically significant estimates at 90% level
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Figure 3: Price flexibility estimates

(a) Average price flexibility
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 Most flexible: 
 - Copper, nickel, lead, and zinc mining 
 - Alumina refining 
 - Soybean and other oilseed processing 
 - Petroleum refineries 
 - Oil and gas extraction

 Least flexible: 
 - Concrete pipe, brick manufacturing 
 - Construction machinery manufacturing 
 - Lighting fixture manufacturing 
 - Sign manufacturing  
 - Other plastics product manufacturing

(b) State-dependence of price flexibility
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 Most state-dep.: 
 - Boat building 
 - Doll, toy, and game manufacturing 
 - Motorcycle, bicycle, and parts manufacturing 
 - Offices of physicians 
 - All other transportation equipment manufacturing 
 - Home health care services

 Least state-dep.: 
 - Insurance agencies, brokerages 
 - Valve and fittings other than plumbing 
 - Industrial process furnace and oven manufacturing 
 - Material handling equipment manufacturing 
 - Printing

Histogram of average price flexibility estimates F̄i (a) and state-dependence parameter estimates fi (b) across
364 sectors; sectors are weighted by consumption shares βi; variation is plotted only for 90%-level significant
estimates; estimates insignificant at 90% level are forced to zero; interpretation of state-dependence
parameter fi: 1.p.p. increase in |∆st,i| above its time average leads to price flexibility increase of 0.01 · fi.

Next, I analyze how the average price flexibility and the state dependence parameters

relate to the average volatility of the sectoral relevant productivity state. Figure 4 plots the

parameter estimates and the corresponding relevant state volatilities. Figure 4 Panel (a)

plots the relevant state volatilities against average price flexibility estimates. We observe

that the higher average volatility in a sector is associated with higher average price flexibility

with a correlation of 0.44. This suggests that sectors existing under more volatile conditions

have higher price flexibility on average. Panel (b) plots sector-relevant productivity state

volatilities against the corresponding state dependence parameters. We observe that higher

volatility in a sector is associated with a lower degree of state dependence with a negative

correlation of -0.25, suggesting that more volatile sectors have less state dependence in their

pricing. This result implies that the less volatile (and hence less flexible) sectors tend to

adjust their price flexibility more to the changing conditions, meaning that sectors with

overall rigid prices may temporarily have larger price flexibility in the face of exceptionally

large shocks.
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Figure 4: Relevant state volatility and price flexibility

(a) Average price flexibility
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(b) State-dependence of price flexibility
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Average price flexibility estimates F̄i and state-dependence parameter estimates fi are plotted against the
time average volatility of sector-relevant productivity state E|∆si|; sectors are weighted by consumption
shares βi; estimates insignificant at 90% level are forced to zero; red lines correspond to linear regressions
within the group of significant estimates; correlation coefficient for Panel (a) is 0.44 and correlation
coefficient for Panel (b) is -0.25.

5 Phillips curve and cost-push inflation

I this section I establish the theoretical role of state-dependent pricing for the cost-push

inflation. To this end, I derive the consumer price inflation in terms of aggregate demand

and cost-push factors, the relationship known as Phillips curve. Then I offer a decomposition

of the Phillips curve residual which allows analyzing the contribution of state-dependent

pricing.

5.1 Phillips curve

The Phillips curve residual captures the cost-push effect on consumer price inflation. Let

the vector of relative prices be the sectoral prices measured relatively to the consumer price

index pt such that p̂t = pt − pt · 1. The efficient relative prices in sector i denoted by p̂⋆t,i

are relative prices that obtain under zero markups (all µt,i = 0), that is p̂⋆
t = p⋆

t − p⋆t · 1
with p⋆

t being the vector of efficient prices and p⋆t =
∑
i
βip

⋆
t,i efficient consumer price. Next

I define sectoral price gaps in the spirit of menu-cost literature

Definition 2 (Sectoral price gaps). Vector of sectoral price gaps π̂⋆
t is the difference of the

current efficient relative prices p̂⋆
t and the privious period true relative prices p̂t−1, that is

π̂⋆
t = p̂⋆

t − p̂t−1.

Sectoral price gaps indicate the difference between the true prices and the efficient prices
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and reflect the potential of price adjustment towards efficiency. Note, that sectoral price

gaps do not depend on the true prices in period t but only on the lagged true prices. Next

proposition establishes the Phillips curve in terms of price gaps.

Proposition 2. (Consumer price inflation Phillips curve). The Phillips curve for consumer

price inflation is

πt = κt · ỹt︸ ︷︷ ︸
demand inflaton

+(1− κt) · β′MtFt · π̂⋆
t︸ ︷︷ ︸

cost inflation

+ (1− κt) · β′MtFt · ẽt−1︸ ︷︷ ︸
predetermined in period t factors

(22)

where π̂⋆
t = p̂⋆

t − p̂t−1 is a vector of sectoral price gaps, the slope of Phillips curve is

κt = β′MtFt1
1−β′MtFt1

with Mt = (I + L̃F−1
t (I − Ft))

−1F−1
t and expectation-related terms are

ẽt−1 = L̃F−1
t (I − Ft)et−1.

See proof in Appendix B.

The first term in the Phillips curve (22) relates inflation to the output gap and corre-

sponds to a demand component of inflation. The second term is the Phillips curve residual

ut = β′MtFtπ̂
⋆
t and measures the cost-push component of inflation. The third term con-

tains predetermined past expectations about the marginal cost growth rate. Next, I focus

the properties of the Phillips curve residual term ut.

5.2 Cost-push effect: main and input-output components

Presence of price rigidity prevents prices from adjustment to their efficient level for two

reasons. First reason is that price rigidity does not allow prices to adjust to match the

marginal cost. Second reason is that marginal cost itself differs from the efficient level due

to equilibrium input-output links. This means that even those firms who adjust their prices

do not set them to the efficient level. To separate these two effects I decompose the cost-push

inflation ut into two components, which I label “main” and “input-output” components.

The main component captures the effect of heterogeneous price rigidity across final goods

sectors given that marginal cost are at their efficient level. The input-output component

captures the effect of price rigidity propagation through input-output links which leads to

the deviation of marginal cost (and hence reset price) from its efficient level.

