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1 Introduction

Two recent events, the financial crisis and the COVID-19 pandemic, have increased the interest

in tail risks in macroeconomic outcomes. A fast-growing literature has focused on the risks of

significant declines in GDP, with quantile regression as the main method to estimate tail risks

(see, e.g., Adrian, Boyarchenko, and Giannone (2019); Adrian, et al. (2018); Cook and Doh

(2019); De Nicolò and Lucchetta (2017); Ferrara, Mogliani, and Sahuc (2019); Giglio, Kelly,

and Pruitt (2016); González-Rivera, Maldonado, and Ruiz (2019); Delle Monache, De Polis,

and Petrella (2020); Plagborg-Møller, et al. (2020); Reichlin, Ricco, and Hasenzagl (2020); and

Mitchell, Poon, and Mazzi (forthcoming)). For output growth, forecasting tail risks has some

precedent in the literature on forecasting recessions or just periods of negative growth (see, e.g.,

Aastveit, Ravazzolo, and van Dijk (2018)).

In related quantile forecasting work, some studies have considered tail risks to other vari-

ables, such as unemployment (e.g., Galbraith and van Norden (2019) and Kiley (2018)) and

inflation (e.g., Ghysels, Iania, and Striaukas (2018)). The earlier work of Manzan (2015) used

quantile regression to assess the value of a large number of macroeconomic indicators in fore-

casting the complete distribution of some key variables. Other examples of studies of quantile

forecasts in macroeconomics include Gaglianone and Lima (2012), Korobilis (2017), and Manzan

and Zerom (2013, 2015).

The present paper departs from this existing literature by using Bayesian parametric and

nonparametric time series models instead of quantile regression. Our focus is motivated by Car-

riero, Clark, and Marcellino (2020b, CCM), who provide empirical evidence in favor of Bayesian

methods and parametric approaches. In particular, CCM evaluate the ability of alternative

econometric methods to produce accurate nowcasts of tail risks to GDP growth, possibly in the

presence of a large information set. They find that Bayesian quantile regression performs much

better than classical quantile regression and that Bayesian linear regression performs similarly or

sometimes better for tail forecasting, once endowed with stochastic volatility (SV). The intuition

for this finding, explained more formally in Carriero, Clark, and Marcellino (2020a), is that the

explanatory variables drive changes in the conditional mean of growth, which decreases during

crisis times, while SV permits an increase in the conditional variance. Thus, the left tail of the

conditional distribution of growth can decrease more than the right tail during crisis times, gen-

erating the kind of asymmetries emphasized in the quantile regression-based literature. Caldara,

Scotti, and Zhong (2020) make a similar point using a model with leverage, where the estimated

SV enters the conditional mean with a negative coefficient.
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A parallel, and also fast-growing, literature evaluates the use of machine learning tech-

niques for macroeconomic forecasting, with random forests (see Breiman (2001) and, e.g., Masini,

Medeiros, and Mendes (2021), for a survey) performing particularly well, also during crisis

times, in a variety of studies and for key variables such as GDP growth and inflation; see, e.g.,

Goulet Coulombe (2020), Goulet Coulombe, et al. (2020); Goulet Coulombe, Marcellino, and

Stevanovic (2021), and Medeiros, et al. (2021). While these papers adopt classical methods,

Bayesian techniques are also available. In particular, Bayesian additive regression trees (BART;

see Chipman, George, and McCulloch (2010)) provide a flexible and popular approach in many

fields of statistics. Huber and Rossini (2020, HR) develop Bayesian methods that build BART

into a VAR, leading to the Bayesian additive vector autoregressive tree model, and demon-

strate that it forecasts well. Huber, et al. (2020, HKOPS) develop Bayesian methods for the

mixed-frequency version of this model, showing that it also forecasts well, particularly during

the COVID-19 pandemic.

The present paper combines the tail forecasting focus of CCM with the BART methodology

of HR and HKOPS. The first contribution of this paper lies in model development. We use

four different nonparametric VARs. The first of these is the original model of HR (we use

the acronym BART for this model). In addition to this, we introduce three novel alternative

BART-based nonparametric VARs that, we argue, have properties that make them potentially

useful for macroeconomic forecasting, particularly in unstable times. In the first alternative

specification (mixBART), the variables depend on their lags both linearly and nonlinearly, so

that the nonlinear component captures what is left unexplained by the linear component. In the

second specification (errorBART), the variables depend linearly on their past, but nonlinearly

on the past errors, permitting a flexible adjustment of the conditional mean in the presence

of large past shocks. In the third specification (fullBART), in addition to a fully nonlinear

mean function, we allow for a nonlinear variance-covariance matrix for the errors, which quickly

adjusts in the presence of large shocks. Importantly, the nonparametric elements of the models

mean they could capture nonlinearities or multi-modalities like those emphasized by Adrian,

Boyarchenko, and Giannone (2021), another recent analysis of tail risks to output growth.

The flexible modeling of the conditional mean in BART-based specifications could make

the error variance stable and we do consider homoskedastic versions of our nonparametric mod-

els. But this is not necessarily the case. Hence, we also consider versions of our models comple-

mented either with SV or with a novel nonparametric specification for the time variation in the

conditional variance, related to that in Pratola, et al. (2020), labeled heteroBART.

Our second contribution is the development of Markov chain Monte Carlo (MCMC) es-
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timation algorithms for each (homoskedastic and heteroskedastic) BART specification. The

algorithms we propose combine state-of-the-art techniques for fast estimation of VAR models

(see Carriero, Clark, and Marcellino (2019)) with the Bayesian backfitting step proposed in

Chipman, George, and McCulloch (2010). As opposed to Pratola, et al. (2020), we also propose

a novel updating step for heteroBART based on using the auxiliary sampler for SV models devel-

oped in Omori, et al. (2007). The resulting MCMC algorithm is scalable to large dimension and

thus allows for estimating large semi- and nonparametric VAR models. Indeed, our empirical

work uses VARs larger than those of Huber and Rossini (2020).

Our final contribution, using (real-time) data for a set of US macroeconomic and financial

indicators, is the assessment of the performance of the various BART models for density and

tail forecasting, relative to that of a BVAR-SV, a strong benchmark according to, e.g., Clark

(2011), Clark and Ravazzolo (2015), Koop (2013) and CCM. The comparison is based on the

cumulative ranked probability score (CRPS), with equal weights for all quantiles of the predictive

distribution, the quantile-weighted CRPS (qwCRPS) proposed by Gneiting and Ranjan (2011),

and the quantile score (QS). The baseline results are for a large VAR with 23 variables. Results

for small and moderately sized models are included in an empirical appendix. We also assess

the stability of the results over time, with a specific interest in detecting periods where BART

forecasts are better than BVAR forecasts.

The empirical results can be summarized as follows. First, most of the BART-based

models improve upon the competing linear BVAR with SV. These improvements are especially

pronounced for longer horizon forecasts and when the different variants of the CRPS are being

considered. When we focus on tail forecasting performance, we also find that controlling for

nonlinearities in the conditional mean improves predictive accuracy. Second, when using BART

to accommodate nonlinearities, it is less important to allow for heteroskedasticity (for density

and tail risk forecasts), with the relevant exception of the unemployment rate. Third, with the

caveat in the previous point, when allowing for heteroskedasticity, BART with heteroBART is

overall slightly better than BART-SV. Fourth, the more complex BART specifications can be as

good as or a little better than the basic BART model of HR, but there are no major systematic

gains. Fifth, notwithstanding the rich nonlinear structure, the out-of-sample predictive density

charts do not show much downside risk asymmetry, contrary to Adrian, Boyarchenko, and

Giannone (2019) and more in line with Carriero, Clark, and Marcellino (2020a). Sixth, the

relative ranking of the models is overall stable over time. Seventh, for the various types of

BART models, the nonlinear features of the predictive distributions increase with the forecast

horizon but are also present in some periods at the one-step-ahead horizon, in particular at the
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end of the sample, in association with the COVID-19 period. Finally, conditioning on different

values of the national financial conditions index reveals highly nonlinear interactions between

one-step-ahead predictive distributions and financial conditions.

The paper proceeds as follows. Section 2 describes the various multivariate Bayesian

additive regression tree models and discusses estimation. Section 3 considers the data, forecast

design, and evaluation metrics used in the empirical application and discusses empirical findings.

Section 4 summarizes and concludes. A supplemental appendix provides additional technical

details and empirical results.

2 Nonparametric modeling of VARs using Bayesian additive re-

gression trees

This section explains the BART formulations considered in this paper. In a multivariate time

series model such as a VAR, specification choices are made for conditional means and conditional

variances. For instance, in the classic BVAR-SV the conditional means are linear and log condi-

tional variances follow random walks. In this paper, we compare this model to various models

that are partially or completely nonparametric. In various combinations, the models include

nonparametric representations of the conditional mean of a VAR and as well as parametric and

nonparametric representations of the conditional variance.

2.1 Nonparametric VARs

Let {yt}Tt=1 denote an M -dimensional vector of macroeconomic and financial time series with

typical ith element yit. We assume that yt depends on its p lags, which we store in a K(= Mp)-

dimensional vector xt = (y′t−1, . . . ,y
′
t−p)

′. The relationship between yt and xt is assumed to

be unknown and potentially highly nonlinear. This is captured through the following general

multivariate model:

yt = F (xt) + ηt, (1)

ηt = G(zt) + εt, (2)

εt ∼ N (0M ,Σt). (3)

Here, we let F : RK → RM and G : RN → RM denote unknown functions with F (xt) =

(f1(xt), . . . , fM (xt))
′ and G(zt) = (g1(zt), . . . , gM (zt))

′ while fj and gj are equation-specific

scalar-valued functions. zt is a vector of additional explanatory variables with dimension N × 1
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that is defined below in the context of our different models. The shocks in εt follow a multivariate

Gaussian distribution with a time-varying variance-covariance matrix Σt. For the law of motion

of Σt, we will use both a standard SV model and a more flexible specification closely related to

the heteroskedastic BART model proposed in Pratola, et al. (2020). More details are provided

in Section 2.3.

The specific choices made for zt, F , and G allow for a wide range of flexible models.

We discriminate between models that assume that either F or G (or both) is unknown and

potentially nonlinear functions. The key notion is that xt and zt differ in the way they impact

yt.

In this paper, we obtain four different model specifications that differ in the choice of F,G,

and zt. The first model is a multivariate nonparametric VAR model. Assuming that G(zt) = 0

for all t, the model in Eq. (1) and Eq. (2) reduces to:

yt = F (xt) + εt,

which posits a nonlinear relationship between yt and xt and no effect of zt on yt. If F is

approximated using BART, we end up with the model proposed in Huber and Rossini (2020)

and applied to the mixed-frequency case in Huber, et al. (2020). In the remainder of the paper,

this model is labeled the BART model.

The second model we propose assumes that zt = xt and G(xt) is unknown and nonlinear,

while F (xt) is linear and depends on an M ×K coefficient matrix A. The corresponding model

reads:

yt = Axt +G(xt) + εt, (4)

which is a multivariate additive regression model that assumes that there exists a linear part

(Axt) and some unknown nonlinear part (G(xt)). Intuitively speaking, this model assumes that

the shocks ηt follow a nonlinear regression specification that serves to control for any nonlinear

effects that persist after controlling for linear relations. In the remainder of the paper we will

estimate G using BART and call this the mixture BART (mixBART) model.

If we set zt = (η′t−1, . . . ,η
′
t−p)

′ and F (xt) = Axt, the resulting model implies that the

reduced-form shocks ηt depend nonlinearly on their recent past. This specification allows for

flexible adjustments of the conditional mean by exploiting information contained in past reduced-

form shocks. During recessions such as the COVID-19 pandemic, this feature could help to

6



quickly adjust forecasts in the presence of large historical forecast errors. Again, we use BART

to approximate G, leading to the errorBART model. Another feasible option, which would

require approximation-based techniques along the lines used in Huber, et al. (2020), would be to

specify xt equal to the lags of ηt and εt. This would be a nonparametric variant of a multivariate

ARMA model (for a Bayesian treatment of ARMA models, see Chib and Greenberg (1994)).

Finally, the last model we consider assumes that Σt is a diagonal matrix, implying that

the shocks εt are independent. This allows us to write Eqs. (1) to (2) as a system of unrelated

regression models. The first equation of the model is:

y1t = f1(xt) + ε1t.

The second equation depends nonlinearily on xt and ε1t as follows:

y2t = f2(xt) + g2(ε1t) + ε2t.

In general, the ith equation is given by:

yit = fi(xt) + gi(rit) + εit, (5)

with rit = (ε1t, . . . , εi−1,t)
′ being an (i − 1)-dimensional vector of shocks. This model assumes

that the contemporaneous relations across the shocks take a nonlinear form. This specification

implicitly assumes a nonlinear variance-covariance matrix that quickly adjusts to large shocks.

Moreover, it also implies that covariances might change over time, since different configurations

of rit can yield different fitted values. Across all models considered, this model provides the

largest degree of flexibility, since it allows for a nonlinear mean function F as well as a nonlinear

covariance function G with its argument differing across equations. In what follows, both F and

G are again approximated using BART, leading to what we call the fullBART model.

The models we propose are all extremely flexible and thus well suited to capture outliers

such as the ones observed during the pandemic. Up to this point, we noted that BART will be

used to infer the unknown functions F and G. Many choices are possible, but due to its excellent

empirical properties, we adopt BART. The next section introduces BART more formally and

briefly summarizes and illustrates its main empirical features.
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2.2 Bayesian additive regression trees

BART approximates the unknown functions F and G using a sum of regression trees. In what

follows, our focus will be on estimating the function associated with the ith equation.

