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Abstract

This paper addresses the slow convergence of the Expectation-Maximization

(EM) algorithm that arises in the estimation of low-noise dynamic factor models,

which are commonly used in macroeconomic forecasting and nowcasting applica-

tions. We show both analytically and in Monte Carlo simulations how the EM

algorithm stagnates in a low-noise environment, leading to inaccurate factor load-

ing and latent factor estimates. We then demonstrate that an adaptive version

of the EM algorithm is able to speed up the rate of convergence, producing im-

provements in estimation accuracy by up to 57% for the loadings and 23% for the

factors compared to the baseline EM. Furthermore, modestly increasing the noise

level additionally speeds up the convergence rate for both EM and Adaptive EM.

Lastly, we conduct a nowcasting exercise of euro area GDP growth and show that

the Adaptive EM leads to nowcasting gains up to 13% relative to the conventional

EM.
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1 Introduction

Dynamic factor models have become a powerful tool for many economic and financial

applications, ranging from financial forecasting (Ludvigson and Ng, 2009; Neely et al.,

2014), macroeconomic forecasting (Stock and Watson, 1999, 2002a,b) and nowcasting

(Giannone et al., 2008; Bańbura et al., 2011) to the construction of economic and financial

activity indices (Stock and Watson, 1989, 1991; Aruoba et al., 2009; Brave and Butters,

2011) and uncertainty indices (Jurado et al., 2015; Scotti, 2016). In particular, dynamic

factor models facilitate a straightforward approach to summarize the (co)variation of a

large number of time series into a few latent common factors (see, for example, Poncela

et al., 2021, for a recent survey on factor extraction in dynamic factor models). However,

the number of parameters in the model becomes excessively large when the number of

time series included increases.1 This implies that conventional estimation based on direct

numerical optimization of the likelihood in combination with the Kalman filter (see,

among others, Engle and Watson, 1981; Stock and Watson, 1989) becomes unfeasible for

large-scale dynamic factor models.

To overcome this issue, the Expectation-Maximization (EM) algorithm of Dempster

et al. (1977) has become a popular alternative estimation approach in high-dimensional

settings (see, among others, Quah and Sargent, 1993; Doz et al., 2012; Barigozzi and

Luciani, 2022).2 The EM algorithm has initially been adapted for dynamic factor models

in state-space form by Shumway and Stoffer (1982) and Watson and Engle (1983). More

recently, Bańbura and Modugno (2014) show that the EM algorithm is also easily modified

to include serially correlated idiosyncratic components. Their approach even remains

applicable under arbitrary patterns of missing data, which is particularly relevant for

forecasting and nowcasting applications in which the included time series typically have

different publication delays (the so-called ‘ragged edge’), different sampling frequencies

and different initial availability.

More specifically, Bańbura and Modugno (2014) treat the serially correlated idiosyn-

1The number of parameters increases linearly with the number of time series for an exact factor model
(with cross-sectionally uncorrelated idiosyncratic components) and quadratically for an approximate
factor model (with cross-sectionally correlated idiosyncratic components).

2Naturally, several alternative solutions have been proposed to deal with high-dimensional data in
dynamic factor models (see, among others, Doz et al., 2011; Jungbacker and Koopman, 2015; Bräuning
and Koopman, 2014). For a recent survey on high-dimensional dynamic factor models, see Lippi et al.
(2022).
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cratic components as additional latent states and introduce an artificial error term with

small variance in the measurement equation. The latter is necessary in order to apply

the EM algorithm in its usual form. Yet, it has been shown that the EM algorithm be-

comes inefficient in such a low-noise environment (Bermond and Cardoso, 1999; Petersen

et al., 2005), causing extremely slow convergence, especially for the factor loading esti-

mates. Unfortunately, this issue seems to have been overlooked by Bańbura and Modugno

(2014) and subsequent applications of their approach (see, among others, Coroneo et al.,

2016; Scotti, 2016; Alvarez et al., 2016; Bok et al., 2018; Barigozzi and Luciani, 2019;

Cascaldi-Garcia et al., 2021; Caruso and Coroneo, 2023). Moreover, these low-noise issues

could also arise more naturally whenever the series exhibit a strong factor structure with

a high signal-to-noise ratio. An example of this situation concerns the term structure of

interest rates, for which three factors explain almost all of their variation (Litterman and

Scheinkman, 1991).

In this paper, we address this slow EM convergence issue in low-noise dynamic factor

models in three different ways. First, we show both analytically and in Monte Carlo

simulations how the EM algorithm fails in the estimation of the factor loadings. We

demonstrate that the key issue concerns the learning rate of the M-step for the factor

loadings, which is proportional to the variance of the artificial error term in the mea-

surement equation. Hence, small artificial noise leads to slow convergence of the EM

algorithm in the estimation of these loadings. Subsequently, our simulation study shows

that the smoothed factors and other parameter estimates are also negatively affected

by this slow convergence. We find that this failure of EM under low noise persists for

different sample sizes and different model (mis)specifications.

Second, we demonstrate that the Adaptive Overrelaxed EM (AEM) algorithm of

Salakhutdinov and Roweis (2003) is able to deal with these low-noise issues, as suggested

by Petersen et al. (2005). The key feature of the AEM algorithm is that it boosts the

parameter updates and thereby counters the low variance of the artificial error term. This

AEM algorithm is only a simple and straightforward extension of the conventional EM

algorithm, making it just as easy to implement. Our Monte Carlo simulations show that

the speed of convergence of the AEM algorithm is much faster than of the EM algorithm,

with an average improvement in accuracy per iteration that is up to 68 times higher.

Consequently, the AEM algorithm produces substantially more accurate factor loading
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estimates than the EM algorithm with up to 57% improvement in accuracy. Furthermore,

the smoothed factors based on the AEM algorithm are a better approximation of the

true factors compared to standard EM, with an accuracy gain of up to 23%. The other

parameters are also more accurately estimated with AEM compared to EM, albeit to a

lesser extent. In the Bańbura and Modugno (2014) approach, the variance of the artificial

error term is treated as a hyperparameter, which ex ante is fixed typically at a very small

value (such as 10−4). We demonstrate that carefully choosing a modest level of artificial

noise (instead of just using a very low noise level) considerably speeds up the convergence,

improving the accuracy of both EM and AEM. Nonetheless, the adaptive augmentation

of the EM algorithm remains complementary to the optimal level of noise as it leads to

faster convergence for all noise levels than the standard EM algorithm.

Third, we conduct a nowcasting exercise of euro area GDP growth based on a mixed-

frequency dynamic factor model akin to Mariano and Murasawa (2003), which we either

estimate with the EM or AEM algorithm. Empirically, we show that the AEM algorithm

is able to reach much higher log-likelihood values in much less iterations than the standard

EM, reconfirming the slower EM convergence. Moreover, the AEM algorithm produces

more accurate nowcasts for small-scale models with improvements in accuracy up to 13%

relative to the baseline EM, while medium- and large-scale models generally perform

worse for both algorithms.

Besides the Bańbura and Modugno (2014) approach, there exists at least one other way

to estimate dynamic factor models with serially correlated idiosyncratic components (see,

for example, Poncela et al., 2021; Barigozzi and Luciani, 2022, for an overview). More

specifically, Watson and Engle (1983) and Reis and Watson (2010) propose to include

lags of the observables and latent factors in the measurement equation, which can then be

estimated with the Expectation Conditional Maximization algorithm of Meng and Rubin

(1993). The upside of this implementation is that its state dimension does not increase

with N , as is the case in the framework of Bańbura and Modugno (2014), slowing down

the filtering/smoothing recursions for large N . However, the downside of this alternative

approach is that it is not directly compatible with arbitrary patterns of missing data

(Jungbacker et al., 2011; Bańbura and Modugno, 2014). Although Jungbacker et al.

(2011) propose an alternative state-space form to deal with missing data to overcome this

deficiency, this comes at the cost of more complex time-varying state-space dimensions
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and system matrices, which are rather cumbersome to deal with in the EM algorithm.3

Our work also relates to the vast literature that extends the basic EM to speed

up (global) convergence (see, among others, Huang et al., 2005; Varadhan and Roland,

2008; He and Liu, 2012). Notably, Osoba et al. (2013) derive the Noisy EM algorithm

and show that careful additive and arbitrary noise injection could speed up the EM

convergence, which corroborates with our findings that modest noise levels speed up

the (A)EM convergence. Nevertheless, our paper focuses on a specific case of slow EM

convergence, namely the one under a low-noise environment. Therefore, we restrict the

paper to the AEM algorithm of Salakhutdinov and Roweis (2003) only, as this adaptation

is able to naturally counter the slow EM convergence under this specific noise setting.

The outline of the paper is as follows. Section 2 describes the low-noise dynamic factor

model and its estimation based on the EM and AEM algorithms. Section 3 displays

the Monte Carlo simulation results to assess the effect of low-noise on the estimation

performance. Section 4 shows the empirical results related to the nowcasting exercise.

Section 5 summarizes our main conclusions.