Proposition 3. (Phillips curve residual decomposition). Cost-push effect ut = β′MtFtπ̂
⋆
t

can be decomposed to the sum of the horizontal component and the vertical component

ut = β′Ft · π̂⋆
t︸ ︷︷ ︸

main component = uh
t

−β′(I −Mt)Ft · π̂⋆
t︸ ︷︷ ︸

i-o component = uv
t

(23)

See proof in Appendix B.
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To understand the nature of the above decomposition consider a vector of sectoral reset

prices (prices set in equilibrium by those who reset their price)

preset
t = mct = (pt + yt) · 1− Lat + (L̃− I)µt =

= mt · 1− Lat︸ ︷︷ ︸
efficient price

+ (L− I)µt︸ ︷︷ ︸
interm. cost effect

− γ

1 + γ
LIαI

−1
ξ L′Iξµt︸ ︷︷ ︸

labor. cost effect

(24)

The reset price equals marginal cost and consists of the efficient price and the effect of

markups. In multi-sectoral model reset prices differ from efficient prices because inefficiency

caused by price stickiness propagates through production links leading to ”real rigidities”,

that is a situation when marginal costs of production deviate from its efficient (flexible

price) level. The main component of the decompostion given in Proposition 3 describes

the residual arising when all reset prices are at their efficient levels. The input-output

component gives the effect of propagation of inefficiency through input-output links.

Further, from Equation 24 we see that the effect of markups on reset price consists of the

effect markups have on intermediate goods cost and on sector-specific labor costs. While

higher markups lead to higher intermediate good cost, they lead to lower labor costs.

Next, I provide properties of production structures featuring only one component of

cost-push effect. First, I describe an economy featuring only input-output component.

Corollary 1. (Single final good economy (only I-O component)). Consider an economy

with only one final good such that consumption shares are β1 = 1 and βi = 0 for all i ̸= 1.

1) In such economy only input-output component is present, that is uht = 0. 2) If the only

rigid price sector is the final good sector the cost-push effect is zero, ut = 0.

See proof in Appendix B.

In an economy with a single final good the only possible source of cost-push effect is

distortion in marginal cost of this good caused by upstream price rigidity. For this reason

productivity hocks in one-sector textbook NK model with flexible wages do not create any

cost push effect while in a one-sector sticky wage economy (rigidity in marginal costs)

cost-push effect emerges (see Gaĺı (2015) book).

Next, I describe an economy featuring only main component. From Equation 24 we see

that in order to exclude the effect of markups on reset prices we need to have an economy

in which the effect of markups on intermediate goods exactly offsets the effect of markups

on labor costs. Next, I describe properties of such economy.

Corollary 2. (Quasi-horizontal economy (only horizontal component)). Consider an econ-

omy with multiple final sectors and no vertical links except the roundabout production in

each sector (meaning that each sector uses part of its own output as its intermediate input)
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such that W = I − Iα and αi = 1
1+γ fro all i. Such economy features only a horizontal

component of cost push effect, that is uv = 0.

See proof in Appendix B.

The particular degree of roundabout production is needed so that the change in marginal

cost due to change in intermediate good price is exactly offset by the change in labor cost.

Note that in purely horizontal economy with no roundabout production such that Leontief

inverse is L = I input-output component still exists because labor input gets distorted by

the presence of price rigidity.

5.3 Main component around steady state

The presence of multiple consumption goods is necessary for having main component. The

main component captures the fact that for a given marginal cost distribution the “cost”

of final consumption basket may be inefficiently high or low due to the fact that prices

of different consumption goods have different degree of price flexibility. Indeed, if price

rigidities are the same Fi,t = F for all i main component disappears since te sum of price

gaps weighted by consumption shares is zero by construction. Later, I will show that main

component is quantitatively more important in shaping cost-push effect than the input-

output component. Now, I derive some theoretical properties of main component around

the undistorted steady-state.

Proposition 4. (Main component around steady state). Consider the economy being in

steady state at t − 1 such that pt−1 = 0 and the productivity shocks ϵt occur at time t.

The main component of cost-push effect can be expressed as:

(a) under non-state-dependent pricing with heterogeneous price flexibility across sectors

uht = covβ(F, π̂t)

where covβ(F, π̂t) is cross-sectoral covariance between price flexibilities and price gaps.

(b) under common state-dependent pricing across sectors

uht = k ·Asymβ(π̂t)

where k is positive constant and Asymβ(π̂t) =
covβ(|∆st|, ∆st)

varβ(|∆st|) is the asymmetry of price

gaps.

See proof in Appendix B.

Under non-state-dependent pricing, the cost-push effect is given by correlation of price

flexibility with price gaps across sectors. If desirable upward price adjustment expressed by
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positive price gap happens in more flexible sectors, we observe positive cost-push effect and

vise versa.

Under common state-dependent pricing the cost-push effect arises as long as price gap

distribution is asymmetric. If certain sector have disproportionately large positive price

gap this sector (or a group of sectors) will create the positive of cost-push effect and vise

versa. The dependence of cost-push effect on asymmetry in sectoral price gaps has been first

pointed out in Ball and Mankiw (1995) who have argued that asymmetry in price changes

across sectors can serve as a proxy for cost-push effect. They treated the distribution of

the desired price changes as exogenously given which corresponds to the main component

of cost-push inflation in my model.

Finally, the above results remain purely theoretical even though they provide an intuition

about the effect of pricing framework. In a realistic calibration both non-state-dependent

and state-dependent pricing components of price rigidity co-exist and the degree of state-

dependence might differ across sectors. In the quantitative section I calibrate price rigidity

framework to feature the empirically plausible heterogeneity in pricing across sectors.

5.4 Illustrative examples

Next I provide examples illustrating the role of state-dependent pricing for cost-push infla-

tion in various production networks.

Example 1. Two-sector vertical chain

Figure 5: Two-sector vertical chain
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Consider a two-sector vertical chain economy. Let the upstream sector be Oil sector and

the downstream sector be Final good sector (Figure 5). Oil sector has fully flexible prices

FO = 1 while final good sector has partially rigid prices FF ≤ 1. The economy is initially

at the steady state and that the productivity shock in oil sector ϵOil occurs. In this case

cost-push effect is

ut = u(FO, FF ) · 1− FO

FO
· αF · ϵOil

where u(., .) > 0 as long as (1−αF )γ < 1, αF labor share in F; for derivation see Appendix
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B.4. Note that since the consumption consists on a single sector, main component of cost-

push inflation is absent in this economy.