Let yi• denote the ith column of Y = (y′1, . . . ,y
′
T )′, X = (x′1, . . . ,x

′
T )′, Z = (z′1, . . . ,z

′
T )′

(with x•j denoting the jth column of X) and ε•i = (εi1, . . . , εiT )′. The ith equation of the

nonlinear VAR outlined in Eqs. (1) to (2) is:

yi• = fi(X) + gi(Z) + ε•i. (6)

BART replaces fi and gi with a sum-of-trees approximation:

fi(X) ≈
S∑
s=1

lis(X|T fis ,µ
f
is),

gi(X) ≈
S∑
s=1

lis(Z|T gis,µ
g
is).

Here, we let lis denote a (single) regression tree function that depends on a so-called tree structure

T jis for j ∈ {f, g} and a vector of tree-specific terminal node parameters µjis of dimension bjis.

Notice that the trees are determined exclusively by T jis and µjis.

To illustrate what BART does, we focus on a special case of Eq. (6) assuming a single tree

(S = 1). To simplify the notation, we drop the tree and equation-specific subscripts i and s as

well as the superscript j. The corresponding regression tree model is then given by:

y = l(X|T ,µ) + ε. (7)

The tree structure T is comprised of so-called interior nodes that are coupled with decision

rules and a set of b terminal nodes with terminal node parameter vector µ = (µ1, . . . , µb)
′. The

decision rules serve to split the covariate space into several disjoint sets. This is achieved by

constructing partition sets associated with each terminal node Sn (n = 1, . . . , b), which depend

on whether x•j ≤ c or x•j > c with c denoting a threshold in the range of x•j .

The conditional mean of this model is given by:

E(y|x) = l(X|T ,µ) =

b∑
n=1

µnI(X ∈ Sn),

with I denoting an indicator function that is equal to one if its argument is true or zero otherwise.
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This equation suggests that the conditional mean under a single tree is a piece-wise constant

function that assigns µn if a specific configuration of X is in the set Sn. Notice that this is

a simple analysis of variance (ANOVA) model that can be stated in terms of a multivariate

regression model conditional on the indicators.

In the case where the tree is simple (i.e., if b is small), the corresponding conditional

mean will feature a relatively low number of breaks. Hence, such a model only explains a small

fraction of the variation in y and thus acts as a weak learner. Instead of fitting more complex

trees, BART builds on the notion that summing over many simple trees (which are pruned using

Bayesian shrinkage) improves upon using a single complex tree. This is illustrated in Eq. (8):

+ + … +

(8)

The conditional mean of the BART model is composed of the sum of simpler trees, which, when

viewed together, allow for capturing rich dynamics in y. The corresponding additive model

has strong explanatory power but regularization helps to avoid issues related to overfitting.

Chipman, George, and McCulloch (2010) show that adopting this strategy yields favorable

forecasts for 42 different data sets.

2.3 Adding heteroskedasticity to the model

Up to this point we did not discuss the specific law of motion for Σt. Several recent papers

have shown that allowing for conditional heteroskedasticity sharply improves density forecasts

of macroeconomic aggregates (see, among others, Clark (2011); Clark and Ravazzolo (2015); and

Carriero, Clark, and Marcellino (2016)). In one set of models, we pair the BART formulations

described above with conventional stochastic volatility of the innovations to the model. Stan-

dard SV models assume that the latent volatility process evolves according to a simple stochastic

process that is persistent (such as a random walk or an AR(1) model with a persistence param-

eter close to one). During a pandemic, this high persistence in the volatility process could be

detrimental for predictive accuracy, since the predictive variance only slowly adjusts to new

information. As a solution, Carriero, et al. (2021) discuss several alternative volatility models

that allow for combining transitory and persistent changes in the volatility. These models allow

for richer volatility dynamics but also assume a parametric and known law of motion.
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Accordingly, in another set of results for BART models, we propose an alternative volatility

specification based on heteroskedastic BART (Pratola, et al. (2020)). We decompose Σt as

follows:

Σt = QHtQ
′, (9)

withQ denoting a lower triangular matrix with ones along the diagonal, andHt = diag(ev1(wt), . . . , evM (wt))

is a diagonal matrix with vj : Rq → R being an unknown function that describes how the error

variance is related to a set of q covariates in wt.
1 The function vi is again approximated using

BART:

vi(wt) ≈
S∑
s=1

lis(w|T vis,µvis). (10)

Selecting appropriate predictors wt is crucial. In our empirical work, we consider wt = (t,x′t)
′.

This choice has the advantage that our model allows for a (potentially) nonlinear trend and

it assumes that the lagged values of yt impact not only the conditional mean but also the

error variances. Since the different decision rules might only depend on selected elements in

wt, we do not risk overfitting if M or p is large. Moreover, and this turns out to be a key

advantage, our choice of wt allows for multi-steps-ahead predictions of the error variances.

More precisely, this is achieved by using Eqs. (1) and (2) to obtain a draw from the one-

step-ahead predictive distribution, labeled ŷT+1, which is then used to compute HT+2 based

on wT+2 = (T + 2, ŷ′T+1,y
′
T , . . . ,y

′
T−p+1)′. HT+2, in turn, allows us to generate a draw from

the two-steps-ahead predictive distribution, ỹT+2, which is based on HT+2. In general, the

h-steps-ahead forecast distribution can be obtained analogously.

We also consider versions of our models that have conventional SV where the log-volatilities

in each equation are assumed to follow AR(1) processes.

These BART-based models are compared to various linear BVARs. All of our BVARs are

specified (including prior choices where relevant) as special cases of the mixBART model with G

removed and separate horseshoe priors used on the linear VAR coefficients and the free elements

in Q (for details, see Appendix A).

1The assumption of a time-invariant Q is common in the forecasting literature and builds on the empirical
evidence in Primiceri (2005) that time variation in the covariances is typically limited.
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2.4 Bayesian inference

We estimate our model using Bayesian techniques. The prior setup closely follows Huber, et al.

(2020). Here, we focus on the prior associated with the tree structures T jis and the terminal

node parameters µjis. Chipman, George, and McCulloch (2010) build on Chipman, George, and

McCulloch (1998) and propose a benchmark prior that induces shrinkage on the trees as well

as the terminal node parameters. We adopt this prior since it has been shown to work well for

a wide variety of different data sets and for both in- and out-of-sample applications. Since the

priors on the remaining coefficients are relatively standard, we provide additional information

in Appendix A.

2.4.1 Priors on the trees and terminal node parameters

We do not specify a prior directly on the trees but instead design a tree-generating stochastic

process that serves as a prior. This process features three aspects. The first is related to the

probability that a given node is nonterminal. Let d = 0, 1, . . . denote the depth of some tree

and α ∈ (0, 1) and β ∈ R+ be hyperparameters. The probability that a node at depth d is

nonterminal is given by:

α

(1 + d)β
.

In our empirical work, we set α = 0.95 and β = 2 for the trees T jis for all i, s, j. Chipman,

George, and McCulloch (2010) recommend these values for α and β as a standard choice that

works well across a wide variety of different data sets. This prior implies that the probability

that trees grow large decreases in d and thus favors smaller trees.

The second aspect of the prior is concerned with the selection of the variables that are

used in a splitting rule. Here, we use a discrete uniform prior, which implies that we do not

introduce prior information on which variables show up in a splitting rule. Finally, the third

component is concerned with the specific value of the thresholds in the splitting rule. For these,

we use a uniform prior over the range of the splitting variable as well.

On the terminal node parameters, we use independent Gaussian priors that are specified

as follows:

µjis,k ∼ N (0, φjis,k), for k = 1, . . . , bjis. (11)

Following Chipman, George, and McCulloch (2010) we set the prior variance φjis,k in a data-
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based way. The key idea is to specify the prior such that a certain amount of prior mass is

placed on the range of the data but at the same time set the prior in a way that it introduces

more shrinkage if S is large. A specification for φjis,k that achieves this is:

√
φjis,k =

max(zji )−min(zji )

2γ
√
S

, (12)

where zji is a T -dimensional vector that is equal to zfi = yi• − gi(Z) if j = f , zgi = yi• − fi(Z)

if j = g, and zvi = log((yi• − f(Z) − gi(Z))2). The parameter γ controls the tightness of the

prior, with smaller values leading to a prior that puts more prior mass on the range of zji . As

noted by Huber, et al. (2020) this prior has the advantage of becoming increasingly loose (for

fixed values of S and γ) if zji includes outliers. This leads to a wider predictive distribution and

thus a higher likelihood of observing outlying values. Chipman, George, and McCulloch (2010)

propose γ = 2 in combination with transforming the data such that zji ranges from −0.5 to

0.5 (implying that the numerator in Eq. (12) is equal to 1). These choices translate into a 95

percent probability that µjis,k is in the range of zji .

In our empirical work, we will use the same prior hyperparameters γ, α, and β for all

equations in the VAR and for all j ∈ {f, g, v}. This choice reflects findings in Pratola, et al.

(2020) that the choice of the hyperparameters also works well for heteroskedastic BART.

Posterior and predictive inference is done using MCMC methods. The full conditional

posterior distributions of the model parameters are mostly available in closed form or can be

obtained using a Metropolis-Hastings (MH) step. The conditional posteriors of the covariance

parameters in Q and the VAR coefficients A take a well-known conditionally Gaussian form and

are thus discussed in the technical appendix. Here, we focus on how to sample the tree-specific

structure used to approximate G and F .

Our MCMC algorithm is based on the algorithm proposed in Carriero, Clark, and Mar-

cellino (2019). This implies that the model in Eqs. (1) and (2) can be, conditional on Σt, written

as a system of M independent regression models. The ith equation closely resembles Eq. (5):

yit = fi(xt) + gi(zt) + q′irit + εit, εit ∼ N
(

0, evj(wt)
)
, (13)

where qi = (qi1, . . . , qii−1)′ denotes the free elements of the ith row in Q and rit is the (i − 1)-

vector of shocks defined below Eq. (13). For later convenience we let ri = (ri1, . . . , riT )′ denote

a T × (i− 1) matrix of stacked shocks.

Equation (13) reduces to Eq. (5) if qi = 0i−1 and zt = rit. The other model specifications
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follow by suitably choosing gi and zt. Equation (13) is a very general regression model with a

scalar response. In what follows, we will discuss how to simulate the trees and terminal node

parameters using Eq. (13) (i.e., on an equation-by-equation basis).

We sample the trees using the Bayesian backfitting strategy discussed in Chipman, George,

and McCulloch (2010). This step samples each tree conditional on the remaining S − 1 trees.

Let z̃fin = zfi −
∑

n6=s lis(X|T
f
is ,µ

f
is), z̃

g
in = zgi −

∑
n6=s lis(Z|T

g
is,µ

g
is) − riqi, and z̃vin = zvi −∑

n6=s lis(w|T vis,µvis)− riqi denote partial residual vectors with the nth tree lin excluded.

Conditional on the partial residual vector z̃jin (for j ∈ {f, g}) and the full history of the

latent error variances hi = (vi(w1), . . . , vi(wT ))′ (which are modeled using heteroBART or SV),

we simulate the tree structures T jin and terminal node parameters µjis. Chipman, George, and

McCulloch (2010) draw T jin marginally of µjis:

p(T jin|z̃
j
in,hi) ∝ p(T

j
in)

∫
p(z̃jin|T

j
in,µ

j
in,hi) p(µ

j
in|T

j
in,hi)dµ

j
in.

This integral can be solved analytically (up to a normalizing constant). To draw from p(T jin|z̃
j
in,hi)

we use the MH algorithm originally proposed in Chipman, George, and McCulloch (1998). Since

the tree structure features a discrete state space, the MH algorithm specifies a transition kernel

q(T j(a)
in , T j∗in ) that is used to grow new trees T j∗in , conditional on the previously accepted tree

structure (T j(a)
in ), using one of four distinct moves with prespecified probabilities:

Grow The first possible move is to grow a terminal node. This move randomly selects

a terminal node of T j(a)
in and then proposes to split this terminal node into two

new terminal nodes based on a random splitting rule. This move is selected with

probability 0.25.

Prune The second move prunes a terminal node. It selects two terminal nodes and merges

by collapsing the nodes below. This move is selected with probability 0.25.

Change This step random selects an interior node and changes the previously used splitting

rule by assigning a splitting rule. This splitting rule is obtained by randomly drawing

a splitting variable from the prior (which follows a discrete uniform distribution) and

a corresponding threshold. We select this move with probability 0.40.

Swap The final step swaps a splitting rule between parent and child nodes (a child node

is one that arises from some other node). This move is used with probability 0.10.
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These four moves yield a tree T j∗in that is then accepted with probability:

min

(
p(T j∗in |z̃

j
in,hi)

p(T j(a)
in |z̃jin,hi)

q(T j∗in , T
j(a)
in )

q(T j(a)
in , T j∗in )

, 1

)
. (14)

This MH update has the advantage of being independent of the terminal node parameters and

thus avoids issues with computationally involved reversible jump MCMC algorithms.

In the case of T vis we first render the model conditionally Gaussian using the approximation

proposed in Omori, et al. (2007). Squaring and taking logs of εit yields:

ỹit = log(ε2
it) =

S∑
is

li(wt|T vis,µvis) +$it, $it ∼ logχ2
1.

$it is then simply approximated using a scale-location mixture of Gaussians with 10 components.