2 Estimation of low-noise dynamic factor models

2.1 Low-noise dynamic factor model

Let yt = (y1,t, . . . , yN,t)
′ denote a N -dimensional vector with stationary time series that

has the factor model representation

yt = Λft + εt, (1)

for t = 1, . . . , T , where ft = (f1,t, . . . , fR,t)
′ is an R×1 vector with latent common factors,

Λ is an N × R factor loading matrix and εt = (ε1,t, . . . , εN,t)
′ is an N × 1 vector with

idiosyncratic components that are uncorrelated with ft at all leads and lags. For now, we

assume that εt ∼ i.i.d. N (0,Ω) with Ω being a diagonal matrix, meaning that the εt’s

are cross-sectionally and serially uncorrelated and thus that yt follows an exact factor

model structure. Moreover, we assume that ft follows a stationary vector autoregression

3See Grassi et al. (2015) for an empirical implementation and Holmes (2018) for more general deriva-
tions of the EM algorithm under deterministic time-varying parameter system matrices.
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(VAR) of a finite order p, that is,

ft = Φ1ft−1 + . . .+Φpft−p + υt,

where Φ1, . . . ,Φp are R × R matrices with VAR coefficients. We assume that the state

disturbance vector υt ∼ i.i.d. N (0, IR) with IR being an R × R identity matrix, where

this covariance matrix restriction is only a normalization condition (see, for example,

Doz et al., 2012). For simplicity, we set p = 1, but the case of p > 1 can easily be

accommodated.

The exact dynamic factor model assumes that all cross-sectional dependence and time-

series dependence in yt is captured by the common factors ft. However, this assumption

might be too restrictive and could be relaxed in two possible ways. First, allowing for

cross-sectional dependence in εt results in a so-called approximate factor model (see,

for example, Chamberlain and Rothschild, 1983; Fan et al., 2013; Bai and Liao, 2016)

and could lead to a more efficient estimator of the latent factors (Barigozzi and Luciani,

2022).4 Yet, estimating the full idiosyncratic covariance matrix becomes problematic for

large N (Poncela et al., 2021). In fact, no version of the EM algorithm currently exists

that is able to do so in a high-dimensional setting (Barigozzi and Luciani, 2022), mak-

ing this extension not readily available to implement. Also, Luciani (2014) empirically

shows that accounting for cross-sectional correlation does not lead to improvements in

forecasting accuracy. Second, allowing for serial correlation in εt could lead to more ef-

ficient estimators of the factor loadings (Bai and Li, 2016; Barigozzi and Luciani, 2022).

Moreover, modelling the dynamics in the idiosyncratic components could also be benefi-

cial in certain applications such as in the construction of coincident economic indicators

(Stock and Watson, 1989, 1991; Mariano and Murasawa, 2003) and in forecasting and

nowcasting (Stock and Watson, 2002b; Poncela et al., 2020), especially for ragged-edge

data (Pinheiro et al., 2013; Bańbura and Modugno, 2014).

To explicitly model the autocorrelation of the idiosyncratic components, Bańbura

and Modugno (2014) propose to include the vector εt as additional latent state and to

introduce some artificial small error term et.
5 Consequently, measurement equation (1)

4Doz et al. (2012) show that, under weak cross-sectional and time-series correlation, the factors can
still be consistently estimated with EM in an exact dynamic factor model for N,T → ∞.

5This approach is also used by Barigozzi and Luciani (2019) to deal with nonstationary idiosyncratic
components in a nonstationary dynamic factor model.
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can be rewritten as

yt =
(
Λ IN

)ft

εt

+ et, (2)

where et ∼ i.i.d. N (0, κIN) with κ a very small pre-fixed number (say, 10−4). We

continue to assume that ft follows a stationary VAR(1) process and additionally that each

element of εt follows a stationary univariate AR(1) process. The dynamics of f̃t = (ft, εt)
′

thus are given by ft

εt

 =

Φ 0

0 Ψ

ft−1

εt−1

+

υt

νt

 , (3)

where Ψ = diag(ψ1, . . . , ψN) and we assume that the error terms υt ∼ i.i.d. N (0, IR)

and νt ∼ i.i.d. N (0,Σ) are uncorrelated, with Σ = diag(σ2
1, . . . , σ

2
N).

The reason that Bańbura and Modugno (2014) introduce the small error term et is to

be able to properly define the complete data log-likelihood, as otherwise it is not possible

to apply the EM algorithm in its usual form. However, in the next subsection, we show

that this low-noise specification has severe implications for the convergence speed of the

EM algorithm in the estimation of the factor loading matrix Λ.

2.2 Failure of EM in a low-noise environment

Given measurement equation (2) and state equation (3), we want to estimate the un-

known parameters, collected in Θ = {Λ,Φ,Ψ ,Σ}, and the latent states f̃t. However,

due to the fact that f̃t is unobserved, it is generally not possible to find closed-form

estimators for the parameters in Θ. At the same time, direct numerical optimization of

the likelihood is computationally cumbersome, particularly for large N due to the large

number of parameters. To handle this issue, the Expectation-Maximization (EM) algo-

rithm of Dempster et al. (1977) has become a popular alternative estimation method,

which has been adapted by Shumway and Stoffer (1982) and Watson and Engle (1983)

for dynamic factor models in state-space form. The EM algorithm focuses on the joint

log-likelihood of the complete data f̃t and yt and then iterates between estimating the

latent states conditional on Θ (E-step) and estimating the parameters conditional on the
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states (M-step).

More formally, the complete data log-likelihood is denoted as ℓ(F̃ ,Y ;Θ), where F̃ =

(f̃1, . . . , f̃T )
′ and Y = (y1, . . . ,yT )

′. The E-step is conducted by taking the expectation

of the complete data log-likelihood conditional on the observed data and based on the

j-th iteration of the parameter estimates, denoted as Θj, that is,

L(Θ,Θj) = EΘj

(
ℓ(F̃ ,Y ;Θ)

∣∣Y ),
which can be computed based on a pass of the Kalman smoother (see, for example,

Shumway and Stoffer, 1982). Next, to update the parameter estimates, the M-step is

conducted by maximizing the expected complete data log-likelihood with respect to Θ,

that is,

Θj+1 = argmax
Θ

L
(
Θ,Θj

)
. (4)

Analytic solutions to the maximization problem in equation (4) are given in Shumway

and Stoffer (1982) and Watson and Engle (1983) for the system matrices in measurement

equation (2) and a state equation corresponding to a VAR(1) process. Hence, by iterating

between the E- and M-steps, we are able to estimate Θ and F̃ , where Dempster et al.

(1977) show that, under some regularity conditions, the EM algorithm converges towards

a local maximum of the likelihood.

Based on the maximization in equation (4), we can derive the M-step of Λ as

Λj+1 =

(
T∑
t=1

EΘj

(
(yt − εt)f

′
t

∣∣Y ))( T∑
t=1

EΘj

(
ftf

′
t

∣∣Y ))−1

, (5)

where EΘj
(ft|Y ), EΘj

(εtf
′
t |Y ) and EΘj

(ftf
′
t |Y ) can be obtained with the Kalman

smoother. Similar expressions can be obtained for the other system matrices in the

state-space representation of the dynamic factor model (see, for example, Bańbura and

Modugno, 2014). Plugging in measurement equation (2) for the j-th EM parameter

iteration, we obtain

Λj+1 = Λj +

(
T∑
t=1

EΘj

(
etf

′
t

∣∣Y ))( T∑
t=1

EΘj

(
ftf

′
t

∣∣Y ))−1

.
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Consequently, by decreasing the variance of et ∼ N (0, κIN), that is, κ→ 0, we get that

Λj+1 → Λj. More formally, Bermond and Cardoso (1999) and Petersen et al. (2005)

show that

Λj+1 = Λj + κΛ̃j +O(κ4), (6)

where Λ̃j is the first-order correction term, see the Technical Appendix of Petersen et al.

(2005) for more details. In other words, the learning rate of the M-step for Λ is propor-

tional to the noise level κ of the artificial error term. Hence, the convergence of the EM

algorithm slows down for small values of κ and requires an excessive number of iterations

in order to converge.6

2.3 Adaptive EM in a low-noise environment

To speed up the EM convergence in the low-noise setting, we advocate to employ the

Adaptive Overrelaxed EM (AEM) algorithm of Salakhutdinov and Roweis (2003), fol-

lowing the suggestion of Petersen et al. (2005). The idea behind this AEM algorithm is

to boost the parameter updates by an adaptive factor ηj that changes over the iterations.