Cost-push inflation ut = 0 as long as Oil sector has fully flexible prices FO = 1. The

Oil shock does not cause cost-push effect since there is no distortion in the marginal cost of

production.

Example 2. Intermediate good

Figure 6: Three-sector chain
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Consider a vertical chain with intermediate good sector (Figure 6). Oil sector has fully

flexible prices FOil = 1 but the intermediate sector has partially rigid prices F I ≤ 1. Price

distortion in intermediate good sector creates cost distortion in final good sector. The

cost-push effect of Oil productivity shock is

ut = ũ(F I , FF ) · (1− αF )αF · ϵOil

where ũ(., .) ≥ 0 and ũ′1 ≥ 0, ũ′2 ≥ 0 as long as (1 − αF )γ < 1, αF labor share in F; for

derivation see Appendix B.4.

When productivity in Oil sector goes down we have cost-push deflation and state-

dependent pricing (the fact that F I and FF change with shock size) amplify the cost-push

effect of the shock. The negative cost push effect of a negative oil productivity shock goes

against the intuition that negative shocks in oil industry lead to a positive cost push in-

flation. Nevertheless, this example illustrates the basic mechanism of why cost-push effect

emerges. After a negative productivity shock prices of Oil go up. Intermediate sector uses

Oil as input meaning that optimal price of intermediate good should also go up. But since

prices in the intermediate good sector are sticky, they increase by less then they should. As

a result, marginal cost in final good sector are smaller than they should be resulting in a

negative cost-push effect.

Example 3. “Sticky wages” economy
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Figure 7: Sticky wages
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Consider a vertical chain economy in which the most upstream sector has partially rigid

prices while intermediate sector has fully flexible prices. Let the upstream sector be the

“sticky wages” sector, intermediate sector be the Oil sector and the final sector be the

consumption good sector. This is the case of a so-called sticky wage economy (Figure 7).

The corresponding price flexibility is FOil = 1 (fully flexible), FW ≤ 1 and FF ≤ 1. The

cost-push effect of Oil productivity shock is

ut = −ũ(FW , FF ) · (1− αF ) · ϵOil

where ũ(., .) ≥ 0 and ũ′1 ≥ 0, ũ′2 ≥ 0 as long as (1 − αF )γ < 1, αF labor share in F; for

derivation see Appendix B.4.

When oil productivity goes down we have cost-push inflation in line with the intu-

ition that the negative productivity shock in oil industry should create cost-push effect.

Upon negative Oil productivity shock, the level of production decreases and less labor is

demanded. As a result, wages should optimally go down. But since wages are sticky they

remain too high and the marginal cost of producing Oil and ultimately final good remains

higher than it should be. The inefficiently high marginal cost lead to a positive cost-push

inflation. State-dependent price flexibility affects the size of cost-push effect through the

adjustment in FF .

Example 4. Multiple inputs

Consider an economy in which a single final good is produces using two material inputs: Oil

and Intermediate good (Figure 8). Oil sector has fully flexible prices FOil = 1 while price

flexibility in intermediate good sector is partial F I ≤ 1. Also for the exposition purposes I

assume that final good sector also has fully flexible prices FF = 1. Aster the oil shock ϵOil

the cost-push inflation is

ut = −αI(1− αI) · (1− F I) · ϵOil
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Figure 8: Multiple inputs
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where αI share of input I in F; for derivation see Appendix B.4.

Negative oil productivity shock leads to a positive cost-push inflation and the state-

dependence of price flexibility influences the size of cost-push effect by changing F I .

The mechanism of cost-push effect of oil shock some what differs from the previous

examples. In this economy when negative oil productivity shock occurs the marginal cost

of producing final good go up and the demand for intermediate input goes down as long

as substitutability between oil and intermediate good is not too high. Hence prices in the

intermediate good sector should optimally go down which they do not do because of price

rigidity in this sector. As a result, the price of intermediate good is inefficiently high and

the resulting marginal cost of producing final good is also inefficiently high, which creates

cost push inflation.

The examples 1-4 have illustrated the amplification role of state dependence. Now, I

turn to the example in which state dependence leads to sign reversal of cost-push effect.

Example 5. Multiple final good sectors Consider an economy consisting of two up-

Figure 9: Multiple final good sectors
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stream goods (Oil and Grain) and two final goods (Oil-intensive and Grain-intensive) with

equal share in consumption. Oil-intensive final good uses oil as input while grain-intensive
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final good uses grain as input (Figure 9). Upstream commodity sectors have fully flexible

prices FOil = FGrain = 1 and final good sectors have partially rigid prices FFO ≤ 1 and

FFG ≤ 1. As before, the economy is initially in steady state and is perturbed simulta-

neously by two commodity shocks - oil and grain shocks ϵOil, ϵGrain. The corresponding

cost-push effect is

ut = −1

4
· (FFO − FFG) · (ϵOil − ϵGrain)

Assume first that price rigidity is non-state-dependent such that FFO > FFG. Than

negative oil shock leads to a positive cost push effect. However the negative grain shock

leads to a negative cost-push effect. This behavior is not plausible as there are no obvious

reasons why shock in one commodity sector should lead to cost-push inflation while similar

shock in another commodity sector should lead to cost-push deflation.

But what happens if price flexibility is state-dependent? In this case we have larger price

flexibility in oil-intensive sector FFO > FFG under oil shock and larger price flexibility in

grain-intensive sector FFG > FFO under grain shock. Hence, under state-dependent pricing

a negative shock in any commodity sector leads to a positive cost-push effect. The presence

of state-dependence reverses the sign of cost-push effect of grain shock.

The mechanism of cost-push effect in this economy is as follows. When negative oil

shock hits, oil price goes up and production of oil and oil-intensive good drops which leads

to lower level of household income. With the lower level of income household decreases

its demand for grain-intensive good as well (as long as this good is not an inferior good)

which should cause prices of grain-intensive good to optimally drop. However, price rigidity

in grain-intensive industry prevents grain-intensive good price from dropping meaning that

the relative price of grain-intensive good is higher than it should optimally be which leads

to cost-push inflation.