The resulting model is a standard BART model with heteroskedasticity and a time-varying

intercept. More precisely,

ỹit|ξt = j ∼ N

(
S∑
is

li(wt|T vis,µvis) + mj , s
2
j

)
, (15)

with mj and s2
j being the mean and variance of the jth Gaussian component, respectively. ξt

denotes a component indicator that takes values between 1 and 10 with Prob(ξt = j) = qj . The

values of mj , s
2
j , and qj are known and can be read off Table 1 in Omori, et al. (2007). Equation

(15) is a standard BART model with time-varying intercept and variance, and the trees T vis can

be sampled with the same MH step outlined above. The main difference with respect to the

model outlined in Pratola, et al. (2020) is that they restrict the trees to be nonnegative and

then, instead of assuming a sum, approximate the unknown positive function using a product

of trees. We found in limited experiments that if one of the trees is sufficiently close to zero,

mixing issues arise. Our approach circumvents these issues by estimating a conditional BART

model for the log volatilities.

Conditional on the tree structures, the terminal node parameters for all different types of

BART models we consider are easily simulated from independent Gaussian distributions. These

take a standard form and resemble the one of a simple intercept model. The tree structure

serves to allocate observations to different terminal nodes, and these observations are then

consequently used to compute the posterior moments. If yt contains severe outliers (such as

the ones observed during the pandemic), BART will most likely group them together and the

corresponding terminal node parameter will have a posterior variance that is equal to the inverse
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of the number of outliers plus the prior precision (which will be low; see Eq. (12)). Hence, the

corresponding posterior variance will be large, which leads to wider predictive intervals and thus

a higher probability of observing outliers under the posterior predictive distribution.

In case of the standard BART-based VAR, these methods are the same as the ones dis-

cussed in Huber and Rossini (2020) and a special case of the one developed in Huber, et al.

(2020). The steps necessary to simulate each tree and the corresponding terminal node pa-

rameters individually are then combined with the steps outlined in Appendix A. This yields an

MCMC algorithm that operates on an equation-by-equation basis by iteratively sampling from

the relevant full conditionals. The equation-by-equation nature appreciably speeds up estima-

tion, especially if we use a linear VAR component in the model. The steps necessary for sampling

the trees and terminal node parameters depend on K only indirectly through the decision rules,

leading to a larger state space that the MH algorithm needs to explore. This might cause mixing

issues, but we have noticed that in cases where K is moderate to large (i.e., K up to 100), no

mixing issues arise. Specifically, in our empirical work we repeat our algorithm 30, 000 times

and discard the first 15, 000 draws as burn-in. MCMC convergence diagnostics based on the full

sample corroborate findings in Chipman, George, and McCulloch (2010) and illustrate that our

algorithm quickly converges toward the desired stationary distribution.

3 Empirical application

To assess the efficacy of BART-based models for macroeconomic forecasting, we evaluate the

accuracy of real-time density and tail risk forecasts from VARs and BART models estimated

with a set of 23 quarterly variables for the US. A number of studies have found that larger VARs

of this dimension forecast as well as or better than smaller VARs (e.g., Banbura, Giannone, and

Reichlin (2010); Koop (2013); and Carriero, Clark, and Marcellino (2019)). Our variable set

is patterned after that of Giannone, Lenza, and Primiceri (2015). Note that we add to their

variable set the broad index of financial conditions published by the Federal Reserve Bank of

Chicago (NFCI), which, starting with the work of Adrian, Boyarchenko, and Giannone (2019),

is frequently used in the literature on assessing macroeconomic tail risks. With an eye to brevity,

we focus our results on a few broad key indicators: GDP growth, inflation in the GDP price

index, and the unemployment rate.
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Table 1: Data, description and information set.

FRED-Code Series Trans. Small Medium Large

GDPC1 Real gross domestic product (GDP) 400∆ ln x x x
GDPCTPI GDP price index 400∆ ln x x x
FEDFUNDS Federal funds rate level x x x
UNRATE Unemployment rate (−1)×∆ x x x
CPIAUCSL Consumer price index (CPI) 400∆ ln x
PPIACO Producer price index (PPI) for all commodities 400∆ ln x
INDPRO Industrial production 400∆ ln x
PAYEMS Payroll employment 400∆ ln x
CES0800000001 Payroll employment, services 400∆ ln x
PCECC96 Real personal consumption expenditures 400∆ ln x x
A008RA3Q086SBEA Gross private domestic fixed investment: Nonres. 400∆ ln x
A011RA3Q086SBEA Gross private domestic fixed investment: Res. 400∆ ln x
PCECTPI PCE chain price index 400∆ ln x
GPDICTPI Gross private domestic investment 400∆ ln x x
CUMFNS Capacity utilization, manufacturing level x
HOANBS Nonfarm business sector: Hours of all persons 400∆ ln x x
COMPRNFB Nonfarm bus. sector: Real compensation per hour 400∆ ln x x
GS1 1-Year Treasury bond yield level x
GS5 5-Year Treasury bond yield level x
EXUSUK US / UK exchange rate 400∆ ln x
M2REAL Real M2 money stock 400∆ ln x
SP500 S&P 500 400∆ ln x
NFCI Chicago Fed index of financial conditions level x x x

Notes: “FRED-Code” refers to the code of the respective series at fred.stlouisfed.org. Transformations (“Trans.”): ∆ indi-
cates first differences and ln is the natural logarithm. For model sizes, x marks inclusion in the respective information set
(Small, Medium, and Large).

3.1 Data description

Table 1 lists the variables we use (alongside codes and transformations).2 Data are obtained from

fred.stlouisfed.org. To facilitate the evaluation of tail forecasts (downside risks in particular),

we include the unemployment rate with a sign switch.3 All the models we consider set p = 5.

With real-time data vintages available beginning with 1996:Q4, our real-time forecast

sample begins with 1997:Q1 and ends with 2020:Q4.4 However, for some variables, real-time

data vintages begin later in the sample. In these cases, we use the first vintage to fill in artificial

vintages for earlier years, truncating it according to the release calendar. In all cases, the data

sample for model estimation starts with 1973:Q2. In evaluating forecasts, we measure the actual

values of the variables as those of the final available vintage, which is 2021:Q1.5

2We work with a large data set involving all the listed variables. However, we have also experimented with
small and medium sized data sets. Results for these are available in the online appendix. Table 1 lists which
variables are in the small and medium sized data sets.

3Because the S&P 500 index of stock prices is unavailable prior to 2011 in the online FRED database, we
obtained data for this series prior to 2011 from the compiled “FRED-QD” data set, also available from the St.
Louis Fed’s website.

4If release frequency is higher than quarterly, we use the final vintage per respective quarter for producing
forecasts.

5Our data set, thus, includes observations during the pandemic. The usefulness of BART for pandemic
forecasting was established in previous work by several of the authors; see HKOPS. To convince the reader that
our findings in the present paper are not unduly influenced by the pandemic observations, we have also repeated
the forecast exercise using data through the end of 2019. Results are similar to those presented here and are
available in the online appendix to this paper.
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3.2 Forecast evaluation metrics

In evaluating real-time out-of-sample forecasts, we consider a range of metrics, with a focus on

tail risk.

As a baseline assessment of overall density accuracy, we use the cumulative ranked prob-

ability score (CRPS), developed in Gneiting and Raftery (2007) (with equal weights for all

quantiles of the predictive distribution). The CRPS, defined such that a lower number is a

better score, is given by

CRPSt(yit) =

∫ ∞
−∞

(F(z)− I{yit ≤ z})2 dz = Ef|ŷit − yit| − 0.5Ef|ŷit − ŷ′it|,

where F denotes the cumulative distribution function associated with the predictive density f,

yit (1, . . . ,M) is the realization of the forecasted variable, I{yit ≤ z} is an indicator function

taking value 1 if yit ≤ z and 0 otherwise, and ŷit and ŷ′it are independent random draws from

the posterior predictive density.

As a basic measure of accuracy of the lower tail risk forecast, we use the quantile score,

commonly associated with the tick loss function (see, e.g., Giacomini and Komunjer (2005)).

The quantile score is computed as

QSτi,t = (yit −Qτi,t) (τ − I{yit ≤ Qτi,t}) ,

where Qτi,t is the forecast quantile of the ith variable at quantile τ , and the indicator function

I{yt ≤ Qτi,t} has a value of 1 if the outcome is at or below the forecast quantile and 0 otherwise.

We evaluate the QS using τ = 0.05, 0.10, and 0.25.

We also evaluate tail forecast accuracy using two implementations of the quantile-weighted

CRPS (qwCRPS) developed by Gneiting and Ranjan (2011) as a proper scoring function of the

entire predictive density. The qwCRPS is computed as a weighted sum of quantile scores at a

range of J quantiles:

qwCRPSit =
2

J − 1

J−1∑
j=1

ω(τj)QSτji,t, (16)

with τj = j/J . We rely on a grid of 19 quantiles τ ∈ {0.05, 0.10, . . . , 0.90, 0.95} with J = 20

to compute these weighted scores. In one implementation (denoted qwCRPS-tails), we set the

weights as ω(τj) = (2τj − 1)2 in order to target both tails of the predictive distribution, and in

the other (denoted qwCRPS-left), we set the weights to ω(τj) = (1− τj)2 in order to target the
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left tail (downside risk).

The tables provided below report averages of these score measures over the 1997-2020

sample. We also produce results using a sample that ends in 2019. These are available in the

online appendix and are similar to those using the full sample. To facilitate comparisons, we

report scores relative to those of a benchmark BVAR with stochastic volatility. By all metrics,

a ratio of less than 1 means that a given model is improving on the accuracy of the BVAR-

SV baseline. To roughly gauge statistical significance, we rely on Diebold and Mariano (1995)

and West (1996) t-tests of significance differences of scores, for each model compared to the

benchmark.

To give some sense of performance over time, for each forecast metric we also report

figures of mean scores computed recursively, relative to the recursive mean for the BVAR-SV

benchmark. These recursive scores can be expressed as FMit̃ = 1/t̃ ×
∑t̃

t=1 xit with the values

shown calculated as 100(FMit/FMbench,t − 1). For example, a value of −20 indicates that the

respective model has a 20 percent lower measure. The first two years of the holdout are not

shown; we use the first eight observations to initialize the recursive means.

3.3 Full density forecast performance

Table 2 and Figure 1 provide results on accuracy measures that refer to the entire predictive

density, including the CRPS, qwCRPS-tails, and qwCRPS-left. Throughout, we report results

for horizons of h ∈ {1, 4, 8, 12} quarters. We use an iterative approach to produce higher-order

forecasts. The acronyms in the tables can be understood by noting they combine the acronyms

with the various specifications for the conditional mean (BVAR, BART, mixBART, errorBART,

and fullBART) with the acronyms for different treatments of the conditional variance (SV and

heteroBART). We also present results for homoskedastic versions of the models that are labeled

“cons” in the tables.
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CRPS qwCRPS-tails qwCRPS-left
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

GDPC1
BVAR cons 1.087*** 1.078** 1.107*** 1.126*** 1.140*** 1.135** 1.164*** 1.183*** 1.056* 1.038 1.067 1.082
BART cons 1.021 0.971 0.987 0.998 1.040 0.975 0.982 0.983*** 0.998 0.967 1.002 1.003
mixBART cons 1.016 1.001 1.051* 1.087*** 1.015 1.003 1.041 1.078** 1.012 0.998 1.038 1.052
errorBART cons 0.997 1.015 1.031 1.026 1.007 1.013 1.017 1.005 0.970 0.999 1.012 0.997
fullBART cons 1.022 0.969 0.988 1.004 1.041 0.972 0.982 0.989*** 1.001 0.966 1.004 1.008
BVAR SV 1.981 2.051 2.074 2.098 0.213 0.225 0.230 0.236 0.309 0.318 0.319 0.323
BART SV 0.990 0.971 0.982 0.994 1.012 0.975 0.981 0.982** 0.988 0.975 1.003 1.009
mixBART SV 0.980 1.001 1.019 1.042*** 0.996 1.005 1.018 1.037* 0.986 0.999 1.015 1.027
errorBART SV 0.970 1.007 1.009 1.004 0.981 1.005 1.006 0.996 0.976 1.010 1.011 1.004
fullBART SV 0.993 0.986 1.012 1.022*** 1.025 1.004 1.021 1.021 0.975 0.974 1.014 1.014
BVAR heteroBART 1.004 0.985** 0.986* 0.984** 1.010 0.982* 0.980 0.971*** 1.004 0.995 0.992 0.986**
BART heteroBART 0.980 0.971 0.971** 0.981** 1.001 0.973 0.967*** 0.968*** 0.981 0.975 0.990 0.995
mixBART heteroBART 0.977 0.996 1.008 1.025* 0.989 0.995 1.002 1.014 0.986 0.997 1.007 1.012
errorBART heteroBART 1.004 1.003 1.017 1.017 1.013 0.999 1.004 0.996 0.979 0.997 1.009 1.000
fullBART heteroBART 0.984 0.965 0.972** 0.988* 1.003 0.967 0.968*** 0.972** 0.986 0.970 0.992 1.000