Specifically, the M-step of the factor loadings in the AEM algorithm can be written as

ΛAEM
j+1 = ΛAEM

j + ηj

(
Λj+1 −ΛAEM

j

)
, (7)

where Λj+1 is obtained from the M-step in equation (5) based on the j-th parameter

iteration from the AEM algorithm (ΘAEM
j ) for the intermediate E-step. Combining

this with equation (6), in which the previous iteration is equal to the one of the AEM

algorithm, we get that

ΛAEM
j+1 = ΛAEM

j + ηjκΛ̃
AEM
j +O(κ4),

6Indeed, Coroneo et al. (2016) find that using initial or final estimates gives similar results, which
they attribute to the fact that the two-step approach of Doz et al. (2011), used for initialization, and the
maximum likelihood approach have similar properties under a strong factor structure (see, for example,
Doz et al., 2011, 2012). We alternatively argue that this could be due to the low-noise specification in
which a large number of iterations only changes the estimates by a very small margin. In fact, if the used
tolerance level ϵ is too large, then the EM algorithm stops after only a few iterations as the changes are
too small, rather than that the EM algorithm reaches a local optimum (see, for example, Alvarez et al.,
2016, who indicate convergence after only 3-4 iterations).
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which shows that a factor ηj > 1 is able to directly counter the low-noise level κ and

thereby increases the step size relative to the conventional EM, potentially speeding up

convergence. As the other parameters are all part of the state equation, their updates are

not directly affected by the low-noise setting in the measurement equation. Therefore,

we do not apply this boosted M-step to those parameters.

The choice of ηj in equation (7) determines how much the learning rate of the M-

step is boosted, where ηj = 1 for all j returns the standard EM algorithm. Although

there exists an optimal boosting factor η∗j with regard to the global rate of convergence

of the algorithm, it is computationally difficult to compute (Salakhutdinov and Roweis,

2003; Yu, 2012). Instead, Salakhutdinov and Roweis (2003) propose to set ηj+1 = αηj

to gradually increase the boosting factor, where they set α = 1.1 and initialize the

boosting factor with η1 = 1.7 The only downside of using an adaptive learning rate with

this specification is that an increase in the likelihood of Y is not necessarily guaranteed

anymore. In case the likelihood does not improve, Salakhutdinov and Roweis (2003) set

ΛAEM
j+1 = Λj+1, which is close to ΛAEM

j due to the low-noise environment, and re-set the

boosting factor to ηj+1 = 1, after which the algorithm continues.

3 Monte Carlo simulations

3.1 Simulation set-up

To assess the effect of the low-noise specification on factor and parameter estimation based

on the (A)EM algorithm, we conduct a Monte Carlo simulation in a similar fashion as

Doz et al. (2012) and Bańbura and Modugno (2014). More specifically, we simulate data

from the following dynamic factor set-up:

yt = Λft + εt,

ft = Φft−1 + υt, υt ∼ i.i.d. N (0, IR),

εt = Ψεt−1 + νt, νt ∼ i.i.d. N (0,Σ),

7Salakhutdinov and Roweis (2003) did not find their results to be very sensitive to the setting of α,
as long as it is is close to but greater than unity.
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for t = 1, . . . , T , with

Λi,j ∼ i.i.d. N (0, 1), i = 1, . . . N, j = 1, . . . , R,

Φi,j =

ϕ if i = j

0 if i ̸= j,

i, j = 1, . . . , R,

Ψi,j =

ψ if i = j

0 if i ̸= j,

i, j = 1, . . . , N,

Σi,j = τ |i−j|(1− ψ2)
√
γiγj, i, j = 1, . . . , N,

γi =
βi

1− βi

1

1− ϕ2

R∑
j=1

Λ2
i,j, βi ∼ i.i.d. U([u, 1− u]),

where the subscript i, j denotes the (i, j)-th element of the corresponding matrix. The

specifications of Φi,j and Ψi,j imply that both the common factors as well as the id-

iosyncratic components follow univariate AR(1) processes, with persistence ϕ and ψ,

respectively. The parameter τ governs the degree of cross-sectional dependence, where

τ = 0 corresponds to an exact factor model and τ > 0 to an approximate factor model.

Moreover, βi governs the inverse signal-to-noise ratio of variable i, that is, it is equal to

the variance of εi,t divided by the variance of yi,t. For our baseline simulation setting, we

set R = 1, ϕ = 0.7, ψ = 0.5, τ = 0 and u = 0.1. Furthermore, we consider cross-sectional

dimensions N = 10, 20, 50 and sample sizes T = 50, 100.8

Given the generated data, we estimate the exact low-noise dynamic factor model given

in equations (2) and (3) with the noise parameter fixed at κ = 10−4. To determine the

convergence of the EM algorithm, the stopping rule of Doz et al. (2012) enjoys substantial

popularity, where, for a maximum number of iterations J , the algorithm is stopped at

the first iteration j < J for which

|ℓ(Y ;Θj)− ℓ(Y ;Θj−1)|
1
2
|ℓ(Y ;Θj) + ℓ(Y ;Θj−1)|

< ϵ, (8)

where ℓ(Y ;Θj) is the prediction error log-likelihood of Y computed at the j-th parameter

8We restrict the simulation set-up to max T = 100 and N = 50 due to computational costs, par-
ticularly as the state dimension increases with N , slowing down the filtering/smoothing recursions and
thereby making the simulations computationally cumbersome for larger cross-sectional dimensions (see,
for instance, Jungbacker et al., 2011).
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iteration and ϵ is a pre-specified small tolerance level, which Doz et al. (2012) set equal

to 10−4. However, in our simulation setting, we simply conduct J = 1, 000 iterations for

both the EM and AEM algorithms to make our results insensitive to a specific tolerance

level ϵ in the stopping rule.9 We initialize the (A)EM algorithm with the two-step (2S)

approach of Doz et al. (2012). Specifically, this two-step approach first estimates the

loadings and common factors by means of principal component analysis, after which the

parameters in the state equation are estimated with OLS by using the factor estimates

(assuming they are the true factors). Then, given the parameter estimates, a single pass

of the Kalman smoother is used to get the final estimates of the latent factors. For

completeness, we also include this two-step approach in the simulation results.

To measure the precision of the parameter estimates in each Monte Carlo run, we

follow Despois and Doz (2023) and compute the root mean squared errors (RMSE) for

the different estimation methods x ∈ {2S,EM,AEM}, that is,

RMSEx
Λ =

√√√√ 1

NR

N∑
i=1

R∑
j=1

(Λi,j − Λ̂xi,j)
2,

RMSEx
ϕ =

√√√√ 1

R

R∑
i=1

(ϕ− ϕ̂xi )
2,

RMSEx
ψ =

√√√√ 1

N

N∑
i=1

(ψ − ψ̂xi )
2,

RMSEx
Σ =

√√√√ 1

N

N∑
i=1

(Σi,i − Σ̂x
i,i)

2,

where a lower RMSE indicates a more accurate estimation method.10 To measure the

precision of the common factor estimates in each Monte Carlo run, we follow Doz et al.

(2012) and Bańbura and Modugno (2014) by using the trace R2 of a (multivariate)

regression of F̂x on F as proposed by Stock and Watson (2002a), that is,

R2
F,x =

Tr(F ′F̂x(F̂
′
xF̂x)

−1F̂ ′
xF )

Tr(F ′F )
,

9Indeed, the stopping rule and tolerance level of Doz et al. (2012) employed by Bańbura and Modugno
(2014) indicate convergence after only a few iterations, while it is clear from equation (6) that we need
a substantial number of iterations for small κ.

10Since F and Λ are identified up to sign changes, we follow the same identification scheme as Despois
and Doz (2023) and impose that each simulated factor is positively correlated with its estimated version.
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where F̂x is obtained by the Kalman smoother for x ∈ {2S,EM,AEM} and a value of

R2
F,x closer to one indicates a better approximation of the true factors. In a similar fashion,

we compute the trace statistics for the idiosyncratic component estimates, resulting in

R2
E,x for x ∈ {2S,EM,AEM}.

3.2 Simulation results

Table 1 shows the average RMSEs for the AEM parameter estimates and the average

trace statistics for the AEM factor and idiosyncratic component estimates based on 500

Monte Carlo replications. Moreover, we show the relative RMSEs and relative trace

statistics of the AEM algorithm compared to the ones of the two-step approach and the

standard EM algorithm. A value smaller than one for the relative RMSEs indicates more

accurate parameter estimates for the AEM algorithm compared to its benchmark, while a

value larger than one for the relative R2’s indicates more accurate factor and idiosyncratic

component estimates for the AEM algorithm compared to its benchmark.

We find that the AEM algorithm produces more accurate estimates of the factor

loadings than the standard EM algorithm for all sample sizes, with reductions in RMSEs

ranging from a somewhat modest 11% for N = 50 and T = 100 to an impressive 57%

for N = 10 and T = 100. Overall, we see that larger cross-sections worsen the absolute

RMSEs of the loading estimates from the AEM algorithm and make the outperformance

compared to the EM algorithm less pronounced. This is due to the fact that the im-

provements in AEM accuracy over the iterations become slower for larger cross-sections,

requiring more iterations to obtain convergence (see, for example, the convergence plots

of the RMSEs of the loadings over the J = 1, 000 iterations in Figure 1). The same

observation applies to the time series dimension, albeit in the opposite direction (with

improvements generally becoming larger for larger T , except for N = 50) and with con-

siderably smaller effects compared to changes in N .