6 Quantitative analysis

In this section, I compute the monthly cost-push effect in the US implied by the model

and analyze the role of the state-dependent component of price flexibility. The calibration

of the model block unrelated to price flexibility is described in Section 4. Each sector’s

price flexibility and state dependence are calibrated according to the estimates obtained

in Section 4. The period of quantitative analysis covers the years 2007-2023 for which

sufficiently large number of sectors is available (see data availability on Figure 2 of 4).
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6.1 Cost-push effect and state-dependence

This section computes the residual for each month from Equation (22), using the model-

implied productivities and sectoral prices from the empirical section. To evaluate the quan-

titative role of state dependence over time, I also compute counterfactual residual without

the state-dependent component of price flexibility. Figure 10 shows the result.

Overall, an empirically plausible degree of state dependence in each sector yields a more

volatile cost-push effect than the non-state-dependent pricing model. Two episodes are

worth investigating to analyze the role of state dependence: 2009, just after the Great

Recession, and the period after 2019, during and after the Covid crisis. In 2009, both

state-dependent and non-state-dependent pricing models produced a positive spike in the

cost-push effect, and state dependence played an amplification role. In 2019, starting from

the Covid crisis, the US economy entered a turbulent period with large fluctuations of cost-

push effect. The state-dependent model yields a negative cost-push effect at the start of

the Covid crisis, followed by a positive effect just after the crisis when the supply chain

disruption issue emerged. In 2022, when the full-scale Russia-Ukraine war broke out, the

state-dependent pricing model gives a strong growth of the cost-push effect. In contrast,

the non-state-dependent pricing model gives quite different predictions for this period: no

negative cost-push effect during the Covid crisis, no strong positive effect after the Covid

crisis, and no increase in cost-push inflation in 2022 when the Russia-Ukraine war started.

Note that none of the models predict a long-lasting positive cost-push effect during the

post-Covid period, suggesting that the persistent post-Covid inflation cannot be entirely

characterized as cost-push but instead has demand or expectation-driven features, which

justifies a strong monetary response undertaken by the FED.

6.2 Cost-push effect decomposition

Now, I look into the quantitative importance of the main and input-output components

by commuting the former separately. Figure (11) shows that the main component largely

shapes the fluctuations of the cost-push effect, meaning that the I-O component merely

plays an amplifying/dampening role during different episodes.

6.3 Phillips curve fit

Now, I investigate if the Phillips curve residual implied by the state-dependent model outper-

forms its non-state-dependent counterpart in explaining inflation in a conventional Phillips

curve regression. For this, I regress CPI inflation on the standard Phillips curve variables:

unemployment, expected and lagged inflation, and oil prices. Then, I sequentially add the

non-state-dependent and state-dependent residual computed from the model. Table 3 shows

the regression results. The regression with a non-state-dependent residual outperforms the
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Figure 10: Cost-push inflation and state-dependent pricing
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Grey line plots CPI inflation; blue line plots the Phillips curve residual implied by the model under
estimated degree of price flexibility; dashed green line plots the Phillips curve residual when the effect of
state-dependent pricing is absent (all fi = 0).

Figure 11: Cost-push inflation and main component
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Grey line plots CPI inflation; blue line plots the Phillips curve residual implied by the model under
estimated degree of price flexibility; dashed black line plots the main component of Phillips curve residual.
CPI inflation and residual series are smoothed with a 3-month moving average.
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regression with only oil price inflation, but adding a state-dependent residual improves

the fit. Moreover, a state-dependent residual effect is statistically significant even when a

non-state-dependent residual is already accounted for.

Table 3: Phillips curve estimation with model implied residual

Dependent variable:

CPI inflation

(1) (2) (3)

Unempl. 0.0001 −0.0004∗∗ −0.0002
(0.0001) (0.0002) (0.0002)

Lagged inflation 0.132∗ 0.108 0.093
(0.076) (0.072) (0.069)

Expect. inflation −0.00003 0.0004 0.001
(0.001) (0.001) (0.001)

Oil inflation 0.023∗∗∗ 0.016∗∗∗ 0.016∗∗∗

(0.004) (0.004) (0.004)

u(non-st.-dep.) 0.399∗∗∗ 0.179
(0.094) (0.114)

u(st.-dep) 0.197∗∗∗

(0.062)

Constant 0.0005 0.004∗∗ 0.001
(0.002) (0.002) (0.002)

R2 0.284 0.382 0.433
Adjusted R2 0.259 0.354 0.403

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.4 Analysis by sector

Now, I turn to the analysis of the contribution of particular sectors to the cost-push effect on

average and during particular episodes. To investigate the importance of particular groups

of sectors, I group the disaggregated sectors into the 2-digit BEA-coded groups. Table 4

gives the list of these groups.
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Table 4: 2-digit BEA sector names

2-digit BEA Sector description

11 Agriculture, Forestry, Fishing and Hunting
21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities
23 Construction
31 Manufacturing (non-durable goods)

32-33 Manufacturing (durable goods)
42 Wholesale Trade

44 - 45 Retail Trade
48 - 49 Transportation

51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific, and Technical Services
55 Management of Companies and Enterprises
56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
92 Public Administration

6.4.1 Most important sectoral groups

First, I compute the marginal importance of each group in explaining the cost-push effect.

For each sector group, I recompute the residual, excluding the contribution of sectors in

this group, and compare this new residual with the full residual by regressing the latter on

the former; I compute the importance of each sector group as (1 minus R-squared) of this

regression. Figure 12 plots the importance of each sector group in consumption (panel A),

production (panel B), and in explaining Phillips curve residual (panel C). The five most

important sector groups emerge on panel c.