GDPCTPI
BVAR cons 1.022 1.091** 1.082 1.085 1.051 1.143** 1.153** 1.152 1.003 1.005 0.969 0.958
BART cons 1.047 0.866** 0.754*** 0.709*** 1.041 0.857*** 0.744*** 0.703*** 1.040 0.879** 0.766*** 0.738***
mixBART cons 1.007 0.954 0.823** 0.788*** 0.997 0.925 0.828** 0.848* 1.000 0.982 0.842* 0.824*
errorBART cons 0.990 1.029 0.927 0.839** 0.966 0.991 0.910 0.834*** 0.976 1.019 0.941 0.896**
fullBART cons 1.022 0.867*** 0.757*** 0.714*** 1.019 0.859*** 0.748*** 0.710*** 1.015 0.884** 0.772*** 0.748***
BVAR SV 0.567 0.690 0.892 1.035 0.058 0.070 0.089 0.105 0.087 0.106 0.128 0.144
BART SV 1.010 0.858*** 0.776*** 0.739*** 0.995 0.853*** 0.771*** 0.729*** 1.000 0.861** 0.776*** 0.758***
mixBART SV 1.015 0.924 0.819** 0.781*** 1.008 0.905** 0.824*** 0.826** 1.008 0.947 0.835* 0.814*
errorBART SV 0.990 0.957 0.849* 0.769** 0.973 0.928 0.835** 0.778*** 0.986 0.967 0.880 0.830*
fullBART SV 1.144** 0.872** 0.744*** 0.710*** 1.166** 0.870** 0.739*** 0.705*** 1.153* 0.883* 0.758*** 0.739***
BVAR heteroBART 0.980 0.978 0.973* 0.958** 0.972 0.979 0.975 0.975 0.970 1.003 1.016 1.014
BART heteroBART 1.121* 0.875** 0.772*** 0.730*** 1.138** 0.871*** 0.763*** 0.720*** 1.107 0.900* 0.792*** 0.773***
mixBART heteroBART 0.985 0.914* 0.808*** 0.778*** 0.981 0.890** 0.805*** 0.813*** 0.973 0.944 0.832** 0.818**
errorBART heteroBART 0.990 1.026 0.927 0.848** 0.968 0.988 0.908 0.841*** 0.979 1.021 0.951 0.920
fullBART heteroBART 1.089 0.869*** 0.753*** 0.713*** 1.080 0.865*** 0.750*** 0.707*** 1.084 0.884** 0.776*** 0.754***

UNRATE
BVAR cons 1.177* 1.063** 1.046 1.041 1.232* 1.085** 1.067 1.066 1.100** 1.043 1.021 1.026
BART cons 1.051 0.992 1.024 1.029* 1.069 0.981 1.009 1.011 0.965 0.969 1.009 1.021
mixBART cons 1.196 1.010 1.040 1.049* 1.218 0.998 1.025 1.038 1.067 0.992 1.022 1.038
errorBART cons 1.123 1.008 1.000 0.989 1.154 1.001 0.994 0.986 1.018 0.997 0.986 0.980
fullBART cons 1.049 0.989 1.027 1.031* 1.061 0.978 1.012 1.014 0.967 0.966 1.010 1.023
BVAR SV 0.268 0.300 0.320 0.334 0.030 0.034 0.037 0.038 0.045 0.048 0.052 0.054
BART SV 0.899* 1.001 1.028 1.036* 0.875 0.990 1.013 1.016 0.932** 0.982 1.014 1.029
mixBART SV 0.938* 0.999 1.020 1.023 0.919 0.996 1.014 1.019 0.972 0.988 1.009 1.020
errorBART SV 0.967 0.998 0.993 0.985 0.947 0.999 0.998 0.991 1.004 0.999 0.996 0.987
fullBART SV 0.970 0.996 1.027 1.036* 0.981 0.983 1.010 1.019 0.925 0.976 1.012 1.027
BVAR heteroBART 1.088 0.980*** 0.985** 0.992 1.097 0.977*** 0.985 0.990 1.011 0.968*** 0.976 0.985
BART heteroBART 0.958 0.988 1.011 1.019*** 0.964 0.977 1.002 1.008 0.923* 0.969 0.997 1.012***
mixBART heteroBART 0.967 0.988 1.010 1.015 0.970 0.980 1.005 1.012 0.939** 0.969 0.995 1.008
errorBART heteroBART 1.113 1.003 0.999 0.992 1.146 0.998 0.994 0.990 1.015 0.993 0.986 0.983
fullBART heteroBART 0.952 0.995 1.014 1.024** 0.960* 0.978 1.002 1.012 0.917* 0.971 0.997 1.017*

Table 2: Cumulative ranked probability score (CRPS) and quantile weighted CRPSs.

Notes: CRPSs are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Quantile weights ’tail’ indicate a weighting scheme capturing both tails; ’left’ captures performance for downside
risks. Asterisks indicate statistical significance of the Diebold-Mariano test for equal predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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Starting from the baseline of a homoskedastic linear VAR, our results reflect a common

pattern in the literature: Including stochastic volatility in the BVAR improves on the accuracy of

a homoskedastic, linear VAR. As indicated in the top row of each panel of Table 2, by the CRPS

measure of overall density accuracy, the homoskedastic BVAR is typically about 10 percent

less accurate than the BVAR-SV model in the cases of GDP growth and inflation and about

5 percent less accurate in the case of the unemployment rate. The results are broadly similar

for the CRPS measures that put more weight on the tails of the predictive distribution, with

the BVAR-SV’s advantages a little greater in some cases (e.g., with the qwCRPS-tails metric)

and a little smaller in other cases (e.g., with the qwCRPS-left metric and inflation and the

unemployment rate). These results indicate the BVAR-SV is a good benchmark to match or

beat.

Strikingly, the results in Table 2 indicate that a BART specification with homoskedastic

innovations can match or beat the accuracy of the BVAR-SV model. The nonparametric speci-

fication of the BART model evidently captures nonlinearities in the conditional mean process in

such a way as to match or beat the accuracy gains that come from including the time-varying

volatility of innovations in a linear VAR. In the case of GDP growth, across the various CRPS

measures and forecast horizons, the score ratio for the homoskedastic BART model relative

to the BVAR-SV baseline ranges from 0.967 to 1.040, with more entries below 1 than above.

The score patterns are broadly similar for the unemployment rate, with a slightly wider range.

But in the case of inflation, the homoskedastic BART specification improves materially on the

BVAR-SV’s accuracy at horizons of 4 through 12 quarters. For example, 8 or 12 quarters ahead,

the CRPS, qwCRPS-tails, qwCRPS-left ratios show accuracy gains of about 25 to 30 percent.

These are quite large (and all highly statistically significant) by the standards of the macro

forecasting literature.

Adding SV to the BART specification is neither particularly helpful nor harmful. Compar-

ing the BART-SV specification to the homoskedastic BART model, their respective CRPS ratios

are typically quite similar. In a few cases, adding SV helps a little or hurts a little, but in most,

differences in ratios are negligible. The most noticeable exception occurs with one-quarter-ahead

unemployment forecasts, in which case the BART specification with SV yields scores for CRPS

and qwCRPS-tails that are roughly 15 percent lower than those for the homoskedastic BART

model (the same is not true for qwCRPS-left).

With the conditional mean modeled as a linear VAR, using the BART-based specification

of heteroskedasticity in the innovations — the BVAR with heteroBART — yields overall density

accuracy very comparable to that of the baseline BVAR-SV. In the case of GDP growth forecasts,
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at horizons of 4 through 12 quarters, the CRPS ratios (for all three measures) for this specifi-

cation consistently show small gains of about 2 to 3 percent, whereas at the one-quarter-ahead

horizon, the CRPS ratios are close to 1. Results for inflation show broadly similar performance

of the BVAR with heteroBART model. For the unemployment rate, this model also yields gains

of 2-3 percent at horizons of 4 or more quarters, but in this case, the BVAR with heteroBART

is less accurate than the BVAR-SV baseline at the one-quarter-ahead horizon.

In light of these results, it is natural to examine whether pairing BART for the conditional

mean with heteroBART for the conditional variance does better yet, beating the benchmark

BVAR-SV and the models that separately introduce either BART or heteroBART. But it turns

out that although the BART with heteroBART performs comparably to each of the BVAR-SV,

homoskedastic BART, and BVAR with heteroBART specifications, it does not systematically

improve on them. For example, with GDP growth forecasts, CRPS ratios for the BART with

heteroBART are very similar to those achieved by the BVAR with heteroBART. The same ap-

plies to unemployment rate forecasts, except that, at the one-quarter-ahead horizon, BART with

heteroBART avoids the deterioration in accuracy relative to the baseline that occurs with the

BVAR with heteroBART model. In the case of inflation forecasts at horizons of 4 or more quar-

ters, BART with heteroBART matches homoskedastic BART and BART with SV in materially

improving on the accuracy of BVAR-SV forecasts.

In summary, if we examine the forecast metrics based on the entire predictive density, then

BART is as good as and often better than BVAR-SV. However, among the different versions of

BART, nothing consistently beats the simplest version of BART that has homoskedastic errors.

It seems we can get most of the gains from allowing for nonlinearities simply by using BART

for the conditional mean.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

The preceding discussion was related to average performance over the forecast evaluation

period. To examine whether differences in performance among any of the methods are related

to any particular episodes, Figures 1 through 3 plot recursive averages of our three CRPS-based

measures. Most of the lines in these figures are roughly constant over time, indicating a lack of

variation in the performance of a model relative to the BVAR-SV benchmark. Note, for instance,
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the consistently good performance of the various BART approaches for forecasting inflation for

horizons h = 4, 8, 12.

There is one main model that exhibits substantial variation over time: the homoskedastic

BVAR. Overall, this tends to forecast poorly. But this overall performance combines periods of

extremely bad forecasting with times when the model forecasts quite well. See, for instance, the

h = 12 forecasts from this model. Overall, they tend to be poor. But for all of them, there is

a period in the financial crisis when the homoskedastic BVAR is forecasting better than any of

the alternatives. This holds true regardless of which version of CRPS is used, and it is due to

the larger estimated variance of the homoskedastic BVAR, which helps to accommodate some

outlying observations occurring during the financial crisis (see Carriero, Clark, and Marcellino

(2015) for a similar finding when nowcasting US GDP growth with univariate mixed-frequency

models).

3.4 Tail forecasting performance

We now turn to an examination of the tail forecast performance of our various models. Table 3

has a format similar to that of Table 2, but presents quantile scores instead of CRPSs. Broadly

speaking, the quantile score results are similar to the CRPS results, telling a story in which

homoskedasticity is a bad assumption to make and BART is as good as and typically better

than the BVAR-SV benchmark. However, in some cases the results are even more strongly in

favor of the nonparametric approaches.

The previous statement is particularly true for the unemployment rate. Consider, for

instance, the one-quarter-ahead forecasts. When judged using CRPS-based measures, one of

the BART approaches (typically BART SV) forecasts better than the BVAR SV benchmark,

but many of the BART approaches forecast roughly the same as the BVAR-SV benchmark.

However, with the quantile scores — which isolate the left tail of the predictive distribution —

there is a much more consistently good performance for the BART approaches, particularly in

the 5 percent and 10 percent tails.
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QS5 QS10 QS25
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

GDPC1
BVAR cons 1.025 0.971 0.976 0.977 1.081 1.053 1.072 1.080 1.049 1.055 1.096 1.120
BART cons 0.951 0.926 0.950 0.932* 0.997 0.962 0.986 0.964 1.001 0.976 1.030 1.022
mixBART cons 0.974 0.920 0.915 0.942 1.002 0.968 0.987 0.994 1.017 1.021 1.048 1.051
errorBART cons 0.942* 0.953 0.953** 0.937*** 0.956* 0.976 0.973* 0.943*** 0.971 0.998 1.006 0.992***
fullBART cons 0.958 0.922 0.945 0.937* 0.998 0.963 0.987 0.971 1.005 0.973 1.033 1.025
BVAR SV 0.722 0.773 0.796 0.829 0.880 0.933 0.956 0.993 1.166 1.189 1.177 1.193
BART SV 0.986 0.955 0.960 0.948 1.010 0.977 0.999 0.979 0.994 0.983 1.029 1.035
mixBART SV 0.987 0.958 0.949 0.946 1.004 0.993 1.000 0.991 0.995 1.013 1.024 1.037
errorBART SV 0.986 1.017 1.032 1.004 0.986 1.017 1.011 0.998 0.986 1.008 1.012 1.004
fullBART SV 0.960 0.916 0.943 0.933 0.985 0.974 0.997 0.978 0.981 0.979 1.041 1.038
BVAR heteroBART 0.998 0.994 0.995 0.962* 1.006 0.997 0.987 0.963*** 1.004 0.997 0.993 0.990
BART heteroBART 0.995 0.964 0.971 0.947** 1.006 0.975 0.984 0.970*** 0.985 0.984 1.011 1.010
mixBART heteroBART 0.987 0.963 0.960 0.942 1.002 0.985 0.989 0.975 0.998 1.005 1.015 1.017
errorBART heteroBART 0.958* 0.974 0.968 0.954*** 0.961** 0.985 0.982 0.954*** 0.981 1.001 1.008 0.999
fullBART heteroBART 1.005 0.959 0.975 0.950** 1.008 0.968 0.984 0.975** 0.991 0.980 1.016 1.012