It is also noteworthy that the estimation accuracy of the two-step approach for the

loadings is comparable to the one of the baseline EM algorithm, highlighting that, even

after 1,000 EM iterations, the factor loading estimates are still about the same as the

initialization. Indeed, this also becomes clear from the convergence plots in Figure 1. To

quantify the movement of the (A)EM estimates away from the initialization, we compute

RMSEs in which we replace the true loadings with the 2S estimates. These RMSEs are
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Table 1: Monte Carlo results: RMSEs for model parameters and trace statistics for
factor estimates and idiosyncratic component estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.35 0.50 0.76 0.29 0.49 0.77
AEM/2S 0.50 0.64 0.87 0.42 0.61 0.88
AEM/EM 0.50 0.64 0.88 0.43 0.62 0.89

ϕ AEM 0.11 0.10 0.11 0.07 0.08 0.08
AEM/2S 0.99 1.04 1.34 0.70 0.98 1.30
AEM/EM 0.43 0.46 0.54 0.26 0.32 0.48

ψ AEM 0.17 0.14 0.14 0.11 0.10 0.10
AEM/2S 1.32 1.12 1.05 1.19 1.15 1.10
AEM/EM 1.07 0.98 0.96 0.93 0.93 0.93

Σ AEM 0.91 1.01 1.22 0.68 0.83 0.97
AEM/2S 0.27 0.34 0.57 0.21 0.28 0.52
AEM/EM 0.82 0.86 0.96 0.71 0.78 0.95

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.95 0.97 0.92 0.95 0.98

AEM/2S 1.36 1.18 1.06 1.35 1.14 1.03
AEM/EM 1.23 1.15 1.10 1.23 1.17 1.08

R2
E AEM 0.96 0.98 1.00 0.96 0.98 0.99

AEM/2S 1.00 0.99 1.00 1.00 0.99 1.00
AEM/EM 1.01 1.00 1.00 1.01 1.00 1.00

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor and idiosyncratic component
estimates in the exact dynamic factor model as given in equations (2) and (3) based on the
overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov and Roweis (2003). The model
is estimated with κ = 10−4. We also include the relative RMSEs and relative trace statistics
of the AEM algorithm compared to the two-step (2S) approach of Doz et al. (2011) and
the EM algorithm employed in Bańbura and Modugno (2014). The AEM algorithm is more
(less) accurate compared to its benchmark for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with R = 1, ϕ = 0.7, ψ = 0.5, τ = 0 and u = 0.1.

about 0.13-0.48 for the AEM algorithm, whereas they are only about 0.01-0.02 for the

EM algorithm, indicating almost no movement away from the initialization. This slow

movement of the EM estimates clearly illustrates the low-noise issue that arises in the

standard EM algorithm.

Moving to the other parameter estimates, we again find that the AEM algorithm is
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Figure 1: Convergence plots of average RMSEs of factor loading estimates (Λ) based
on the AEM algorithm, EM algorithm and 2S approach for various sample sizes and
cross-sectional dimensions

substantially more accurate than the EM algorithm, particularly for estimating the per-

sistence of the latent factor. This follows from the fact that inaccurate factor loading

estimates, lead to inaccurate factor estimates and consequently inaccurate factor persis-

tence estimates. Indeed, the AEM algorithm produces a better approximation of the true

factors than the EM algorithm for all sample sizes, where the increase in R2 is about 23%

for small N and 8-10% for large N . For large N , we even see that the trace statistics of

the EM algorithm deteriorate compared to the two-step approach, implying that sticking

with the two-step approach for large enough N results in more accurate factor estimates

than by using the EM algorithm.

To illustrate this further, Figure 2 displays the convergence of the average trace statis-

tics of the factor estimates (R2
F ) based on the different estimation methods over the

J = 1, 000 iterations. Here we clearly see that the trace statistics of the EM algorithm

are well below the ones of the 2S approach for all cases (except T = 50 and N = 20),

whereas the ones of the AEM algorithm all reach values above the 2S approach. In addi-

14



Figure 2: Convergence plots of average trace statistics of factor estimates (R2
F ) based

on the AEM algorithm, EM algorithm and 2S approach for various sample sizes and
cross-sectional dimensions

tion, the AEM algorithm reaches these higher values at a much faster speed than the EM

algorithm, again illustrating the slow convergence of the EM algorithm in the low-noise

environment.

Finally, according to Table 1, the accuracy of the idiosyncratic component estimates

are not affected by the low-noise setting or sample size, and only marginally by the cross-

sectional dimension. Yet, the parameter estimates related to these components (ψ and

Σ) are generally more poorly estimated with the EM algorithm compared to the AEM

algorithm, albeit to a lesser extent than for the factor estimates.

As a robustness check, we also consider other model (mis)specifications in Appendix A.

In particular, we look at set-ups with cross-sectional dependence (τ = 0.5), stronger fac-

tor persistence (ϕ = 0.9), more factors (R = 3), no serial correlation in the idiosyncratic

components (ψ = 0) and missing data issues. Overall, we find results that are qualita-

tively similar as the baseline results in Table 1, indicating that the superiority of the AEM

algorithm over the EM algorithm persists under alternative model (mis)specifications.
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3.3 Noise-level analysis

So far, we considered the setting where the noise parameter is set equal to κ = 10−4.

To examine how the performance of the (A)EM algorithm varies across different levels

of noise, we also conduct the Monte Carlo simulations for different values of κ = 10z

with z ∈ {−6, . . . ,−1, 0, 1}. We use the same parameter settings as for Table 1, but we

restrict ourselves to N = 10 and T = 50 due to computational costs. Note that we do

not include the results of the two-step approach anymore as its parameter estimates do

not depend on the level of κ.

Table 2 shows the absolute RMSEs and trace statistics for the AEM algorithm and

the relative ones for the EM algorithm based again on 500 Monte Carlo replications.

We find that the accuracy of the factor loading estimates based on the AEM algorithm

declines for low and high values of κ, where the minimum RMSE is attained around

κ = 10−1 or κ = 10−2. The same holds for the factor persistence, albeit to a lesser extent.

For the parameters related to the idiosyncratic components, the absolute RMSEs for the

AEM algorithm are rather stable for small values of κ, whereas they start to increase

for larger values. Similarly for both the factor estimates and idiosyncratic component

estimates, we find stable absolute trace statistics for the AEM algorithm that hover

around 0.90-0.92 and 0.95-0.96, respectively, for values of κ smaller than 10−1. Yet, for

κ = 100 and κ = 101, the trace statistics start to decrease, indicating poorer performance.

Indeed, Barigozzi and Luciani (2019) argue that the larger the value of κ, the larger the

misspecification of the model and thus the more it affects the factor estimates. Overall,

we find that for small and moderate values of κ, the performance of the AEM algorithm

is rather stable and not substantially influenced by the level of noise (except perhaps for

the factor loadings), whereas for larger values of κ the performance deteriorates for all

parameter and factor estimates.

Moving to the relative performance of the standard EM algorithm, Table 2 shows that

increasing the level of κ makes the performance of the EM algorithm come closer to the

one of the AEM algorithm for all parameter and factor estimates. Hence, using a slightly

higher value of κ (say, 10−2) results in more accurate EM estimates than a low value of

κ (say, 10−4), where the latter has been used by Bańbura and Modugno (2014) and is

used by subsequent applications of their approach (see, among others, Coroneo et al.,

2016; Alvarez et al., 2016; Bańbura et al., 2013). On the other hand, a too high value of
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Table 2: Monte Carlo results for different values of κ: RMSEs for model parameters
and trace statistics for factor estimates and idiosyncratic component estimates

κ

10−6 10−5 10−4 10−3 10−2 10−1 100 101

Panel A: Average and relative RMSEs

Λ AEM 0.40 0.38 0.35 0.32 0.25 0.25 0.27 0.47
AEM/EM 0.55 0.53 0.50 0.48 0.62 1.02 1.00 1.00

ϕ AEM 0.11 0.11 0.11 0.10 0.09 0.09 0.09 0.14
AEM/EM 0.31 0.31 0.43 0.53 0.91 1.00 0.99 1.00

ψ AEM 0.16 0.16 0.17 0.17 0.18 0.23 0.31 0.37
AEM/EM 1.17 1.11 1.07 1.03 1.02 1.00 1.00 1.00

Σ AEM 0.97 0.93 0.91 0.98 0.98 0.93 1.48 3.90
AEM/EM 0.79 0.77 0.82 0.84 1.02 1.01 1.00 1.00

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.90 0.90 0.91 0.92 0.90 0.85 0.60

AEM/EM 1.38 1.40 1.23 1.12 1.00 1.00 1.00 0.99

R2
E AEM 0.95 0.96 0.96 0.95 0.95 0.95 0.90 0.79

AEM/EM 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00

Notes: This table displays average root mean squared errors (RMSE) of the estima-
tion of Λ, ϕ, ψ and Σ and the average trace statistics of the factor and idiosyncratic
component estimates in the exact dynamic factor model as given in equations (2)
and (3) based on the overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov
and Roweis (2003). The model is estimated with a variety of different values for κ.
We also include the relative RMSEs and relative trace statistics of the AEM algo-
rithm compared to the EM algorithm employed in Bańbura and Modugno (2014).
The AEM algorithm is more (less) accurate compared to its benchmark for a value
lower (higher) than one for the relative RMSEs and a value higher (lower) than one
for the relative trace statistics. The averages and relative statistics are based on 500
Monte Carlo simulation runs. The values T and N denote the sample size and cross-
sectional dimension, respectively. The data is generated with an exact factor model
with R = 1, ϕ = 0.9, ψ = 0.5, τ = 0 and u = 0.1.