For these five most important groups, I compute counterfactual cost-push effects gener-

ated exclusively by fluctuations in sectors belonging to these groups. Figure 13 panel A plots

the residual induced by sector group 21 (Mining, Quarrying, and Oil and Gas Extraction)

and indicates that this sector group alone can partially explain the cost-push effect of 2009

but does not explain any other episode. Adding other important groups 52, 53 (Finance and

Insurance, Real Estate, and Rental and Leasing) on panel B, and 32, 72 (Manufacturing

of durable goods, Accommodation and Food Services) on panel C, improves the fit to full

residual - many fluctuations can be attributed to these most important sectors.
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Figure 12: Most important sector groups
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(c) Cos-push effect explained
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 Most important 2-digit groups: 
 - 21: Mining, Quarrying, and Oil and Gas Extraction 
 - 32: Manufacturing (durable goods) 
 - 52: Finance and Insurance 
 - 53: Real Estate and Rental and Leasing 
 - 72: Accommodation and Food Services 

Panel (a): sum of sectoral consumption shares within each group; Panel (b): sum of sectoral Domar weights
(shares in total use) within each group; Panel (c): the share of Phillips curve residual explained by a given 2-
digit BEA sector group; computed by forcing the shocks in a given sector of interest to zero and calculating
the (1- r-squared) from a total Phillips curve residual regression on the resulting counterfactual Phillips
curve residual; blue highlights the group of sectors most important in explaining the dynamics of cost-push
inflation.

Figure 13: Cost-push inflation due to 2-digit sector groups
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(b) Sectors: 21, 52, 53
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(c) Sectors: 21, 52, 53, 32, 72
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Red dashed line plots counterfactual residuals computed by shutting down the shocks in all sectors except
a given 2-digit sector group.

6.4.2 Sectoral contribution during particular episodes

Now, I investigate which sectors have contributed the most during three important historical

episodes: the post-Great Recession, the post-Covid episode, and the Ukraine war. For this,

I find the largest-seized elements of the sum constituting the main component of the cost-

push effect within each episode of interest. Then, I compute counterfactual residual by

switching off these sectors.

In 2009, a lot of cost-push effect was attributed to the “Petroleum refineries” sector

alone. Figure 14 (panel A) shows that switching off this sector substantially reduces the 2009

cost-push effect. The Covid and post-Covid episode was not attributed to any particular

sector but rather to several groups simultaneously 52, 62, 22, 33 (Finance and Insurance,

Health Care and Social Assistance, Utilities, Manufacturing (durable goods). Figure 14

(panel B) shows that these groups explain most of the cost-push effect in 2020-2021. The
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2022 surge of the cost-push effect is largely attributed to sector groups 53 and 72 (Real

Estate and Rental and Leasing, Accommodation and Food Services) as shown on 14 (panel

C).

Figure 14: Cost-push inflation due to 2-digit sector groups
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(b) disable covid sectors
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(c) disable Ukraine war sectors

2008 2010 2012 2014 2016 2018 2020 2022
period

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ice

 c
ha

ng
e,

 %

Disable: 53, 72

7 Conclusions

This paper investigates the implications of state-dependent pricing for cost-push inflation

in a multi-sectoral New Keynesian economy with a production network. To this end, I

estimate the sector-specific degree of state dependence and evaluate its importance for cost-

push inflation in the US.

My empirical approach allows the use of the model to estimate sector-specific price

flexibility and its degree of state dependence from the sectoral price and wage data. The es-

timates reveal that the majority of sectors in the US economy have a statistically significant

degree of state dependence.

Theoretically, I show that state-dependent pricing may lead to cost-push inflation having

different size and even sign compared to a non-state-dependent pricing framework. This

important implication of state-dependent pricing obtains even if one excludes the effect of

inefficiency propagation through the production network.

In the model with an empirically plausible degree of state dependence, the importance

of state dependence for the cots-push effect is different for different historical periods. After

the Great Recession, state dependence amplified the positive cost-push effect, while during

and after the Covid crisis, it often led to a sign reversal of cost-push inflation.
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Appendices

A Model log-linearization appendix

A.1 Sectoral wages

The product market clearing condition in sector i (14) can be written as Pt,iYt,i = Pt,iCt,i+∑
j
Pt,iXt,ji. Using the conditions for optimal input allocation (3), (4), and the link between

sector price and sector marginal cost (6), we get
Pt,iXt,ij

MCt,i·Yt,i
=

Mt,iPt,iXt,ij

Pt,i·Yt,i
= (1 − αi)ωij ,

we have Pt,jXt,ji = (1 − αj)ωji
Pt,jYt,j

Mt,j
. Substituting this result into the market clearing

condition

Pt,iYt,i = Pt,iCt,i +
∑
j

(1− αj)ωji
Pt,jYt,j
Mt,j

(A.1)

Consumption shares and Domar weights are connected through a well-known link (see

Baqaee and Farhi (2020)).

Proposition (Consumption shares to Domar weights link). ξ = L′β.

Proof. First, let us compute (A.1) at the efficient steady state and divide by P̄ Ȳ . We

have the P̄iȲi

P̄ C̄
= P̄iC̄i

P̄ C̄
+
∑
j
(1− αj)ωji

P̄j Ȳj

P̄ C̄
. Then, the steady state product market clearing

condition can be expressed as ξi = βi +
∑
j
(1 − αj)ωjiξj , or in matrix form ξ = β +W ′ξ.

This gives us the link between consumption shares and Domar weights: ξ = L′β.

Log-linearizing (A.1) and dividing by P̄ Ȳ yields

ξi(pt,i + yt,i − µt,i) = βi(pt,i + ct,i)− ξiµt,i +
∑
j

(1− αj)ωjiξj(pt,j + yt,j − µt,j)

The demand for i-th sector consumption is pt,i + ct,i = pt + yt. Hence, we have

(pi + yi − µi) =
1

ξi

∑
j

lji(βj(pt + yt)− ξjµj) = pt + yt −
1

ξi

∑
j

ljiξjµj (A.2)

where lij is (i, j)-th element of matrix L.

Labor demand in log-deviations is wt,i + lt,i = pt,i + yt,i − µt,i and labor supply is

wt,i = pt + yt + γlt,i. Combining labor demand and labor supply, we get the following

expression for equilibrium wage

wt,i =
1

1 + γ
(pt + yt) +

γ

1 + γ
(pt,i + yt,i − µt,i) (A.3)
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Combining (A.2) and (A.3) yields

wt,i = pt + yt −
γ

1 + γ

1

ξi

∑
j

ljiξjµt,j (A.4)

which in vector form gives equation 15.