GDPCTPI
BVAR cons 1.030 1.065 1.257** 1.058 0.952 0.997 1.095 0.969 1.032 0.957 0.836 0.838*
BART cons 1.146 0.978 0.873 0.867 1.033 0.899* 0.796** 0.770** 1.033 0.876* 0.760*** 0.746***
mixBART cons 0.954 0.948 0.996 0.895 0.940 0.972 0.948 0.925 1.017 0.991 0.822 0.875
errorBART cons 0.914** 0.934 1.012 0.976 0.906* 0.964 0.975 0.977 0.980 1.009 0.931 0.910**
fullBART cons 1.133 0.967 0.894 0.874 1.018 0.908* 0.809** 0.794** 1.000 0.885* 0.761*** 0.755***
BVAR SV 0.128 0.144 0.149 0.199 0.214 0.240 0.254 0.318 0.338 0.418 0.495 0.529
BART SV 1.079 0.944 0.872 0.852 0.974 0.867** 0.807** 0.763** 0.989 0.856** 0.765*** 0.758***
mixBART SV 0.954 0.950 0.978 0.865 0.951 0.958 0.949 0.904 1.024 0.950 0.808* 0.851
errorBART SV 0.955 0.975 1.001 0.931*** 0.933 0.961 0.954 0.933** 0.989 0.958 0.877 0.846*
fullBART SV 1.476** 0.998 0.875 0.844 1.243* 0.920 0.807** 0.759** 1.135 0.870* 0.749*** 0.745***
BVAR heteroBART 0.999 1.088 1.119 1.156 0.945* 1.040 1.109 1.088* 0.961* 1.004 1.025 1.056
BART heteroBART 1.313* 1.048 0.913 0.907 1.134 0.954 0.820* 0.805** 1.089 0.887* 0.798*** 0.788***
mixBART heteroBART 0.955 0.948 0.978 0.891 0.925* 0.952 0.928 0.888 0.982 0.949 0.813** 0.857
errorBART heteroBART 0.925** 0.932 1.048* 1.045 0.910** 0.973 0.987 1.010 0.986 1.012 0.947 0.945
fullBART heteroBART 1.217 1.025 0.933 0.874 1.067 0.932 0.847 0.792** 1.076 0.876** 0.767*** 0.773***

UNRATE
BVAR cons 1.004 0.955 0.939 0.951 1.065 1.022 0.999 1.012 1.116*** 1.060 1.039 1.045
BART cons 0.921*** 0.929* 0.970* 0.984 0.922*** 0.933** 0.983 0.993 0.943** 0.961 1.003 1.019
mixBART cons 0.963 0.945 0.955 0.972 0.981 0.957 0.988 1.006 1.034 0.989 1.023 1.039
errorBART cons 0.966** 0.969* 0.974*** 0.982 0.972** 0.972* 0.977*** 0.978 0.995 0.996 0.979* 0.972
fullBART cons 0.915*** 0.921* 0.971* 0.986 0.917*** 0.928* 0.984 0.995 0.947* 0.960 1.004 1.019
BVAR SV 0.131 0.145 0.154 0.159 0.147 0.161 0.172 0.177 0.168 0.180 0.196 0.204
BART SV 0.935** 0.941* 0.971 0.991 0.938** 0.949 0.986 0.998 0.936** 0.977 1.012 1.025
mixBART SV 0.976 0.956 0.967 0.977 0.982 0.969 0.988 1.001 0.980 0.985 1.011 1.025
errorBART SV 1.015 1.006 1.016 1.006 1.020 1.000 1.010 1.005 1.013 1.003 0.994 0.983
fullBART SV 0.906*** 0.926* 0.973 0.985 0.903*** 0.938 0.984 0.998 0.921* 0.970 1.004 1.025
BVAR heteroBART 0.960* 0.972*** 0.995 0.993 0.964 0.963*** 0.985 0.988 0.990 0.959*** 0.966* 0.976
BART heteroBART 0.920*** 0.938** 0.980** 0.992 0.912** 0.940** 0.981** 0.994 0.910* 0.961 0.989 1.009
mixBART heteroBART 0.932*** 0.943 0.970 0.983 0.932*** 0.946 0.980 0.994 0.924** 0.959* 0.992 1.010
errorBART heteroBART 0.967** 0.973* 0.982** 0.987 0.976** 0.972* 0.979** 0.981 0.996 0.993 0.978* 0.974
fullBART heteroBART 0.907*** 0.923* 0.976*** 0.990 0.902*** 0.927* 0.978* 1.001 0.909* 0.964 0.988 1.013

Table 3: Quantile scores (QS).

Notes: QSs for the 5th, 10th, and 25th quantiles are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Asterisks indicate statistical significance of the Diebold-Mariano test for equal
predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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Turning to the question of whether this strong performance of the different BART ap-

proaches holds throughout the hold-out period or is specific to certain time periods, Figures 4

to 6 display recursive averages of the quantile scores for τ = {0.05, 0.10, 0.25}. These figures

suggest slightly more time variation in the models. For output and the unemployment rate, we

find that BART-based models often improve upon the benchmark BVAR-SV during turbulent

episodes such as the global financial crisis. This pattern is more pronounced for multi-steps-

ahead forecasts.

When we consider one-step-ahead inflation tail forecasts, a great deal of heterogeneity

among the different BART models can be observed. Particularly during the recession in 2008-

2009, we find that BART and fullBART perform worse than the benchmark. These losses in

accuracy are, however, quickly reversed in the expansionary period that started in mid-2009. By

contrast, mixBART and errorBART mirror the pattern observed for output and unemployment

but to a slightly lesser extent.

In all cases, and similarly to the full density results, we find that the homoskedastic

BVAR performs poorly during tranquil periods, while it works well during recessions. Again,

this strong performance during recessions can be traced back to the fact that the predictive

variance is quite elevated relative to the other models, which harms during normal times but

increases the likelihood of observing outliers during recessions.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

3.5 Nonlinear features in predictive densities

To assess if and when predictive distributions exhibit nonlinear features, we rely on a linear ap-

proximation of the BART model to obtain a linear VAR representation. Similar approximations

have been proposed in Crawford, et al. (2018) and adopted in Huber, et al. (2020).

All results shown up to this point are based on the exact predictive distribution that is

available through simulation. In this section, we compare these exact predictive distributions to

the ones obtained from a linear approximation. The approximation linearly projects Ξ = (X,Z)

on a T ×M matrix of nonparametric functions, F , with typical tth row F (xt) +G(zt):

Ã = Proj(Ξ,F ) = Ξ†F ,
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with Ξ† being the Moore-Penrose inverse of the matrix of explanatory variables, Ξ. The reader

is referred to the discussion in Huber, et al. (2020) to justify this approximation. In essence, it

can be shown that, at the T observations, F ≈XÃ.

After having obtained Ã we can iteratively compute multi-steps-ahead forecasts using

standard formulas for forecasting in VAR models. This yields an approximate predictive distribu-

tion p̂(yt+h|yt). In principle, if the DGP is linear we would expect that p̂(yt+h|yt) ≈ p(yt+h|yt).

Hence, the distance between the approximate and the exact predictive distribution yields insights

into the extent of nonlinearities. To formalize the idea of distance between distributions, we will

use the Kullback-Leibler divergence (KLD). The KLD will serve as a measure of the importance

of nonlinearities. If we observe substantial divergence between the two predictive densities, this

indicates that exact distributions feature substantial nonlinearities (since approximation errors

become comparatively large). Figures 7 to 9 show the measure for all BART-based models over

time and at different forecast horizons as a heatmap. The time axis here refers to the date when

the forecast was made.

A common pattern found for all three of the variables is that the errorBART model has

less evidence of nonlinearities. This statement is true regardless of how the error variances are

modeled. In our forecasting results, errorBART was often found to forecast slightly worse than

the other BART-based approaches. Thus it seems that allowing for nonlinearities in the effects

of past shocks is relatively unimportant in this data set.

By contrast, the KLD of the fullBART model is large, indicating that the flexible combi-

nation between a nonparametric conditional mean and variance function is difficult to linearly

approximate. Particularly for the unemployment rate, the KLD is large throughout the evalua-

tion period. Since fullBART is among the set of the best-performing models for unemployment

forecasts according to various measures, this suggests that being flexible on the conditional mean

and the full variance-covariance matrix seems to pay off.

Another interesting pattern is that there tends to be more evidence of nonlinearity at

the longer forecast horizons. This is consistent with our previous evidence that BART-based

models forecast particularly well at longer horizons. From a technical perspective, the larger

differences for multi-steps-ahead forecasts are driven by the fact that we iteratively forecast in

both cases. Since higher-order forecasts are a highly nonlinear function of Ã, the approximation

error increases with the forecast horizon.

Looking at the different time periods, we find that KLD scores increase during the pan-

demic for GDP growth and the unemployment rate. This finding is also not surprising given

that during this period, an unprecedented decline in GDP growth and an increase in unemploy-
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ment that was far outside the range of the historical data has been observed. In such situations,

nonparametric approaches quickly adapt to these extreme observations.

In the online appendix, we present graphs similar to Figures 7–9, but for VARs of small and

medium dimension. One pattern worth noting is that the small and medium models produced

less evidence of nonlinearities. Thus, we are finding nonparametric methods to be particularly

useful in larger VARs.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

3.5.1 Predictive distributions

Figures 10-12 provide time series of the 5/95 percent and 10/90 percent quantiles of the predictive

distributions from the different models. So that the extreme volatility of 2020 induced by the

COVID-19 pandemic does not obscure scales, the charts have separate panels for the 1997-2019

and 2020 periods. GDP growth, inflation, and the unemployment rate are covered in separate

figures. In the interest of chart readability, the figures provide results for just the 1- and 4-

quarters-ahead horizons; results for the 8- and 12-quarters-ahead horizons are very similar to

those for 4 quarters ahead.

Perhaps the most striking feature of the predictive distributions is the strong similarity

of the forecast intervals for most models. The estimates that stand out for being somewhat

different are in the top row of each figure, in which the forecast intervals from the BVAR with

homoskedasticity are much wider than the intervals from the BVARs with stochastic volatility

or the heteroBART specification of conditional heteroskedasticity. In this case, in keeping with

our findings above on average forecast accuracy, a BVAR with heteroBART performs compa-

rably to a BVAR with stochastic volatility. In the remaining rows of each figure that compare

forecast intervals obtained from alternative BART specifications, the intervals are similar across

specifications.

Another notable result is that the predictive distributions do not seem to show much of

the downside risk asymmetry that has received considerable attention in the tail risks literature,

starting with Adrian, Boyarchenko, and Giannone (2019). In particular, in the case of Figure

10’s results for GDP growth, around the time of the Great Recession, the one-step ahead forecast

intervals show more downward movement in the lower tail than the upper, in keeping with the
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emphasis of much work in the tail risks literature. However, at longer horizons, the forecast in-

tervals show few such asymmetries (in fact, at the four-quarters-ahead horizon, the BART-based

specifications show an upside asymmetry for a time following the end of the Great Recession).

The same pattern prevails in Figure 12’s results for the unemployment rate (recall that the rate

is multiplied by −1 so that low unemployment rates are bad). It is worth emphasizing that

our nonparametric modeling through BART should be capable of capturing asymmetries if they

exist.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

3.5.2 Volatility forecasts

To shed light on the different ways we have of modeling the volatility process, Figures 13 to 15

present one- and four-steps-ahead forecasts of the volatility itself using our different models. For

each model, we plot lines produced for the three volatility treatments (heteroBART, SV, and

homoskedastic) so as to offer an easy comparison.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

The first point worth noting is that there are differences in the volatility estimates produced

by the three treatments of the error variances. As expected, homoskedastic modeling of error

variances tends to produce volatility forecasts that are relatively smoother and at a higher level.

These very gradual changes are produced by our recursive forecasting design that implies almost

no discounting of past information.

HeteroBART tends to produce volatility forecasts that are similarly smooth, but much

lower than the homoskedastic ones. But volatility forecasts by SV models tend to be more

volatile than the other approaches. One exception to this pattern is revealing: the linear BVAR.

For this model, SV and heteroBART produce volatility estimates that are quite similar. Infor-

mally speaking, in models where both conditional mean and variance are modeled using BART
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approaches, the model can “choose” to put nonlinearities in the conditional mean or the condi-

tional variance, and the choice made is typically to put them in the conditional mean. In the

linear VAR such a choice is not possible and, thus, the nonlinearities are put in the conditional

variances in a similar manner to SV. The fact that the homoskedastic version of BART tends

to forecast well also supports the idea that most of the benefits of the nonparametric approach

are obtained in its modeling of the conditional mean as opposed to the conditional variance.

There are also interesting differences in the volatility forecasts during the pandemic. Par-

ticularly for h = 1 and for unemployment and GDP growth, SV models are forecasting much

larger increases in volatility than the other approaches. This is consistent with findings in

HKOPS where the extreme pandemic observations had a great impact on the conditional mean

that was successfully picked up by BART approaches, leaving less variation in the conditional

variance.

3.6 The role of financial conditions for tail forecasting

With much of the recent literature emphasizing the role of financial conditions in driving neg-

ative tail risks to economic activity (see, e.g., Adrian, Boyarchenko, and Giannone (2019) and

Delle Monache, De Polis, and Petrella (2020)), we examine the role of financial conditions in

the tail risk forecasts of BART-based specifications. In the interest of brevity, we focus on two

models: the BVAR-heteroBART and BART-heteroBART specifications. This comparison helps

to shed light on the role of nonparametric treatments of the conditional variance (heteroBART)

and conditional mean (BART vs. BVAR). For this assessment, we consider NFCI paths over

the forecast horizon that are fixed at selected values. These values are the different quantiles of

the NFCI, ranging from 0 (the minimum) to 1 (the maximum) with a step-size of 0.05. This

provides 21 paths of the NFCI for which we produce conditional forecasts from the models.

3.6.1 Conditional forecasts using BART

Figure 16 reports time series of the 5 percent and 95 percent quantiles of predictive distributions

of GDP growth, unemployment, and inflation obtained for each path of the NFCI, over our

entire out-of-sample evaluation period (with 2020 separated from the rest of the sample for

chart readability). In these charts, blue lines refer to densities conditioning on low values of the

NFCI and red lines refer to densities conditioning on high values of the NFCI.