κ (say, 101) produces poor absolute RMSEs and trace statistics. Therefore, in practice,

one should carefully set the arbitrary noise level of κ to be able to improve the accuracy

of the (A)EM algorithm.

To illustrate the convergence speed of the different algorithms for different noise lev-

els, Figure 3 shows the average RMSEs of the factor loading estimates over the 1,000

iterations for κ = 10−4 and κ = 10−2. Clearly, the RMSEs of the EM and AEM al-

gorithms lie closer to each other after 1,000 iterations for κ = 10−2 than for κ = 10−4,

although the accuracy and convergence speed is still much better for the AEM algorithm.
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Similar results are also found for the convergence plots of the average trace statistics of

the factor estimates, which are given in Figure 4, where the setting of κ = 10−2 even

seems to generate comparable factor estimates for EM and AEM after 1,000 iterations.

The finding that higher values of arbitrary noise speed up the convergence of the (A)EM

algorithm corroborates with Osoba et al. (2013), who more generally show that careful

additive noise injection can accelerate EM convergence. Overall, we conclude that using

the AEM algorithm in combination with the right amount of arbitrary noise results in the

fastest convergence, implying that these two manipulations of the traditional EM frame-

work of Bańbura and Modugno (2014) are complementary in improving the estimation

performance of low-noise dynamic factor models.

Figure 3: Convergence plots of average RMSEs of factor loading estimates (Λ) based
on the AEM algorithm, EM algorithm and 2S approach for various noise levels

Figure 4: Convergence plots of average trace statistics of factor estimates (R2
F ) based

on the AEM algorithm, EM algorithm and 2S approach for various noise levels
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4 Empirical application

In this section we conduct a nowcasting exercise of euro area GDP growth to examine the

effect of the slow EM convergence in an empirical setting. We construct a similar euro

area macroeconomic dataset as is used by Bańbura and Rünstler (2011) and Bańbura and

Modugno (2014), which consists of real economic, survey-based and financial variables.

The resulting dataset contains 78 monthly series and one quarterly series, namely euro

area GDP, and runs from January 1991 to December 2022. All series are transformed into

stationary time series by taking the natural logarithm and/or first differences. Similarly as

Bańbura and Modugno (2014), the series belong to a small (N = 10), medium (N = 36)

or large (N = 79) dataset composition, making it possible to compare the estimation

and nowcasting performance for different cross-sectional dimension sizes N . A complete

description of all the series, their composition, transformations, publication delays and

sources is given in Appendix B.

For each data set, we estimate the exact factor model given in equation (2) and (3)

with serial correlation in the idiosyncratic components and with the noise parameter fixed

at κ = 10−4 or κ = 10−2. Moreover, to handle the mixed-frequency nature of the data, we

impose the temporal aggregation framework of Mariano and Murasawa (2003) to link the

monthly factor and idiosyncratic component to the quarterly variable, just as in Bańbura

and Modugno (2014). Both the EM and AEM algorithm are initialized with the two-step

(2S) approach of Doz et al. (2011). All series are normalized before estimation.

Before we move to the nowcasting exercise, we first show in Figure 5 the maximization

of the log-likelihood over the EM and AEM iterations for the complete sample period,

where we estimate the mixed-frequency dynamic factor model with the small, medium

and large dataset. Clearly, for both values of κ and all N , the AEM algorithm leads

to much larger increments and much faster convergence of the log-likelihood than the

EM algorithm. The AEM algorithm for κ = 10−4 generally converges somewhere in

the range of 100-200 iterations, while the EM algorithm has not converged after 1,000

iterations. In fact, Figure C.1 shows that the EM algorithm has not even converged

after 10,000 iterations, where the slope of the increments declines over the iterations.

On the other hand, Figure 5 also illustrates that we could considerably speed up the

convergence of both the EM and AEM algorithm by increasing the artificial noise level

to κ = 10−2, although AEM still converges faster than the usual EM. The initial increase
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Figure 5: Log-likelihood values over 1,000 iterations of the EM and AEM algorithm in
estimating a mixed-frequency dynamic factor models for various cross-sectional dimen-
sions N

in the likelihood over the first EM and AEM iterations that is observed under κ = 10−4

is due to the M-steps of all but the factor loading parameter estimates. Indeed, Figure

C.2 shows that keeping the estimates of Λ fixed in the M-step of the EM algorithm

generates a similar initial increase in likelihood, where its subsequent likelihood values

remain rather close to the ones of the EM algorithm in which Λ is updated. This again

confirms the slow EM convergence of the loading estimates, where not updating them

leads to similar results.

Next, we conduct an expanding-window nowcasting exercise, where at each point in

time we take into account the publication delays of the series (which are given in Ap-

pendix B) and impose this ragged edge structure onto the data.11 For each target quarter,

11This exercise is pseudo real-time, though, as the real-time vintages are not available for all series
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we construct a similar sequence of nowcasts and forecasts as in Bańbura and Modugno

(2014), starting in the first month of the previous quarter (that is, Q(-1)M1) up to the

first month of the subsequent quarter (that is, Q(+1)M1), which leads to seven predic-

tions for each quarter. We use the evaluation sample from 2006Q1 to 2022Q3, such that

the first estimation sample runs from January 1991 to October 2005 to produce Q(-1)M1

for 2006Q1. Just as in the simulation study, we run a fixed number of iterations to make

the comparison of the EM and AEM algorithm insensitive to the stopping rule.12 Specif-

ically, we employ 1, 000 iterations for the small dataset, 500 iterations for the medium

dataset and 100 iterations for the large dataset, which is motivated by the fact that

the filtering/smoothing recursions become slower for large N . Beside the nowcasts from

EM and AEM, we also include nowcasts based on the two-step approach of Doz et al.

(2011), a first-order autoregression for GDP growth, and the historical mean of past GDP

growth.13

Table 3 shows the relative root mean squared forecast errors (RMSFEs) compared

to the historical mean of the sequence of nowcasts for the various methods, as well

as the absolute RMSFEs for the historical mean in the last column. For all models

and estimation methods, we observe gains in accuracy when more information becomes

available, even for the simple benchmarks. Zooming in on the small-scale model in

Panel A that excludes the pandemic period, we find that both the EM and AEM algorithm

perform better than the two-step approach, emphasizing the added value of increasing

the number of iterations. In fact, their nowcasts are also more accurate than the ones

produced by an autoregressive model or the historical mean. Still, we find that the AEM

algorithm performs better than the EM algorithm for all projections with improvements

in accuracy up to 13%. On the other hand, for the medium- and large-scale models,

the performance of the EM and AEM algorithm is worse than for the small-scale model,

where EM seems to perform better than AEM. This result is largely driven by the financial

crisis period (see Figure D.2), in which the slower EM convergence seems to be beneficial

over the full period. The current vintage that is used is January 2023.
12In Appendix D.1 we show the nowcasting results for different convergence criteria ϵ in the stopping

rule in equation (8), highlighting that these results are indeed sensitive to the chosen value of ϵ. For
ϵ = 10−4, both the EM and AEM algorithm generally indicate convergence after only 20 iterations,
leading to poor nowcasting performance. For ϵ = 10−5 and ϵ = 10−6, the number of iterations needed
increases, especially during the financial crisis and covid pandemic, leading to pronounced nowcast gains
for AEM and only marginal gains for EM.

13We have chosen the number of lags in the autoregressive model with the Akaike and Schwarz
information criteria, where one lag is always optimal for both criteria.
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Table 3: Relative nowcasting performance of euro area GDP growth based on mixed-
frequency dynamic factor models with κ = 10−4

Small Medium Large Benchmarks

2S EM AEM 2S EM AEM 2S EM AEM AR Mean

Panel A: Evaluation period excluding covid pandemic (2006Q3 - 2019Q4)

Q(-1)M1 0.98 0.94 0.82 0.96 0.84 0.88 0.97 0.86 0.87 1.13 71.0
Q(-1)M2 0.95 0.89 0.79 0.90 0.76 0.81 0.92 0.79 0.82 1.05 70.5
Q(-1)M3 0.84 0.73 0.66 0.83 0.72 0.77 0.84 0.73 0.76 1.05 70.5
Q(0)M1 0.76 0.68 0.61 0.80 0.74 0.82 0.80 0.73 0.81 1.05 70.5
Q(0)M2 0.63 0.60 0.54 0.68 0.68 0.73 0.68 0.67 0.73 0.98 69.7
Q(0)M3 0.52 0.49 0.43 0.61 0.61 0.66 0.59 0.58 0.57 0.98 69.7
Q(+1)M1 0.50 0.49 0.45 0.58 0.59 0.63 0.56 0.55 0.51 0.98 69.7

Average 0.74 0.69 0.62 0.77 0.71 0.76 0.77 0.70 0.73 1.03 70.2

Panel B: Evaluation period including covid pandemic (2006Q3 - 2022Q3)