A.2 Sectoral prices

From (5) log-linear marginal cost deviation is sector i is

mct,i = −at,i + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.5)

The link between sector price and sector marginal cost is pt,i = µt,i + mct,i. Combining

these two results yields the following system of equations for sector prices

pt,i = µt,i − ai + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.6)

This system of price equations can be written in matrix form as

pt = µt − at + Iαwt +Wpt (A.7)

Substituting wage (15) into (A.7), moving parts containing pt to the left side and multiplying

by matrix L = (I −W )−1 gives

pt = Lµt − Lat + (pt + yt) · Lα− γ

1 + γ
LIαI

−1
ξ L′Iξµt (A.8)

Next, I establish a link between labor shares vector and Leontief inverse matrix.

Proposition (Labor shares and Leontief inverse.). Lα = 1.

Proof. Indeed, Lα = 1 ⇔ (I −W )−1α = 1 ⇔ α = (I −W )·1 = 1− (1−α) = α.

Then, the system of price equations can be expressed as

pt = (pt + yt) · 1− Lat + L̃µt (A.9)

where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ).
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A.3 Final output

Log-linearization of consumer price index yields pt =
∑
i
βipt,i = β′ · pt. Multiplying both

sides of price equations (16) by vector β′ and noticing that β′ · 1 =
∑
i
βi = 1, we get

0 = yt − β′ · L · at + β′L̃ · µt (A.10)

Next, as shown shown before β′L = ξ′. Then, β′L̃ = ξ′− γ
1+γ ξ

′IαI
−1
ξ L′Iξ = ξ′− γ

1+γα
′L′Iξ =

ξ′− γ
1+γ1

′ ·Iξ = 1
1+γ ξ

′, where in the third step I use the previous result that Lα = 1. Hence,

we have the expression for output as a function of productivities and markups.

yt = ξ′ · at −
1

1 + γ
ξ′ · µt (A.11)

A.4 Price-markup link

Log-linearizing Equation (18), while treating all Ft−s,i as time-varying coefficients

pt,i = Ft,i ·mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · Et−hmct,i

}
(A.12)

Let mct,i = mct−1,i +∆mct,i. Then, we can write

pt,i = Ft,imct,i+(1−Ft,i)

[
Ft−1,iEt−1mct,i +

∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,imct,i

}]
=

= Ft,imct,i + (1 − Ft,i)pt−1,i + (1 − Ft,i)et−1,i

where et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is predeter-

mined at period t. Markup is µt,i = pt,i −mct,i. Hence, the price-markup link is

(1− Ft,i) · (pt,i − pt−1,i) = −Ft,iµt,i + (1− Ft,i)et−1,i (A.13)

B Cost-push inflation theoretical appendix

This appendix contains proofs for Section 5.

B.1 Phillips curve

Proof of Proposition 2 (Consumer price inflation Phillips Curve). Rewriting price

equations (16) in terms of sectoral inflations gives

πt = −pt−1 + pt−11+ (πt + yt)1− Lat + L̃µt
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where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ).

On the other hand, the markup-inflation link through price prigdity (18) can be written as

(I − Ft)πt = −Ftµt + (I − Ft)et−1

where Ft = diag{Ft,i}, et−1 is such that

et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is predetermined at

period t.

Efficient relative prices are

p̂⋆
t = p⋆

t − p⋆t · 1 = yet · 1− L · at

In terms of price gaps π̂⋆
t = p̂⋆

t − p̂t−1, price equation can be rewritten as

πt − πt · 1 = ỹt · 1+ π̂⋆
t + L̃ · µt

Substituting markup-rigidity link into the previous equation and rearranging, we get

Ft(I + L̃F−1
t (I − Ft))πt − Ft1πt = Ft1ỹt + Ftπ̂

⋆
t + L̃F−1

t (I − Ft)et−1

Let M−1
t = Ft(I + L̃F−1

t (I − Ft)). Multipling previous equation by Mt and then by β′, we

get Phillips curve

πt(1− β′MtFt1) = β′MtFt1ỹt + β′MtFtπ̂
⋆
t + β′MtFtL̃F

−1
t (I − Ft)et−1

Let κt =
β′MtFt1

1−β′MtFt1
. Then, Phillips curve takes the form stated in proposition.

B.2 Cost-push effect decomposition

Proof of Proposition 3 (Phillips curve residual decomposition). Absence of input-

output effect in price setting means that firms set their prices ignoring the inefficient compo-

nent of their marginal costs. Instead they consider marginal costs being equal to the efficient

prices p⋆
t . Hence, the resulting sector prices are pt = Ft ·p⋆

t +(I −Ft)(pt−1+et−1), which

yields (I − Ft) · (pt − pt−1) = Ft · (p⋆
t − pt) + (I − Ft) · et−1.

Since p⋆
t − pt = −L̃ · µt, we have (I − Ft) · (pt − pt−1) = −FtL̃ · µt + (I − Ft) · et−1.

Under this link between inflation and markups, the Phillips curve is

πt(1− β′Ft1) = β′Ft1ỹt + β′Ftπ̂
⋆
t + β′FtL̃F

−1
t (I − Ft)et−1

and the Phillips curve residual not-related to inefficiency in marginal cost is uht = β′Ftπ̂
⋆
t
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Proof of Corollary 1 (Single final good economy(only I-O component)). Let π⋆
t be

desired price changes. β′π⋆
t = π⋆

1,t is the desired consumer price change. Then, price gaps

(relative desired price changes) are π̂⋆
t =

[
0, π̂⋆

2,t, ..., π̂⋆
N,t

]
. As a result uht = β′Ftπ̂

⋆
t = 0

If F1,t < 1 and Fi,t = 1 for all i ̸= 1 then we have [F−1
t (I − Ft)]1,1 ̸= 0 and [F−1

t (I −
Ft)]i,j = 0 otherwise. Then MtFt = [I + L̃F−1

t (I − Ft)]
−1 is such that it has non-zero

first column, ones on the diagonal and zeros otherwise. Then β′MtFt is a row vector with

the first element being the only non-zero element. Hence, we have β′MtFtπ̂
⋆
t = 0 since

π̂⋆
1,t = 0.

Proof of Corollary 2 (Quasi-horizontal economy (only horizontal component)).

If L̃ = I the net effect of markups on marginal cost is zero as intermediate cost effect exactly

compensates the labor cost effect. In this case, Mt = (I + L̃F−1
t (I − Ft))

−1F−1
t = I and

the vertical component disappears.