In the period up to the Great Recession, conditioning on higher values of the NFCI (worse

financial conditions) tends to widen predictive distributions for GDP growth, more noticeably

in these charts with the BVAR-heteroBART specification than the BART-heteroBART model,
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with the most visible effect being on the 95th percentiles for the former. For the period since

the Great Recession, conditioning on higher values of the NFCI lowers the 5 percent quantile

forecast. The patterns are broadly similar for the unemployment rate distributions in the bottom

row of charts. In the case of inflation, the middle row of the charts indicates that, with both

models, conditioning on higher values of the NFCI significantly boosts the 95 percent quantile

of the predictive distribution, implying that more adverse conditions are associated with more

upside risk to inflation. The NFCI conditioning has relatively little effect on the lower tail

forecast for inflation. These patterns for inflation are relatively consistent over the sample,

including in 2020.

[Figure 16 about here.]

3.6.2 Conditional forecasts during the global financial crisis and the pandemic

Focusing on the (negative) unemployment rate, Figure 17 reports posterior predictive densities

over a few selected quarters from the depths of the Great Recession (2008:Q3 to 2009:Q1) and

the 2020 pandemic (2020:Q1 to 2020:Q3). The densities condition on the quantiles of the NFCI

that range from 0 (the minimum, blue lines) to 1 (the maximum, red lines).

In broad terms, the charts in the top two rows show that, with the conditional mean taking

the linear form of the BVAR, the nonparametric specification of the innovation process through

heteroBART is sufficient to yield predictive distributions that are non-Gaussian. For example,

in 2008:Q3, some of the distributions have fat tails, whereas in 2020:Q3, the distributions are

sharply peaked rather than bell-shaped. More specifically, in the case of BVAR forecasts during

the Great Recession, conditioning on different values of the NFCI impacts the predictive distri-

butions mostly by increasing one of the tails or widening the distributions, with little effect on

the mode of the distribution. In 2020, conditioning on different NFCI values has little effect on

forecasts for 2020:Q2 and 2020:Q3 but sharply affects the predictive distributions for 2020:Q1,

with higher values of the NFCI associated with predictive distributions shifted to the left and

widened.

Conditioning on different financial settings has much larger effects on predictive distribu-

tions from the BART-heteroBART specification. In this case, pairing a nonparametric specifica-

tion of the conditional mean with a nonparametric specification of the conditional variance can

yield sharply non-Gaussian distributions, with fat tails, asymmetries, or even multi-modality.

Multi-modalities in the predictive distribution for GDP growth is most evident in 2008:Q3

(the quarter in which Lehman Brothers failed). In this case, even under favorable (near-zero)
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values of the NFCI, the predictive distributions from the BART specification show two clear

peaks. As the conditioning NFCI values are increased, the predictive mean shifts some but

the variance rises considerably, with much wider distributions. In 2008:Q4 and 2009:Q1, multi-

modalities are less prominent, but the predictive distributions retain considerable asymmetries,

especially at high values of the NFCI. Higher values of the NFCI are also associated with lower

predictive means and modes of GDP growth.

In the period of the pandemic, the BART-based patterns for 2020:Q2 and 2020:Q3 are

similar to the BVAR-based patterns. In these periods, conditioning on different NFCI values

has relatively little effect on the predictive distributions. But in 2020:Q1 forecasts, the NFCI

has a much greater impact on the predictive distributions, resembling that seen in the Great

Recession quarters of 2008:Q4 and 2009:Q1, with higher values of the NFCI sharply lowering

the predictive mean and raising the variance.

[Figure 17 about here.]

4 Concluding remarks

In this paper we have made three main contributions. First, we have used Bayesian additive

regression trees (BART) to introduce novel multivariate models that posit nonlinear relationships

among macroeconomic variables, their lags, and possibly the lags of the errors. The errors

can be either homoskedastic or heteroskedastic, and in the latter case, we consider both a

standard stochastic volatility specification and a novel nonparametric specification. The flexible

specifications for the conditional mean and variance could be particularly helpful in the presence

of parameter time variation and/or for density and tail forecasting.

Second, we have developed MCMC estimation algorithms for each (homoskedastic and

heteroskedastic) BART specification. The algorithms are scalable to large dimension and thus

allow for estimating large semi- and nonparametric VAR models.

Finally, we have evaluated the real-time forecasting performance for a set of US macroeco-

nomic and financial indicators of the various BART models, using a variety of loss functions and

a BVAR-SV model as a (strong) benchmark. The main findings are that when using BART to ac-

commodate nonlinearities, it is less important to allow for heteroskedasticity; the out-of-sample

predictive density charts do not show much downside risk asymmetry; and BART specifications

can deliver more accurate tail forecasts than BVAR-SV, in particular for unemployment.

Overall, the models we develop represent an important addition to the toolbox of em-

pirical macroeconomists and forecasters, due to their flexibility, range of applicability, ease of
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implementation, and good empirical performance.

In this paper, we have focused on approximating the unknown functions F and G using

BART due to its excellent empirical properties. However, there exist several alternative tech-

niques such as Gaussian process and kernel regressions (Quinonero-Candela and Rasmussen

(2005) and Adrian, Boyarchenko, and Giannone (2021)), spline-based models (Shin, Bhat-

tacharya, and Johnson (2020)), or infinite mixtures (Kalli and Griffin (2018)) to flexibly model

the conditional mean in a multivariate time series model. Assessing whether these techniques

can be used to improve forecasts would be a fruitful avenue of further research.
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A Technical Appendix

A.1 Priors on the remaining model parameters

On the VAR coefficients A we use a horseshoe prior (Carvalho, Polson, and Scott (2010)). Let

ai = (ai1, . . . , aiK)′ denote the ith column of A and aij the ith element of ai. The horseshoe

prior is a hierarchical Gaussian prior on aij :

aij |λi, ψij ∼ N (0, ψ2
ijλ

2
i ), ψij ∼ C+(0, 1), λi ∼ C+(0, 1) (A.1)

with λi being a shrinkage hyperparameter that applies to all coefficients in equation i and ψij

denotes a coefficient-specific scaling parameter. Both λi and ψij feature a half-Cauchy prior

C+. This prior belongs to the general class of global local shrinkage priors that shrink globally

(through λi) but allow for local deviations (through ψij) if λi is close to zero.

For the v = M(M − 1)/2 free elements in Q we use a horseshoe prior similar to the one

in (A.1). The only exception is that the global shrinkage parameter applies to all elements in Q

(as opposed to the covariance parameters in a specific equation only).

In the case where we use a model that features stochastic volatility, the prior on the

unconditional mean is Gaussian with mean zero and variance 10; the prior on the persistence

parameter, denoted by ρi, is Beta distributed ρi+1
2 ∼ B(25, 5); and the prior on the variance of

the log-volatility process is Gamma distributed G(1/2, 1/2).

If we use a model with homoskedastic shocks we use an inverse Gamma prior on the main

diagonal elements of Σ, σ2
i , which we set to be rather uninformative, i.e., σ2

i ∼ G−1(c0, c1). The

hyperparameters c0, c1 are set equal to 0.01.

A.1.1 Sampling the remaining unknowns of the model

Conditional on the trees and the error volatilities, one can sample the VAR coefficients and the

covariance parameters in a single block using standard textbook results for the linear regression

model. The joint posterior of ai and qi is multivariate Gaussian:

ai
qi

 |• ∼ N (βi,V i),
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with

V i = (X̃ ′iX̃i + V )−1,

βi = V iX̃iỹi,

where X̃ ′i denotes a T × (K + i − 1) matrix with typical tth row x̃′it = (x′it, r
′
i)
′/ehit/2, ỹi has

typical tth element (yit − gi(zt))/e
hit/2, and V denotes a diagonal prior variance-covariance

matrix constructed using the variances described in (A.1). The • notation indicates that we

condition on the remaining parameters of the model.

Notice that if we use a model that assumes fi and gi to be nonlinear, we simply exclude

xit from X̃i. In the case where we estimate the errorBART model, xit will be replaced with

(η′t−1, . . . ,η
′
t−p)

′.

In models that include stochastic volatility, we use the efficient sampler outlined in Kastner

and Frühwirth-Schnatter (2014). This sampler also exploits the 10-component mixture approx-

imation to the logχ2
1 distribution but restates the conditionally Gaussian and linear state space

model in terms of a big regression model with the regression coefficients being the log-volatilities.

This gives rise to an algorithm that samples the volatilities all without a loop from a T − 1-

dimensional multivariate Gaussian distribution.

If we use a homoskedastic model, the error variances can easily be sampled from an inverse

Gamma posterior with

σ2
i |• ∼ G−1

(
c0 +

T

2
, c1 +

∑T
t=1 ε

2
it

2

)
.

Finally, the hyperparameters of the horseshoe prior are simulated using the auxiliary

sampler proposed in Makalic and Schmidt (2015). We will outline the relevant full conditionals

for the prior on ai only. The hyperparameters for the prior on the free elements in Q take

precisely the same form.

Makalic and Schmidt (2015) introduce auxiliary random variables ζi and κij . Conditional

on these, the posterior of λ2
i is inverse Gamma distributed:

ψ2
ij |• ∼ G−1

(
1,

1

κij
+
a2
ij

2λ2
i

)
.
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The posterior for the equation-specific shrinkage parameter λ2
i is also inverse Gamma distributed:

λ2
i |• ∼ G−1

K + 1

2
,

1

ζi
+

1

2

K∑
j=1

a2
ij

ψ2
ij

 .

The two auxiliary parameters are also inverse Gamma distributed and take particularly simple

forms:

κij |• ∼ G−1

(
1, 1 +

1

ζi

)
,

ζi|• ∼ G−1

(
1, 1 +

1

λ2
i

)
.
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B Additional empirical results

B.1 Holdout ending 2019:Q4: Point and density forecasts
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CRPS qwCRPS-tails qwCRPS-left
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.186*** 1.073** 1.080** 1.095*** 1.320*** 1.124** 1.126*** 1.124*** 1.107** 1.022 1.032 1.038
BART cons 1.069 0.976 0.999 1.009 1.108** 0.986 1.000 1.002 1.026 0.964 1.013 1.021*
mixBART cons 1.070 0.996 1.015 1.030 1.099** 1.002 1.018 1.023 1.016 0.976 1.013 1.014
errorBART cons 1.076* 1.030 1.025 1.034** 1.096*** 1.032 1.018 1.016** 1.019 1.005 0.998 1.001
fullBART cons 1.069 0.977 0.998 1.009 1.105** 0.986 1.000 1.002 1.026 0.966 1.014 1.022
BVAR SV 1.016 1.001 1.016 1.020** 1.028 1.004 1.019 1.016 1.011 1.004 1.020 1.019
BART SV 1.063 0.982 1.007 1.007 1.095* 0.990 1.007 1.000 1.032 0.973 1.021 1.014
mixBART SV 1.050 0.992 1.018 1.026** 1.075 1.000 1.023 1.022 1.014 0.975 1.018 1.011
errorBART SV 1.031 1.006 1.019 1.026 1.051 1.010 1.015 1.012 1.028 1.008 1.022 1.024
fullBART SV 1.078* 0.996 1.019 1.024* 1.138*** 1.015 1.031 1.026* 1.041 0.979 1.017 1.014
BVAR heteroBART 1.022 0.989 1.009 1.007 1.040 0.989 1.002 0.989 1.031 0.999 1.025 1.017
BART heteroBART 1.067 0.981 1.002 0.998 1.096* 0.986 0.994 0.987 1.042 0.978 1.020 1.013
mixBART heteroBART 1.063 0.993 1.012 1.015 1.081 0.994 1.007 1.003 1.034 0.983 1.023 1.013
errorBART heteroBART 1.045 1.008 1.007 1.019 1.058 1.006 0.997 0.998 1.014 1.000 0.999 1.005
fullBART heteroBART 1.074 0.981 1.000 1.000 1.104* 0.986 0.992 0.987 1.051 0.977 1.018 1.012

Medium
BVAR cons 1.183*** 1.068** 1.081** 1.094*** 1.316*** 1.123** 1.129*** 1.127*** 1.134** 1.024 1.039 1.043
BART cons 1.074 0.984 0.999 1.019 1.112* 0.985 0.997 1.006 1.058 0.965 1.009 1.026
mixBART cons 1.073 1.000 1.001 1.020** 1.105** 1.004 0.999 1.011 1.052 0.982 0.997 1.008
errorBART cons 1.071 1.005 1.010 1.020** 1.099** 1.013 1.007 1.004 1.041 0.988 0.992 0.993
fullBART cons 1.073 0.985 1.001 1.019 1.114* 0.989 0.998 1.006 1.058 0.967 1.009 1.024
BVAR SV 1.023 0.989 0.996 1.003 1.042 0.992 0.996 0.998 1.040 0.994 0.999 1.004
BART SV 1.078 0.978 0.993 1.009 1.114* 0.983 0.994 1.002 1.078 0.966 1.002 1.015
mixBART SV 1.072 0.991 0.996 1.013* 1.103* 0.996 1.000 1.008 1.069 0.976 0.993 0.999
errorBART SV 1.035 0.985 0.996 1.005 1.059 0.991 0.994 0.993 1.050 0.990 1.002 1.008
fullBART SV 1.086* 0.994 1.017 1.026** 1.152*** 1.011 1.029 1.028 1.056 0.970 1.013 1.014
BVAR heteroBART 1.020 0.973 0.979 0.983 1.041 0.977 0.975 0.970** 1.048 0.988 0.993 0.995
BART heteroBART 1.095 0.976 0.985 1.001 1.131* 0.974 0.977 0.990 1.105 0.969 0.997 1.013
mixBART heteroBART 1.082 0.984 0.991 1.002 1.115* 0.983 0.986 0.990 1.092 0.975 0.998 1.001
errorBART heteroBART 1.044 0.989 0.995 1.008 1.068 0.993 0.989 0.991 1.036 0.984 0.990 0.995
fullBART heteroBART 1.093 0.982 0.995 1.000 1.135* 0.978 0.984 0.988 1.105 0.974 1.004 1.007

