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Can use F for forecasting (e.g. AR-DI)

"Further forecast improvements will need to come from
models with nonlinearities and/or time variation.”
Stock and Watson 2012

"Nonlinear factor-augmented regression should be considered.”
Cheng and Hansen 2015

v" Nonlinear models often dominate their linear counterparts:
Giovannetti 2013, Kim and Swanson 2014, Coulombe et al. 2019.

This paper: Nonlinearization via the kernel method.
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Kernel trick

Idea: Implicit nonlinearization of inputs ¢(-) : X — F (RN — RM).

How: Substitute (x;,x;) with (p(x;), p(x;)) = k(xi,X;),
=l —x; 1?

e.g. k(xi,xj)=e

“Nonlinear” Factor Model

@(Xt):/\Ft + e

Mx1 rx1

where ¢(+) is very flexible and high-dimensional

Kernel factors = F,
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Interesting

Proposition 1 (Simplified)

Kernel factors and factors by Connor and Korajczyk 1993 when
nonlinearized have identical column spaces.

Proposition 2 (Simplified)

Kernel factors can nest linear (PCA) factors.

Input Transformation Hidden Output
X o(X) KX,
’ o
Xa P(Xz) lk(X;, D)
B

X3 o(X3) Ak(Xaa )

Figure 1: Neural network interpretation
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Interesting Results

High-dimensional approximate static factor model
Theorem 1 (Very simplified)
Consistent estimation is possible for kernels with M < oo

Theorem 2 (Very simplified)

Consistent estimation is possible for kernels with M = co
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Interesting Results

Forecasting application:
m McCracken and Ng 2016 dataset, 1959:01 to 2020:04
m 8 variables to forecast at h=1,3,6,9,12,18,24

m Competing models:

AR-DI with PCA factors (Stock and Watson 2002)
AR-DI with SPCA factors (Bai and Ng 2008)
AR-DI with PC? factors (Bai and Ng 2008)

AR-DI with different kernel factors

Main result:

Kernel-based approach generally outperforms the competition, es-
pecially at mid to long horizons
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Main Takeaways

m Constructing factor estimates nonlinearly can be beneficial
forecasting

Nesting of linear factor estimator
Connection with neural networks

Consistency

Good empirical performance
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