In the case described by corollary, Leontief inverse is L = I−1
α , which gives L̃ = 1

1+γ I
−1
α .

To eliminate vertical component we need to have αi =
1

1+γ for all sectors i.

B.3 Horizontal component around steady state

Proof of Proposition 4 (Horizontal component around steady state). The economy

is in the efficient steady state at time t − 1. After a productivity shock, price gaps equal

π̂t = −Lϵt + β′Lϵt = ∆st − β′∆st = ∆ŝt where ∆st are the changes in the relevant

productivity states caused by productivity shocks at time i.

Consider the horizontal component uht = β′Ft · π̂⋆
t and let price flexibility be state-

dependent with common degree of state-dependence such that Ft,i = F̄i + f · |∆st,i| +
vi,t where vi,t is a part of sectoral price flexibility unexplained by this state-dependent

framework. Note, that f =
covβ(Ft−F̄ , |∆st|)

varβ(|∆st|) . In this case the horizontal component of the

cost-push inflation can be written as

uht = β′Ft ·∆ŝt = covβ(F̄ , ∆st) + covβ(Ft − F̄ , |∆st|) ·Asymβ(∆st) + covβ(vt, ∆st)

where Asymβ(∆st) =
covβ(|∆st|, ∆st)

varβ(|∆st|) is the asymmetry of price gaps (equal to the efficient

price changes).

Part (a): Under purely non-state dependent pricing f = 0 and vi,t = 0 so that only the

first term is preset yielding the Part (a) of proposition.

Part (b) : Under pure common state-dependent pricing, only second term is present

(F̄ = 0 and vi,t = 0) and asymmetry in efficient price changes describes cost-push effect

with k = covβ(Ft, |∆st|) ; this yields the Part (b) of proposition.

The presence of heterogeneity in state-dependence adds additional term to the proposi-

tion, which doesn’t have an analytical interpretation.
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B.4 Illustrative examples derivations

Consider a general case of a two-sector vertical chain. U - upstream sector, D - downstream

sector. FU - upstream price flexibility, FD - downstream price flexibility. The share of

upstream input in downstream production is w. Let productivity vector be a′ = [ϵU , ϵD].

Price flexibility matrix is Ft =

(
FU 0

0 FD

)
. I-O matrix is W =

(
0 0

w 0

)
. Leontief inverse

is L =

(
1 0

w 1

)
. Consumption shares are β′ = [0, 1] and Domar weigths are ξ′ = β′L =

[w, 1]. Labor shares α′ = [1, (1 − w)]. Phillips curve residual is ut = β′MtFtπ̂
⋆
t where

MtFt = (I + L̃F−1
t (I − Ft))

−1 and L̃ = 1
1+γ ·

(
1 −γ

w 1

)
.

MtFt =
1+γ
Det ·

(
1 + γ + fD γfD

−wfU 1 + γ + fU

)
where fU = 1−FU

FU , fD = 1−FD

FD and Det =

(1 + γ + fU ) · (1 + γ + fD)−wγfU · fD > 0. β′MtFt =
1+γ
Det · [−wfU , 1 + γ + fU ]. Desired

price changes are π̂⋆
t = −[(1− w)ϵU − ϵD, 0]′. Then, Phillips curve residual

ut =
1 + γ

Det
· w((1− w)ϵU − ϵD) · 1− FU

FU
(A.14)

Example 1: two-sector vertical chain. In this example Oil sector is Upstream and

Final good sector is Downstream. We have FU = FO = 1, ϵU = ϵO and ϵD = 0. As a result

we have u = 1+γ
Det · w((1− w)ϵO) · 1−FO

FO = 0.

Example 2: Intermediate good. Consider a three-sector vertical chain Oil → Interme-

diate good → Final good. Assume that intermediate good uses only oil and no labor. Let

price flexibilities be FO = 1, F I < 1 and FF < 1. Then, Oil and Intermediate good can be

combined in one Upstream sector such that FU = F I and FD = FF . Under the oil shock

ϵO, we have ϵU = ϵO and ϵD = 0. Then, the residual is is u = 1+γ
Det · w(1 − w) · ϵO · 1−F I

F I .

When oil productivity goes down (oil price goes up), Phillips curve residual also goes down

(consumer prices go down).

Example 3: “Sticky wage” economy. Consider a three-sector vertical chain Labor

sector→ Oil→ Final good. Assume that final good uses only oil and no labor. Let price

flexibilities be FL < 1, FO = 1 and FF < 1. Then, Oil and Final good can be combined in

one Downstream sector such that FU = FL and FD = FF . Under the oil shock ϵO, we have

ϵU = 0 and ϵD = ϵO. Then, the residual is is u = 1+γ
Det · −wϵO · 1−FL

FL . When oil productivity

goes down (oil price go up), Phillips curve residual goes up (consumer prices go up).

Multiple inputs. Next, consider a two-sector horizontal economy with good 1 (G1) and

(G2) such that only labor and own output is used for production of each good. Then
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production network is W = I − Iα, L = I−1
α , L̃ = I and Mt = I which eliminates vertical

component of cost-push inflation. The shares of each good in consumption are s1 and s2

such that s1 + s2 = 1. Let each of these sectors be hit by a respective shock ϵ1 and ϵ2 and

the respective price flexibilities be F1 and F2. Then Lat = [(1−α1)
−1 · ϵ1, (1−α2)

−1 · ϵ2]′.
Then, π̂⋆

t = −[s2((1− α1)
−1 · ϵ1 − (1− α2)

−1 · ϵ2), −s1((1− α1)
−1 · ϵ1 − (1− α2)

−1 · ϵ2)]′.
Then cost-push inflation is u = −s1 · s2 · (F1 − F2) · ((1− α1)

−1 · ϵ1 − (1− α2)
−1 · ϵ2).

Example 4: Multiple inputs economy. Consider an economy where single final good

is produced using two inputs Oil and Intermediate good. If price flexibility in final good

sector is 1 and no labor is used in this sector, then this economy is a special case of a

horizontal economy described above. We have F1 = FO = 1, F2 = F I , s1 = 1 − αI ,

s2 = αI , α1 = α2 = 1 and ϵ1 = ϵOil, ϵ2 = 0. As a result we have cost-push effect

u = −αI(1− αI) · (1− F I) · ϵOil.