Large
BVAR cons 1.144*** 1.078** 1.107*** 1.126*** 1.268*** 1.132** 1.164*** 1.183*** 1.121** 1.036 1.067 1.082
BART cons 1.044 0.971 0.987 0.998 1.066* 0.974 0.982 0.983*** 1.047 0.967 1.002 1.003
mixBART cons 1.042* 0.999 1.051* 1.087*** 1.045* 1.002 1.041 1.078** 1.050* 0.996 1.038 1.052
errorBART cons 1.023 1.015 1.031 1.026 1.041 1.012 1.017 1.005 0.995 0.998 1.012 0.997
fullBART cons 1.048 0.969 0.988 1.004 1.072* 0.972 0.982 0.989*** 1.054 0.965 1.004 1.008
BVAR SV 1.168 2.063 2.074 2.098 0.118 0.227 0.230 0.236 0.177 0.320 0.319 0.323
BART SV 1.059 0.972 0.982 0.994 1.074* 0.975 0.981 0.982** 1.068 0.975 1.003 1.009
mixBART SV 1.037 1.001 1.019 1.042*** 1.042* 1.005 1.018 1.037* 1.045* 0.998 1.015 1.027
errorBART SV 0.998 1.008 1.009 1.004 1.006 1.006 1.006 0.996 1.004 1.011 1.011 1.004
fullBART SV 1.068* 0.986 1.012 1.022*** 1.131*** 1.003 1.021 1.021 1.052 0.972 1.014 1.014
BVAR heteroBART 1.004 0.985** 0.986* 0.984** 1.007 0.982* 0.980 0.971*** 1.022 0.994 0.992 0.986**
BART heteroBART 1.048 0.973 0.971** 0.981** 1.069 0.973 0.967*** 0.968*** 1.063 0.976 0.990 0.995
mixBART heteroBART 1.040 0.996 1.008 1.025* 1.040 0.995 1.002 1.014 1.056* 0.997 1.007 1.012
errorBART heteroBART 1.006 1.003 1.017 1.017 1.015 0.999 1.004 0.996 0.993 0.997 1.009 1.000
fullBART heteroBART 1.051 0.966 0.972** 0.988 1.074 0.967 0.968*** 0.972** 1.068 0.970 0.992 1.000

Table 4: Cumulative ranked probability score (CRPS) and quantile weighted CRPSs for GDPC1.

Notes: CRPSs are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Quantile weights ’tail’ indicate a weighting scheme capturing both tails; ’left’ captures performance for downside
risks. Asterisks indicate statistical significance of the Diebold-Mariano test for equal predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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CRPS qwCRPS-tails qwCRPS-left
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.145*** 1.078 1.051 1.047 1.135*** 1.148** 1.156** 1.123 1.130** 0.970 0.924 0.909
BART cons 1.047 0.953 0.775*** 0.673*** 1.034 0.941 0.775*** 0.675*** 1.041 0.968 0.796*** 0.692***
mixBART cons 1.068 0.936 0.809*** 0.747*** 1.044 0.917* 0.823*** 0.790*** 1.077 0.946 0.823** 0.775***
errorBART cons 1.123** 0.984 0.872** 0.838*** 1.084* 0.957 0.886** 0.868*** 1.146** 0.972 0.876* 0.863**
fullBART cons 1.046 0.950 0.778*** 0.674*** 1.033 0.940 0.779*** 0.675*** 1.043 0.964 0.798*** 0.694***
BVAR SV 1.123** 0.984 0.921 0.911 1.096** 0.982 0.947 0.945 1.142** 0.972 0.896 0.878
BART SV 1.060 0.958 0.780*** 0.677*** 1.052 0.943 0.776*** 0.681*** 1.044 0.956 0.786*** 0.689***
mixBART SV 1.069 0.939 0.805*** 0.741*** 1.046 0.928 0.821*** 0.786*** 1.063 0.933 0.810** 0.760***
errorBART SV 1.118** 0.946 0.789** 0.711*** 1.085* 0.927 0.809*** 0.759*** 1.137** 0.954 0.815* 0.765**
fullBART SV 1.045 0.940 0.761*** 0.663*** 1.033 0.928 0.759*** 0.668*** 1.042 0.950 0.774*** 0.681***
BVAR heteroBART 1.153*** 0.993 0.919 0.880*** 1.140** 0.980 0.926 0.906*** 1.163*** 1.003 0.938 0.907**
BART heteroBART 1.075 0.966 0.781*** 0.674*** 1.074 0.965 0.784*** 0.673*** 1.060 0.979 0.803** 0.698***
mixBART heteroBART 1.095* 0.947 0.810*** 0.737*** 1.077 0.937 0.813*** 0.769*** 1.085 0.957 0.827** 0.770***
errorBART heteroBART 1.128** 0.976 0.842** 0.798*** 1.096* 0.950 0.849*** 0.826*** 1.146** 0.978 0.868* 0.850***
fullBART heteroBART 1.063 0.960 0.779*** 0.678*** 1.057 0.957 0.781*** 0.677*** 1.050 0.974 0.796*** 0.701***

Medium
BVAR cons 1.141*** 1.099 1.073 1.072 1.140*** 1.151* 1.154** 1.129 1.125** 0.976 0.948 0.935
BART cons 1.009 0.912 0.817*** 0.779*** 1.002 0.912 0.818*** 0.774*** 1.029 0.930 0.824*** 0.785***
mixBART cons 1.053 0.933 0.828*** 0.806*** 1.031 0.909* 0.839*** 0.841*** 1.081 0.944 0.829*** 0.826***
errorBART cons 1.101* 1.007 0.898* 0.852** 1.063 0.976 0.899* 0.870** 1.114** 0.979 0.904 0.890*
fullBART cons 1.009 0.916 0.823*** 0.786*** 1.000 0.921 0.821*** 0.779*** 1.024 0.935 0.830*** 0.792***
BVAR SV 1.097** 0.997 0.937 0.929 1.067 0.988 0.950 0.953 1.117** 0.988 0.925 0.918
BART SV 0.994 0.900* 0.785*** 0.746*** 0.977 0.898** 0.783*** 0.745*** 0.999 0.906 0.778*** 0.747***
mixBART SV 1.025 0.923 0.812*** 0.777*** 1.005 0.908* 0.826*** 0.818*** 1.042 0.931 0.807*** 0.793***
errorBART SV 1.063 0.942 0.795** 0.727*** 1.032 0.917 0.805** 0.757*** 1.079 0.945 0.823** 0.785**
fullBART SV 1.039 0.912 0.808*** 0.765*** 1.031 0.915 0.803*** 0.765*** 1.043 0.925 0.806*** 0.772***
BVAR heteroBART 1.119** 0.990 0.929 0.912** 1.104** 0.976 0.932 0.938* 1.131** 0.998 0.954 0.966
BART heteroBART 1.006 0.928 0.789*** 0.740*** 0.997 0.931 0.786*** 0.739*** 1.009 0.949 0.803*** 0.755***
mixBART heteroBART 1.035 0.929 0.811*** 0.778*** 1.020 0.916* 0.811*** 0.803*** 1.056 0.951 0.823*** 0.812***
errorBART heteroBART 1.095* 0.985 0.865** 0.811*** 1.061 0.957 0.866** 0.830*** 1.105* 0.967 0.885* 0.864**
fullBART heteroBART 1.025 0.920 0.785*** 0.733*** 1.014 0.922 0.786*** 0.736*** 1.031 0.937 0.799*** 0.750***

Large
BVAR cons 1.051* 1.089** 1.082 1.085 1.094** 1.140** 1.153* 1.152 1.027 1.003 0.969 0.958
BART cons 1.064 0.866** 0.754*** 0.709*** 1.062 0.858*** 0.744*** 0.703*** 1.064 0.876** 0.766*** 0.738***
mixBART cons 0.969 0.954 0.823** 0.788*** 0.952 0.925 0.828** 0.848* 0.962 0.980 0.842 0.824*
errorBART cons 0.986 1.029 0.927 0.839** 0.956 0.991 0.910 0.834*** 0.983 1.018 0.941 0.896**
fullBART cons 1.032 0.866*** 0.757*** 0.714*** 1.032 0.859*** 0.748*** 0.710*** 1.035 0.882** 0.772*** 0.748***
BVAR SV 0.510 0.695 0.892 1.035 0.051 0.070 0.089 0.105 0.078 0.106 0.128 0.144
BART SV 1.027 0.857*** 0.776*** 0.739*** 1.013 0.854*** 0.771*** 0.729*** 1.024 0.858*** 0.776*** 0.758***
mixBART SV 0.969 0.924 0.819** 0.781*** 0.961 0.904** 0.824** 0.826** 0.959 0.945 0.835* 0.814*
errorBART SV 0.986 0.957 0.849 0.769** 0.964 0.928 0.835** 0.778*** 0.984 0.966 0.880 0.830*
fullBART SV 1.180** 0.871** 0.744*** 0.710*** 1.211** 0.870** 0.739*** 0.705*** 1.203** 0.881* 0.758*** 0.739***
BVAR heteroBART 0.993 0.978 0.973* 0.958** 0.990 0.979 0.975 0.975 0.986 1.002 1.016 1.014
BART heteroBART 1.144* 0.874** 0.772*** 0.730*** 1.169** 0.872*** 0.763*** 0.720*** 1.139* 0.898* 0.792*** 0.773***
mixBART heteroBART 0.973 0.913* 0.808*** 0.778*** 0.965 0.890** 0.805*** 0.813*** 0.958 0.942 0.832** 0.818**
errorBART heteroBART 0.988 1.027 0.927 0.848** 0.960 0.988 0.908 0.841*** 0.985 1.020 0.951 0.920
fullBART heteroBART 1.135* 0.868*** 0.753*** 0.713*** 1.133 0.866*** 0.750*** 0.707*** 1.137* 0.881** 0.776*** 0.754***

Table 5: Cumulative ranked probability score (CRPS) and quantile weighted CRPSs for GDPCTPI.

Notes: CRPSs are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Quantile weights ’tail’ indicate a weighting scheme capturing both tails; ’left’ captures performance for downside
risks. Asterisks indicate statistical significance of the Diebold-Mariano test for equal predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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CRPS qwCRPS-tails qwCRPS-left
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.299*** 1.073*** 1.036 1.030 1.409*** 1.099*** 1.056 1.047 1.273*** 1.049 1.013 1.014
BART cons 0.999 0.993 1.030 1.047*** 0.956 0.987 1.019 1.038*** 0.941 0.974 1.020 1.047***
mixBART cons 0.970 0.996 1.011 1.015 0.941 0.995 1.007 1.012 0.913 0.975 0.997 1.012***
errorBART cons 1.077*** 1.030 0.993 0.994 1.083*** 1.029 0.994 0.992 1.052** 1.018 0.975** 0.984
fullBART cons 1.000 0.996 1.029 1.048*** 0.957 0.989 1.017 1.038*** 0.940 0.978 1.019 1.050***
BVAR SV 1.107*** 1.008 0.997 0.996 1.098*** 1.013 1.006 1.004 1.118*** 1.014 1.001 1.002
BART SV 1.008 1.002 1.026 1.035*** 0.971 0.998 1.018 1.027*** 0.952 0.983 1.014 1.031**
mixBART SV 0.998 0.993 1.006 1.007 0.983 0.996 1.008 1.011 0.968 0.980 0.996 1.005
errorBART SV 1.091*** 1.008 0.991 0.988 1.084*** 1.013 0.999 0.995 1.105*** 1.014 0.993 0.991
fullBART SV 1.001 1.001 1.017 1.022** 0.960 0.996 1.008 1.015* 0.941 0.980 1.005 1.018
BVAR heteroBART 1.094*** 0.992 0.983 0.983 1.074** 0.994 0.987 0.987 1.093*** 0.992 0.983 0.986
BART heteroBART 1.018 1.001 1.018 1.026 0.981 0.993 1.008 1.023 0.976 0.988 1.009 1.028
mixBART heteroBART 0.993 0.984 1.002 1.005 0.962 0.981 0.998 1.006 0.958 0.972 0.992 1.003
errorBART heteroBART 1.076*** 1.013 0.989 0.990 1.068*** 1.011 0.990 0.989 1.058*** 1.005 0.975* 0.982
fullBART heteroBART 1.019 0.997 1.014 1.026 0.979 0.991 1.005 1.023 0.977 0.985 1.006 1.027