Q(-1)M1 1.02 1.17 1.39 1.29 1.93 1.87 1.15 1.64 5.08 1.07 223.3
Q(-1)M2 1.02 1.11 1.01 0.98 0.98 0.94 1.01 1.05 0.96 1.39 223.4
Q(-1)M3 0.91 0.89 0.84 0.86 0.81 0.78 0.90 0.88 0.80 1.39 223.4
Q(0)M1 0.76 0.64 0.46 0.63 0.57 0.50 0.70 0.63 1.24 1.39 223.4
Q(0)M2 0.57 0.57 0.41 0.64 0.66 0.44 0.68 0.61 0.41 1.19 223.9
Q(0)M3 0.58 0.61 0.49 0.62 0.65 0.48 0.64 0.58 0.45 1.19 223.9
Q(+1)M1 0.62 0.66 0.53 0.66 0.68 0.52 0.69 0.64 0.54 1.19 223.9

Average 0.78 0.81 0.73 0.81 0.90 0.79 0.82 0.86 1.35 1.26 223.6

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting euro area GDP growth
from 2006Q1 to 2022Q4 compared to a historical mean nowcast for which the absolute RMSFEs are shown in basis points.
Panel A shows the results excluding the covid pandemic, while Panel B includes this period. The small, medium and
large mixed-frequency dynamic factor models are estimated with κ = 10−4 based on either the two-step (2S) approach of
Doz et al. (2011), the EM algorithm employed in Bańbura and Modugno (2014) or the AEM algorithm of Salakhutdinov
and Roweis (2003). We also include a first-order autoregression for GDP growth as benchmark. For each target quarter,
the nowcasts/forecasts construction dates range from the first month of the previous quarter (that is, Q(-1)M1) up to
the first month of the subsequent quarter (that is, Q(+1)M1).

compared to the faster AEM convergence. In other words, for medium and large datasets,

the initial factor loading estimates of the two-step approach, which are close to the ones

of EM due to slow convergence, lead to more accurate nowcasts than the factor loading

estimates based on maximum likelihood with the AEM algorithm. Table D.2 indeed

shows that the nowcasting performance is similar for the EM algorithm when the factor

loadings are kept fixed instead of estimated. Yet, adopting the (A)EM algorithm for larger

N does not necessarily lead to better nowcasting performance compared to a small-scale

model, which concurs with the notion that more data is not always better (Boivin and

Ng, 2006).

Moving to Panel B that also includes the pandemic period, we find that the absolute

RMSFEs of the historical mean increases by a factor of three, just as for the other meth-

ods. The AEM algorithm still returns more accurate nowcasts than the EM algorithm
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with the small-scale model. In fact, over this complete evaluation sample, the AEM al-

gorithm is also more accurate than the EM algorithm in the medium and large models,

except for Q(-1)M1 and Q(0)M1 in the large model (see also Figure D.2). This latter is

mainly due to the nowcasts made on the first month of the quarter in the covid pandemic

(that is, April 2020), which largely influences the corresponding nowcasts based on the

AEM algorithm. Nevertheless, based on the other nowcasts, the adoption of the AEM

could still have helped to better monitor the current state of the economy during and

after the covid pandemic.

Finally, we also construct nowcasts based on a model with κ = 10−2. Table 4 shows

the corresponding relative RMSFEs compared to the historical mean. For both evalua-

Table 4: Relative nowcasting performance of euro area GDP growth based on mixed-
frequency dynamic factor models with κ = 10−2

Small Medium Large

EM AEM EM AEM EM AEM

Panel A: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.83 0.82 0.87 0.88 0.82 0.87
Q(-1)M2 0.79 0.80 0.81 0.82 0.79 0.81
Q(-1)M3 0.66 0.66 0.77 0.77 0.73 0.75
Q(0)M1 0.61 0.61 0.81 0.82 0.77 0.84
Q(0)M2 0.55 0.54 0.73 0.73 0.69 0.78
Q(0)M3 0.43 0.43 0.66 0.66 0.59 0.51
Q(+1)M1 0.46 0.46 0.63 0.63 0.56 0.44

Average 0.62 0.62 0.75 0.76 0.71 0.71

Panel B: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.39 1.39 1.89 1.86 1.89 10.90
Q(-1)M2 1.01 1.01 0.94 0.94 1.02 0.96
Q(-1)M3 0.84 0.84 0.78 0.78 0.84 0.78
Q(0)M1 0.46 0.46 0.51 0.50 0.52 2.13
Q(0)M2 0.41 0.41 0.47 0.44 0.44 0.47
Q(0)M3 0.49 0.49 0.50 0.49 0.47 0.42
Q(+1)M1 0.53 0.53 0.54 0.52 0.58 0.51

Average 0.73 0.73 0.80 0.79 0.82 2.31

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting
euro area GDP growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast. Panel A
shows the results excluding the covid pandemic, while Panel B includes this period. The small,
medium and large mixed-frequency dynamic factor models are estimated with κ = 10−2 based
on either the EM algorithm employed in Bańbura and Modugno (2014) or the AEM algorithm of
Salakhutdinov and Roweis (2003). For each target quarter, the nowcasts/forecasts construction
dates range from the first month of the previous quarter (that is, Q(-1)M1) up to the first month
of the subsequent quarter (that is, Q(+1)M1).
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tion periods, the accuracy of the EM algorithm is much closer to the AEM algorithm,

especially for the small and medium datasets. Meanwhile, the performance of the AEM

algorithm is comparable to the performance of the models with κ = 10−4 in Table 3. This

highlights that AEM is less sensitive to κ, while using a slightly higher value of κ for EM

leads to more accurate nowcasts, at least for the small-scale model.

5 Conclusion

In this paper we address the slow EM convergence issue that emerges in the estimation of

low-noise dynamic factor models. Specifically, we show analytically and with Monte Carlo

simulations that the popular framework of Bańbura and Modugno (2014), developed

to explicitly model serially correlated idiosyncratic components under arbitrary missing

data patterns by including them as latent states and by introducing artificial small noise,

slows down the convergence speed and deteriorates the accuracy of the EM factor loading

estimates. Moreover, our Monte Carlo simulations indicate that this also considerably

influences the EM convergence speed and estimation accuracy for the latent factors and

other model parameters.

To remedy these slow EM convergence issues, we advocate to employ the Adaptive

Overrelaxed EM (AEM) algorithm of Salakhutdinov and Roweis (2003), as also suggested

by Petersen et al. (2005), which is a simple and straightforward adaptation of the basic

EM. Our simulation study shows that the AEM algorithm substantially increases the

convergence speed and leads to gains up to 57% in accuracy for the loadings and 23%

for the factors. At the same time, carefully choosing the appropriate level of arbitrary

noise could lead to even faster convergence for both the EM and AEM algorithms. In

practice, the right choice of noise depends on the scale of the data (and the latent factors)

and could properly be determined based on Monte Carlo simulations. Still, for all levels

of noise, the AEM algorithm remains faster in convergence than the EM algorithm,

making the adaptive extension complementary to using the right amount of artificial

noise. Finally, we show in an empirical application that a mixed-frequency dynamic

factor model estimated with the AEM algorithm is able to produce more accurate euro

area GDP nowcasts than when it is estimated with the standard EM algorithm with gains

in accuracy up to 13%.
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A Alternative Monte Carlo simulation set-ups

A.1 Cross-sectional dependence

Table A.1: Monte Carlo results under cross-sectional dependence: RMSEs for model
parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.40 0.52 0.76 0.34 0.50 0.76
AEM/2S 0.55 0.65 0.88 0.48 0.63 0.88
AEM/EM 0.55 0.66 0.88 0.48 0.63 0.88

ϕ AEM 0.11 0.10 0.11 0.08 0.07 0.08
AEM/2S 0.88 1.07 1.34 0.81 0.95 1.35
AEM/EM 0.37 0.41 0.56 0.32 0.36 0.44

ψ AEM 0.18 0.15 0.14 0.12 0.10 0.10
AEM/2S 1.41 1.16 1.06 1.37 1.15 1.10
AEM/EM 1.11 0.98 0.96 0.99 0.94 0.91

Σ AEM 1.04 1.06 1.24 0.82 0.84 0.95
AEM/2S 0.29 0.32 0.56 0.22 0.27 0.43
AEM/EM 0.90 0.88 0.96 0.83 0.81 0.94

Panel B: Average and relative trace statistics

R2
F AEM 0.85 0.94 0.97 0.87 0.95 0.97

AEM/2S 1.38 1.23 1.06 1.35 1.17 1.04
AEM/EM 1.23 1.18 1.09 1.24 1.16 1.09

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). The AEM algorithm is more (less) accurate compared to its benchmarks
for a value lower (higher) than one for the relative RMSEs and a value higher (lower) than
one for the relative trace statistics. The averages and relative statistics are based on 500
Monte Carlo simulation runs. The values T and N denote the sample size and cross-sectional
dimension, respectively. The data is generated with an approximate factor model with R = 1,
ϕ = 0.7, ψ = 0.5, τ = 0.5 and u = 0.1.
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A.2 Stronger factor persistence

Table A.2: Monte Carlo results under stronger factor persistence: RMSEs for model
parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.43 0.57 0.79 0.36 0.53 0.78
AEM/2S 0.58 0.70 0.90 0.50 0.67 0.90
AEM/EM 0.58 0.70 0.90 0.50 0.67 0.90