Example 5: Multiple final good economy. Consider an economy consisting of two

commodities: Oil and Grain and two final goods: Oil-intensive final good and Grain-

intensive final good. Commodity sectors have fully flexible prices, while final good sec-

tors have partially rigid prices. If final goods sectors do not use any labor and use only

respective commodities, then this economy can be represented as a special case of a two-

sector horizontal economy described above with Oil commodity and Oil intensive final

good representing the first sector and Grain commodity and Grain-intensive final good

representing the second sector. Then, we have F1 = FFO, F2 = FFG, α1 = α2 = 1,

s1 = s2 = 0.5 are consumption shares, ϵ1 = ϵOil and ϵ2 = ϵGrain. Then, cost-push effect is

u = −1
4 · (FFO − FFG) · (ϵOil − ϵGrain)

C Empirical evidence appendix

C.1 Sectoral productivities and markups

Let all industies be indexed by i ∈ {1, ..., N}. At any period t the available k sectors have

indices {i1, ..., ik} ⊆ {1, ..., N}. I construct N × k selection matrix S, such that S[ij , j] = 1

and zero otherwise. Note, that STS = I. Then transformation Su transforms k-sized vector

u to N -sized vector with zeros for unavailable sectors; STv transforms N -sized vector v to

k-sized, by choosing only elements for available industires. Hence, we can write a system of

k equations for k markups and productivities in terms of k wages and prices

µ =
1 + γ

γ
· ST (I−1

ξ LT Iξ)
−1S · ((p+ y)·1−w) (A.15)

a = µ+ ST IαS ·w − STL−1S · p (A.16)
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C.2 Estimating price flexibility

Proof: (Link between productivity shocks and markups). Let sectoral price change be πt,i =

pt,i − pt−1,i. Log-linear equation for money supply is mt = yt + pt. Moreover, productivies

are at = ā+ at−1 + ϵt. Combining these with price system (16) we get

πt = −pt−1 +mt · 1− Lϵt + L̃µt − L(ā+ at−1)

On the other hand, the link between inflation and markups (18) can be written as

(I − Ft) · πt = −Ftµt + (I − Ft)Xt−1

Substituting for πt, and rearranging yields the result.

Proof: Validity of instruments. . Note that ṽt,i is independent of zt,i as long as monetary

policy does not react within a month to a productivity shock. Furthermore, Fi(|zt,i|)zt,i has
mean zero, since zi,t is zero mean normally distributed. Hence, we have

Cov(Fi(|zt,i|)zt,i, Fi(|zt,i|)ṽt,i) = E(Fi(|zt,i|)2zt,iṽt,i) =

=

∫ ∫
Fi(|zt,i|)2zt,iṽt,ifzfṽdzdṽ =

∫
ṽ

[∫
z
Fi(|zt,i|)2zt,ifzdz

]
ṽt,ifṽdṽ = 0

The last equality follows as inner integral equals to zero due to zero mean symmetric

distribution of zi,t. Hence, instruments constructed in this matter are valid.

C.3 Dataset construction

This Appendix describes the construction of BEA-coded sectoral price and wage data set.

Sectoral wages (form CES to NAICS). Sectoral wages are initially classified with

CES codes, with available correspondence from CES to NAICS codes. So first I transform

the wages classification to NAICS-based. The main complication is that CES to NAICS

mapping is not one-to-one as at least for some NAICS codes more than one CES sector

exists.To overcome this complication I compute the weighted average wage for each NAICS

sector as wNAICS =
∑

αiw
CES
i where wCES

i are CES-sector wages corresponding to a

given NAICS sector code. Each weight αi is computed as a ratio of the number of workers

employed in sector i to the total number of workers in all CES sectros corresponding to a

given NAICS sector. The number of employed workers is taken form the same CES dateset

as the average number for the year 2012, to correspond to the year of the Input-Output

table used.

Sectoral consumer prices (from NIPA to BEA). Sectoral consumer prices are

initially classified by NIPA codes. BEA provides a bridge table between NIPA codes and
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BEA codes. The complication is that one BEA code sometimes corresponds to multiple

NIPA codes. For such cases I compute the BEA sector price as the weighted average of the

corresponding NIPA sector prices pBEA =
∑

αip
NIPA
i . Weights αi are computed using the

”Purchasers value” quantity available in the bridge table for each NIPA sector. I use the

2012 bridge table.

NAICS to BEA concordance. The producer prices data is classified by NAICS codes

as well as wages data (after the transformation from CES to NAICS described above).

To apply this data to the available input-output tables I convert NAICS based sectoral

data to BEA based sectoral data. BEA Bridge tables have a rough BEA-NAICS code

correspondence, from which I make use to establish a concordance between NAICS codes

and BEA codes. The problem is that the BEA-NAICS codes correspondence is not one-

to-one. For those cases when one BEA code corresponds to several NAICS codes I need

weights to evaluate the BEA-based price as a weighted average of the NAICS based prices.

For this I need to compute the relative sector size of each NAICS sector withing a given

BEA sector. The primary data source I use to compute NAICS sector sizes is the Annual

survey of manufacturers from the US Census. I use the corresponding ”Shipment value”

quantities for the survey of 2012. The secondary data source is the Current Employment

Survey. I use the number of employed people as an sector size variable, translated from

CES into NAICS codes in the same manner as wages. First I try to compute NAICS sector

weights in each BEA code using ASM data. If ASM data is unavailable, I use CES data.

For those sectors, that are not covered by either dataset I use the uniformal weights.

NAICS to BEA matching procedure. Having constructed the mapping from

NAICS to BEA codes with corresponding weights, I convert the NAICS data into the BEA

data. I want to find a corresponding NAICS code for as many NAICS sectors from the

NAICS-BEA mapping as possible. First, I find the the NAICS codes in the data that have

the identical NAICS codes in the NAICS-BEA mapping. For the remaining NAICS codes

from the BEA-NAICS mapping I try to find the correspondence at the more aggregated

level. I subsequently 1,2 and 3 last digits of NAICS codes form the mapping and try to find

the corresponding more aggregated sector in the data.
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