ϕ AEM 0.09 0.08 0.08 0.07 0.06 0.06
AEM/2S 0.47 0.49 0.69 0.38 0.42 0.68
AEM/EM 0.43 0.53 0.67 0.34 0.39 0.51

ψ AEM 0.16 0.15 0.14 0.11 0.10 0.10
AEM/2S 1.17 1.12 1.05 1.06 1.06 1.07
AEM/EM 1.05 1.05 1.06 0.92 0.97 1.03

Σ AEM 2.27 2.99 3.17 1.82 1.82 2.37
AEM/2S 0.24 0.32 0.47 0.17 0.25 0.37
AEM/EM 0.89 0.92 0.95 0.84 0.87 0.94

Panel B: Average and relative trace statistics

R2
F AEM 0.88 0.91 0.93 0.90 0.94 0.94

AEM/2S 1.46 1.26 1.11 1.43 1.18 1.08
AEM/EM 1.35 1.25 1.17 1.32 1.22 1.15

Notes:This table displays average root mean squared errors (RMSE) of the estimation of Λ,
ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). The AEM algorithm is more (less) accurate compared to its benchmarks
for a value lower (higher) than one for the relative RMSEs and a value higher (lower) than
one for the relative trace statistics. The averages and relative statistics are based on 500
Monte Carlo simulation runs. The values T and N denote the sample size and cross-sectional
dimension, respectively. The data is generated with an exact factor model with R = 1,
ϕ = 0.9, ψ = 0.5, τ = 0 and u = 0.1.
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A.3 No serial correlation in idiosyncratic components

Table A.3: Monte Carlo results under no serial correlation in idiosyncratic components:
RMSEs for model parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.37 0.54 0.80 0.32 0.52 0.79
AEM/2S 0.52 0.69 0.92 0.46 0.67 0.92
AEM/EM 0.53 0.69 0.92 0.46 0.67 0.92

ϕ AEM 0.13 0.13 0.16 0.09 0.10 0.15
AEM/2S 0.40 0.50 0.97 0.32 0.45 1.17
AEM/EM 0.43 0.46 0.68 0.31 0.38 0.65

ψ AEM 0.17 0.16 0.16 0.12 0.12 0.11
AEM/2S 0.98 0.97 1.08 0.78 0.91 1.07
AEM/EM 0.88 0.92 1.04 0.73 0.86 1.04

Σ AEM 1.20 1.35 1.63 0.93 1.08 1.27
AEM/2S 0.27 0.34 0.54 0.20 0.26 0.47
AEM/EM 0.87 0.87 0.92 0.74 0.82 0.96

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.94 0.93 0.92 0.94 0.93

AEM/2S 1.35 1.18 1.04 1.33 1.15 1.04
AEM/EM 1.23 1.19 1.10 1.24 1.19 1.10

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor and idiosyncratic component
estimates in the exact dynamic factor model as given in equations (2) and (3) based on the
overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov and Roweis (2003). The model
is estimated with κ = 10−4. We also include the relative RMSEs and relative trace statistics
of the AEM algorithm compared to the two-step (2S) approach of Doz et al. (2011) and the
EM algorithm employed in Bańbura and Modugno (2014). The AEM algorithm is more (less)
accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with R = 1, ϕ = 0.9, ψ = 0, τ = 0 and u = 0.1.
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A.4 Missing data

Table A.4: Monte Carlo results under missing data: RMSEs for model parameters and
trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.36 0.52 0.77 0.32 0.52 0.75
AEM/2S 0.50 0.65 0.88 0.46 0.65 0.87
AEM/EM 0.51 0.66 0.89 0.46 0.66 0.88

ϕ AEM 0.10 0.11 0.12 0.08 0.09 0.10
AEM/2S 1.08 1.26 1.41 0.92 1.27 1.34
AEM/EM 0.43 0.51 0.58 0.36 0.40 0.48

ψ AEM 0.21 0.19 0.18 0.14 0.12 0.12
AEM/2S 1.12 1.00 0.91 1.04 0.88 0.81
AEM/EM 1.12 1.02 0.97 1.01 0.93 0.90

Σ AEM 1.05 1.22 1.46 0.84 0.97 1.10
AEM/2S 0.29 0.41 0.59 0.22 0.29 0.55
AEM/EM 0.81 0.88 0.96 0.74 0.79 0.91

Panel B: Average and relative trace statistics

R2
F AEM 0.88 0.93 0.95 0.90 0.94 0.96

AEM/2S 1.48 1.29 1.15 1.52 1.28 1.12
AEM/EM 1.30 1.21 1.13 1.29 1.23 1.14

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). The AEM algorithm is more (less) accurate compared to its benchmarks
for a value lower (higher) than one for the relative RMSEs and a value higher (lower) than
one for the relative trace statistics. The averages and relative statistics are based on 500
Monte Carlo simulation runs. The values T and N denote the sample size and cross-sectional
dimension, respectively. The data is generated with an exact factor model with R = 1,
ϕ = 0.9, ψ = 0, τ = 0 and u = 0.1, where 25% of the data is set as missing (these points are
chosen at random).

34



B Description of data

Table B.1: Description of euro area macroeconomic dataset

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

1 Real GDP ✓ ✓ ✓ ✓ ✓ 2 SDW
2 Real IP Total ✓ ✓ ✓ 2 SDW
3 Real IP Total (excluding construction) ✓ ✓ ✓ ✓ ✓ 2 SDW
4 Real IP Total (excluding construction and energy) ✓ ✓ ✓ 2 SDW
5 Real IP Construction ✓ ✓ ✓ ✓ 2 SDW
6 Real IP Intermediate goods industry ✓ ✓ ✓ ✓ 2 SDW
7 Real IP Capital goods industry ✓ ✓ ✓ ✓ 2 SDW
8 Real IP Durable consumer goods industry ✓ ✓ ✓ ✓ 2 SDW
9 Real IP Non-durable consumer goods ✓ ✓ ✓ ✓ 2 SDW
10 Real IP Energy ✓ ✓ ✓ ✓ 2 SDW
11 Real IP Manufacturing ✓ ✓ ✓ 2 SDW
12 Real IP Manufacture of basic metals ✓ ✓ ✓ 2 SDW
13 Real IP Manufacture of chemicals and chemical products ✓ ✓ ✓ 2 SDW
14 Real IP Manufacture of electrical equipment ✓ ✓ ✓ 2 SDW
15 Real IP Manufacture of machinery and equipment ✓ ✓ ✓ 2 SDW
16 Real IP Manufacture of paper and paper products ✓ ✓ ✓ 2 SDW
17 Real IP Manufacture of rubber and plastic products ✓ ✓ ✓ 2 SDW
18 Real New passenger car registration ✓ ✓ ✓ ✓ ✓ 1 SDW
19 Real Industrial new orders (total) ✓ ✓ ✓ ✓ ✓ 1 SDW
20 Real Retail trade turnover (deflated, incl. fuel, except of motor vehicles and motorcycles) ✓ ✓ ✓ ✓ ✓ 1 SDW
21 Real Unemployment rate ✓ ✓ ✓ ✓ 1 SDW
22 Real Extra euro area trade (export value) ✓ ✓ ✓ ✓ ✓ 2 SDW
23 Real Extra euro area trade (import value) ✓ ✓ ✓ ✓ 2 SDW
24 Real Intra euro area trade (export value) ✓ ✓ ✓ 2 SDW
25 Real Intra euro area trade (import value) ✓ ✓ ✓ 2 SDW
26 Real US IP Total ✓ ✓ ✓ ✓ 1 FRED
27 Real US Manufacturing and trade industry sales ✓ ✓ ✓ 1 FRED
28 Real US Unemployment rate ✓ ✓ 1 FRED
29 Real US Employment level ✓ ✓ ✓ 1 FRED
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Table B.1: Continued

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

30 Survey Economic sentiment indicator ✓ ✓ ✓ ✓ 0 EC
31 Survey Employment expectations indicator ✓ ✓ ✓ 0 EC
32 Survey Industrial confidence indicator ✓ ✓ ✓ 0 EC
33 Survey Industry survey: Production trend observed in recent months ✓ ✓ 0 EC
34 Survey Industry survey: Assessment of order-book levels ✓ ✓ 0 EC
35 Survey Industry survey: Assessment of export order-book levels ✓ ✓ 0 EC
36 Survey Industry survey: Assessment of stocks of finished products ✓ ✓ 0 EC
37 Survey Industry survey: Production expectations for the months ahead ✓ ✓ ✓ 0 EC
38 Survey Industry survey: Employment expectations for the months ahead ✓ ✓ ✓ 0 EC
39 Survey Services confidence indicator ✓ ✓ ✓ 0 EC
40 Survey Service survey: Business situation development over the past 3 months ✓ ✓ 0 EC
41 Survey Service survey: Evolution of the demand over the past 3 months ✓ ✓ 0 EC
42 Survey Service survey: Expectation of the demand over the next 3 months ✓ ✓ ✓ 0 EC
43 Survey Service survey: Evolution of the employment over the past 3 months ✓ ✓ 0 EC
44 Survey Service survey: Expectations of the employment over the next 3 months ✓ ✓ ✓ 0 EC
45 Survey Consumer confidence indicator ✓ ✓ ✓ 0 EC
46 Survey Consumer survey: General economic situation over last 12 months ✓ ✓ 0 EC
47 Survey Consumer survey: General economic situation over next 12 months ✓ ✓ 0 EC
48 Survey Consumer survey: Unemployment expectations over next 12 months ✓ ✓ 0 EC
49 Survey Consumer survey: Major purchases at present ✓ ✓ 0 EC
50 Survey Consumer survey: Major purchases over next 12 months ✓ ✓ 0 EC
51 Survey Retail trade confidence indicator ✓ ✓ ✓ 0 EC
52 Survey Retail survey: Business activity (sales) development over the past 3 months ✓ ✓ 0 EC
53 Survey Retail survey: Orders expectations over the next 3 months ✓ ✓ 0 EC
54 Survey Retail survey: Business activity expectations over the next 3 months ✓ ✓ 0 EC
55 Survey Retail survey: Employment expectations over the next 3 months ✓ ✓ 0 EC
56 Survey Construction confidence indicator ✓ ✓ ✓ 0 EC
57 Survey Construction survey: Building activity development over the past 3 months ✓ ✓ 0 EC
58 Survey Construction survey: Evolution of your current overall order books ✓ ✓ 0 EC
59 Survey Construction survey: Employment expectations over the next 3 months ✓ ✓ 0 EC
60 Survey US Consumer sentiment index ✓ ✓ ✓ 1 FRED
61 Financial Money aggregate M3 (index of notional stocks) ✓ ✓ ✓ ✓ 1 SDW
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Table B.1: Continued

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

62 Financial 3-month interest rate (Euribor) ✓ ✓ ✓ 0 SDW
63 Financial 1-year government bond yield ✓ ✓ 0 SDW
64 Financial 2-year government bond yield ✓ ✓ 0 SDW
65 Financial 5-year government bond yield ✓ ✓ 0 SDW
66 Financial 10-year government bond yield ✓ ✓ ✓ 0 SDW
67 Financial Nominal effective exchange rate (Euro against Narrow EER) ✓ ✓ ✓ 0 SDW
68 Financial Real effective exchange rate CPI deflated (Euro against Narrow EER) ✓ ✓ 0 SDW
69 Financial Real effective exchange rate producer prices deflated (Euro against Narrow EER) ✓ ✓ 0 SDW
70 Financial Exchange rate USD/EUR ✓ ✓ ✓ 0 SDW
71 Financial Exchange rate GBP/EUR ✓ ✓ 0 SDW
72 Financial Exchange rate YEN/EUR ✓ ✓ 0 SDW
73 Financial Eurostoxx 50 index ✓ ✓ ✓ ✓ ✓ 0 INV
74 Financial Gold price ✓ ✓ ✓ 0 INV
75 Financial Brent crude oil price ✓ ✓ ✓ ✓ 0 INV
76 Financial Global price index of all commodities ✓ ✓ ✓ ✓ ✓ 1 FRED
77 Financial US S&P500 composite index ✓ ✓ ✓ ✓ 0 FRED
78 Financial US 3-month Treasury bill ✓ ✓ 0 FRED
79 Financial US 10-year Treasury rate ✓ ✓ 0 FRED

Notes: This table describes the details of each series in the constructed euro area macroeconomic dataset. Specifically, it indicates the group it belongs to (that is,
real, survey or financial), the dataset composition it corresponds to (that is, small (S), medium (M) or large (L)), the data transformation that is conducted on the
original series (that is, taking the natural logarithm (log) and/or the first differences (diff.)), the publication lag in months, and the data source. The sources are the
European Central Bank Statistical Data Warehouse (SDW), the Federal Reserve Economic Data (FRED), the European Comission (EC) and Investing.com (INV).
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C Additional log-likelihood convergence plots

C.1 Log-likelihood convergence for 10,000 iterations

Figure C.1: Log-likelihood values over 10,000 iterations of the EM and AEM algorithm
in estimating a mixed-frequency dynamic factor model with κ = 10−4 for various cross-
sectional dimension sizes N
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C.2 Log-likelihood convergence under fixed factor loadings

Figure C.2: Log-likelihood values over 100 iterations of the EM and AEM algorithm
(including the EM under fixed factor loadings Λ) in estimating a mixed-frequency dy-
namic factor model with κ = 10−4 for various cross-sectional dimension sizes N
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D Additional nowcasting results

D.1 Nowcasting results for different convergence criteria

Table D.1: Relative nowcasting performance of euro area GDP growth based on a small
mixed-frequency dynamic factor model for various convergence criteria

ϵ = 10−4 ϵ = 10−5 ϵ = 10−6

EM AEM EM AEM EM AEM

Panel A: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.95 0.95 0.95 0.82 0.94 0.82
Q(-1)M2 0.90 0.90 0.90 0.79 0.89 0.79
Q(-1)M3 0.75 0.75 0.75 0.66 0.73 0.66
Q(0)M1 0.69 0.70 0.69 0.61 0.68 0.61
Q(0)M2 0.62 0.63 0.62 0.55 0.60 0.55
Q(0)M3 0.51 0.53 0.51 0.43 0.49 0.43
Q(+1)M1 0.51 0.52 0.51 0.46 0.49 0.46

Average 0.71 0.71 0.71 0.62 0.69 0.62

Panel B: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.14 1.14 1.17 1.39 1.17 1.39
Q(-1)M2 1.11 1.11 1.11 1.01 1.11 1.01
Q(-1)M3 0.91 0.86 0.90 0.85 0.89 0.84
Q(0)M1 0.67 0.60 0.64 0.46 0.64 0.46
Q(0)M2 0.50 0.44 0.58 0.40 0.57 0.40
Q(0)M3 0.56 0.47 0.62 0.46 0.61 0.49
Q(+1)M1 0.59 0.50 0.66 0.50 0.66 0.53

Average 0.78 0.73 0.81 0.72 0.81 0.73

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting
euro area GDP growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast for different
convergence criteria in stopping rule in equation (8). Panel A shows the results excluding the covid
pandemic, while Panel B includes this period. The small mixed-frequency dynamic factor models
is estimated with κ = 10−4 based on either the EM algorithm employed in Bańbura and Modugno
(2014) or the AEM algorithm of Salakhutdinov and Roweis (2003). For each target quarter, the
nowcasts/forecasts construction dates range from the first month of the previous quarter (that is,
Q(-1)M1) up to the first month of the subsequent quarter (that is, Q(+1)M1).
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Figure D.1: Number of iterations until convergence for different convergence criteria
of the expanding-window estimation of the small mixed-frequency dynamic factor model
estimated with κ = 10−4
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D.2 Cumulative sum of squared error difference plots

Figure D.2: Cumulative sum of squared forecast error (SSE) difference plots between
the AEM and EM algorithm. A positive (negative) value indicates that EM produces
more (less) accurate nowcasts than the AEM.
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D.3 Nowcast results under fixed factor loadings

Table D.2: Relative nowcasting performance of euro area GDP growth based on the
EM algorithm with either fixed or estimated factor loadings

Small Medium Large

EM EM EM EM EM EM
(Λ est.) (Λ fixed) (Λ est.) (Λ fixed) (Λ est.) (Λ fixed)

Panel A: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.94 0.95 0.84 0.85 0.85 0.86
Q(-1)M2 0.89 0.90 0.76 0.77 0.78 0.79
Q(-1)M3 0.73 0.75 0.72 0.72 0.72 0.73
Q(0)M1 0.68 0.69 0.74 0.74 0.73 0.73
Q(0)M2 0.60 0.62 0.68 0.68 0.67 0.67
Q(0)M3 0.49 0.51 0.61 0.61 0.58 0.58
Q(+1)M1 0.49 0.51 0.59 0.59 0.55 0.56

Average 0.69 0.70 0.71 0.71 0.70 0.70

Panel B: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.17 1.14 1.93 1.93 1.64 1.64
Q(-1)M2 1.11 1.11 0.98 0.98 1.05 1.05
Q(-1)M3 0.89 0.90 0.81 0.81 0.88 0.88
Q(0)M1 0.64 0.67 0.57 0.57 0.62 0.63
Q(0)M2 0.57 0.60 0.66 0.67 0.69 0.70
Q(0)M3 0.61 0.63 0.65 0.66 0.66 0.67
Q(+1)M1 0.66 0.67 0.68 0.69 0.72 0.72

Average 0.81 0.82 0.90 0.90 0.89 0.90

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting euro area GDP
growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast based on the EM algorithm with either fixed
or estimates factor loadings Λ. Panel A shows the results excluding the covid pandemic, while Panel B includes this
period. The small, medium and large mixed-frequency dynamic factor models are estimated with κ = 10−4 based
on the EM algorithm employed in Bańbura and Modugno (2014). For each target quarter, the nowcasts/forecasts
construction dates range from the first month of the previous quarter (that is, Q(-1)M1) up to the first month of the
subsequent quarter (that is, Q(+1)M1).
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