Medium
BVAR cons 1.279*** 1.072*** 1.033 1.026 1.382*** 1.096*** 1.052 1.043 1.265*** 1.051 1.015 1.013
BART cons 1.032 1.022 1.042 1.058*** 0.992 1.011 1.027 1.041** 0.995 0.997 1.029 1.055**
mixBART cons 0.995 1.022 1.024 1.025** 0.971 1.015 1.015 1.014 0.963 1.002 1.011 1.018
errorBART cons 1.082*** 1.029 0.993 0.990 1.086*** 1.025 0.991 0.987 1.072*** 1.020 0.979** 0.982
fullBART cons 1.025 1.023 1.040 1.060*** 0.981 1.010 1.025 1.043** 0.988 0.998 1.026 1.056***
BVAR SV 1.079*** 1.010 0.989 0.986 1.079*** 1.011 0.994 0.993 1.109*** 1.016 0.992 0.991
BART SV 1.021 1.023 1.029 1.042*** 0.982 1.012 1.018 1.029*** 0.987 0.999 1.015 1.039***
mixBART SV 1.014 1.009 1.005 1.004 1.000 1.008 1.004 1.003 1.003 0.999 0.997 1.002
errorBART SV 1.081*** 1.011 0.989 0.984 1.083*** 1.012 0.993 0.989 1.110*** 1.016 0.990 0.987
fullBART SV 1.025 1.024 1.030 1.037*** 0.977 1.011 1.017 1.024*** 0.982 0.999 1.015 1.033***
BVAR heteroBART 1.064** 0.996 0.980 0.981 1.055 0.994 0.981 0.984 1.071* 0.994 0.977 0.980
BART heteroBART 1.011 1.021 1.024 1.036*** 0.973 1.007 1.012 1.028** 0.983 1.000 1.010 1.032***
mixBART heteroBART 1.001 1.004 1.005 1.005 0.970 0.996 1.000 1.001 0.980 0.988 0.994 1.003
errorBART heteroBART 1.080*** 1.020 0.991 0.988 1.081*** 1.016 0.990 0.987 1.076*** 1.012 0.979* 0.980
fullBART heteroBART 1.027 1.026 1.027 1.038*** 0.979 1.011 1.013 1.028** 0.996 1.003 1.011 1.034***

Large
BVAR cons 1.219*** 1.072*** 1.046 1.041 1.338*** 1.097** 1.067 1.066 1.186*** 1.044 1.021 1.026
BART cons 0.933 0.991 1.024 1.029* 0.900** 0.979 1.009 1.011 0.887** 0.967 1.009 1.021
mixBART cons 0.945 1.009 1.040 1.049* 0.922* 0.997 1.025 1.038 0.905** 0.989 1.022 1.038
errorBART cons 0.992 1.010 1.000 0.989 0.993 1.003 0.994 0.986 0.964* 0.997 0.986 0.980
fullBART cons 0.938 0.989 1.027 1.031* 0.895** 0.977 1.012 1.014 0.892* 0.965 1.010 1.023
BVAR SV 0.109 0.283 0.320 0.334 0.011 0.032 0.037 0.038 0.017 0.047 0.052 0.054
BART SV 0.947 1.001 1.028 1.036 0.917* 0.990 1.013 1.016 0.897** 0.981 1.014 1.029
mixBART SV 0.959* 0.999 1.020 1.023 0.953* 0.995 1.014 1.019 0.934** 0.986 1.009 1.020
errorBART SV 1.004 0.999 0.993 0.985 1.009* 1.000 0.998 0.991 1.008 1.000 0.996 0.987
fullBART SV 0.986 0.996 1.027 1.036* 0.941 0.981 1.010 1.019 0.916 0.975 1.012 1.027
BVAR heteroBART 0.967*** 0.978*** 0.985** 0.992 0.951*** 0.974*** 0.985 0.990 0.935*** 0.967*** 0.976 0.985
BART heteroBART 0.967 0.989 1.011 1.019*** 0.930 0.978 1.002 1.008 0.929 0.968 0.997 1.012***
mixBART heteroBART 0.947* 0.986 1.010 1.015 0.926** 0.978 1.005 1.012 0.906*** 0.967 0.995 1.008
errorBART heteroBART 1.003 1.005 0.999 0.992 1.008 1.000 0.994 0.990 0.982 0.992 0.986 0.983
fullBART heteroBART 0.935 0.995 1.014 1.024** 0.902* 0.977 1.002 1.012 0.895* 0.970 0.997 1.017*

Table 6: Cumulative ranked probability score (CRPS) and quantile weighted CRPSs for UNRATE.

Notes: CRPSs are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Quantile weights ’tail’ indicate a weighting scheme capturing both tails; ’left’ captures performance for downside
risks. Asterisks indicate statistical significance of the Diebold-Mariano test for equal predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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B.2 Additional tail forecast metrics
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QS5 QS10 QS25
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.317*** 0.970 0.959 0.934 1.263*** 1.035 1.030 1.009 1.078 1.026 1.043 1.053
BART cons 1.058 0.968 0.998 0.973 1.074 0.976 1.021 1.004 0.986 0.953 1.030 1.042***
mixBART cons 1.043 0.964 0.976 0.950 1.021 0.976 1.004 0.978 0.973 0.966 1.019 1.015
errorBART cons 0.983 0.969 0.948*** 0.936** 1.004 1.001 0.964*** 0.952*** 0.987 0.992 0.990 0.994
fullBART cons 1.061 0.969 0.996 0.968 1.070 0.975 1.026 1.002 0.992 0.957 1.030 1.045**
BVAR SV 1.024 1.050 1.073 1.032 1.024 1.021 1.046 1.025 1.004 0.995 1.001 1.008
BART SV 1.081 0.997 1.034 0.995 1.083 0.990 1.037 1.008 0.998 0.960 1.027 1.021
mixBART SV 1.039 0.999 1.029 0.982 1.032 0.991 1.033 0.994 0.985 0.958 1.013 1.005
errorBART SV 1.066 1.052 1.062 1.023 1.073 1.028 1.026 1.017 1.019 0.999 1.010 1.010
fullBART SV 1.113 0.965 1.000 0.965 1.126 1.000 1.020 0.993 1.019 0.972 1.026 1.025
BVAR heteroBART 1.122 1.036 1.052 1.001 1.089 1.016 1.020 0.993 1.022 0.989 1.025 1.026
BART heteroBART 1.126 1.002 1.026 0.995 1.097 0.994 1.022 1.004 1.012 0.973 1.026 1.016
mixBART heteroBART 1.088 0.999 1.034 0.983* 1.049 0.991 1.027 0.993 1.006 0.974 1.021 1.014
errorBART heteroBART 0.997 0.996 0.976 0.963 1.003 1.007 0.976 0.974* 1.000 0.989 0.999 1.001
fullBART heteroBART 1.125 1.002 1.028 0.993 1.104 0.990 1.022 1.004 1.022 0.975 1.021 1.015

Medium
BVAR cons 1.355*** 0.972 0.959 0.944 1.297*** 1.043 1.040 1.022 1.131* 1.035 1.059 1.063
BART cons 1.115 0.959 0.972 0.948 1.127 0.964 1.005 0.993 1.049 0.947 1.026 1.046
mixBART cons 1.029 0.967 0.946 0.938 1.092 0.983 0.983 0.968 1.046 0.969 1.008 1.015
errorBART cons 1.031 0.968 0.948** 0.937** 1.075 0.990 0.970** 0.947*** 1.032 0.981 0.988 0.988
fullBART cons 1.109 0.966 0.972 0.948 1.131 0.970 1.004 0.989 1.048 0.946* 1.025 1.043
BVAR SV 1.112 1.026 1.033 1.005 1.101 1.012 1.014 1.004 1.048 0.991 0.993 1.004
BART SV 1.164 0.984 0.993 0.972 1.158 0.982 1.010 1.002 1.077 0.947* 1.010 1.029*
mixBART SV 1.113 0.989 0.986 0.960 1.139* 0.992 0.997 0.976 1.066 0.955* 0.995 1.000
errorBART SV 1.154 1.027 1.032 1.005 1.123 1.011 1.005 1.006 1.054 0.986 0.998 1.006
fullBART SV 1.121** 0.939 0.966 0.941 1.135* 0.987 1.011 0.984 1.046 0.959 1.026 1.032
BVAR heteroBART 1.159 1.024 1.012 0.969 1.143 1.013 0.992 0.979 1.053 0.985 0.998 1.006
BART heteroBART 1.268* 0.985 0.991 0.972 1.221* 0.975 0.997 1.000 1.098 0.952 1.002 1.021
mixBART heteroBART 1.195 0.986 0.998 0.959** 1.186* 0.985 0.998 0.981 1.095 0.956 0.999 1.006
errorBART heteroBART 1.083 0.991 0.971 0.951** 1.086 0.998 0.977 0.966** 1.033 0.979 0.991 0.996
fullBART heteroBART 1.275* 0.990 0.995 0.965* 1.243** 0.978 0.998 0.994 1.095 0.960 1.004 1.012

Large
BVAR cons 1.333*** 0.968 0.976 0.977 1.304*** 1.049 1.072 1.080 1.104 1.051 1.096 1.120
BART cons 1.021 0.925 0.950 0.932* 1.097* 0.961 0.986 0.964 1.056 0.975 1.030 1.022
mixBART cons 1.046 0.919 0.915 0.942 1.076* 0.966 0.987 0.994 1.057 1.018 1.048 1.051
errorBART cons 0.990 0.952 0.953** 0.937*** 0.993 0.975 0.973* 0.943*** 0.996 0.997 1.006 0.992***
fullBART cons 1.048 0.921 0.945 0.937* 1.106* 0.962 0.987 0.971 1.065 0.972 1.033 1.025
BVAR SV 0.259 0.779 0.796 0.829 0.405 0.939 0.956 0.993 0.686 1.195 1.177 1.193
BART SV 1.079 0.954 0.960 0.948 1.115 0.977 0.999 0.979 1.071 0.983 1.029 1.035
mixBART SV 1.040 0.957 0.949 0.946 1.066* 0.992 1.000 0.991 1.050 1.013 1.024 1.037
errorBART SV 1.006 1.018 1.032 1.004 1.009 1.017 1.011 0.998 1.016 1.009 1.012 1.004
fullBART SV 1.133** 0.915 0.943 0.933 1.123 0.972 0.997 0.978 1.057 0.977 1.041 1.038
BVAR heteroBART 1.042 0.993 0.995 0.962* 1.046 0.997 0.987 0.963*** 1.027 0.997 0.993 0.990
BART heteroBART 1.118 0.964 0.971 0.947** 1.122 0.975 0.984 0.970*** 1.065 0.984 1.011 1.010
mixBART heteroBART 1.044 0.962 0.960 0.942 1.077** 0.984 0.989 0.975 1.067* 1.004 1.015 1.017
errorBART heteroBART 1.001 0.974 0.968 0.954*** 0.986 0.985 0.982 0.954*** 1.001 1.000 1.008 0.999
fullBART heteroBART 1.150* 0.959 0.975 0.950** 1.126 0.968 0.984 0.975** 1.073 0.980 1.016 1.012

Table 7: Quantile scores (QS) for GDPC1 with the holdout ending in 2019:Q4.

Notes: QSs for the 5th, 10th, and 25th quantile are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Asterisks indicate statistical significance of the Diebold-Mariano test for equal
predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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QS5 QS10 QS25
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.133 1.078 1.256* 1.037 1.013 0.990 1.111 0.954 1.143** 0.906 0.797* 0.792**
BART cons 1.075 1.082 1.028 0.786 0.998 0.998 0.880 0.748*** 1.041 0.955 0.777** 0.677***
mixBART cons 1.019 0.981 1.117 0.921 1.019 0.963 0.982 0.908 1.096 0.932 0.782** 0.779**
errorBART cons 1.120 0.906 1.053 0.921 1.104 0.923 0.983 0.969 1.160*** 0.962 0.843* 0.870*
fullBART cons 1.064 1.061 1.017 0.797 1.004 0.994 0.881 0.752*** 1.049 0.954 0.780** 0.682***
BVAR SV 1.142 0.922 1.008 0.901 1.104 0.969 0.957 0.933 1.147** 0.957 0.868 0.842*
BART SV 1.057 1.040 0.962 0.791** 0.999 0.954 0.846 0.740*** 1.047 0.945 0.762** 0.666***
mixBART SV 0.961 0.976 1.041 0.847 0.980 0.926 0.973 0.887 1.084 0.916 0.749** 0.761*
errorBART SV 1.150 0.929 1.013 0.841 1.107 0.953 0.964 0.898 1.137** 0.948 0.797* 0.810
fullBART SV 1.060 1.051 0.971 0.792* 0.996 0.965 0.848 0.742*** 1.048 0.940 0.747*** 0.660***
BVAR heteroBART 1.214 1.051 1.161 1.081 1.146* 1.034 1.048 1.001 1.172*** 0.978 0.930 0.895
BART heteroBART 1.095 1.126 1.026 0.841 1.018 1.027 0.902 0.754*** 1.064 0.969 0.786** 0.683***
mixBART heteroBART 1.050 1.023 1.133 0.957 1.010 0.999 0.966 0.888 1.094 0.940 0.794** 0.771**
errorBART heteroBART 1.180 0.951 1.067 0.975 1.115 0.960 1.000 0.980 1.149** 0.963 0.843* 0.874
fullBART heteroBART 1.069 1.121 1.024 0.832 1.019 1.035 0.891 0.751*** 1.049 0.956 0.771** 0.691***

Medium
BVAR cons 1.140 1.056 1.245* 1.015 1.043 0.955 1.087 0.942 1.131** 0.897 0.810* 0.803**
BART cons 1.188 1.039 1.003 0.852 1.057 0.981 0.860 0.788* 1.030 0.924 0.810** 0.781***
mixBART cons 1.171 0.900 1.082 0.989 1.062 0.931 0.952 0.926 1.095 0.946 0.793*** 0.826***
errorBART cons 1.159 0.871 1.027 0.946 1.073 0.923 1.009 0.970 1.105* 0.957 0.871 0.916
fullBART cons 1.159 1.079 0.999 0.861 1.034 0.993 0.867 0.787* 1.026 0.933 0.813** 0.785***
BVAR SV 1.183 0.939 1.043 0.962 1.086 0.967 0.989 0.959 1.116** 0.980 0.897 0.893
BART SV 1.034 0.999 0.929 0.797 0.953 0.920 0.813* 0.757*** 1.017 0.899 0.753*** 0.735***
mixBART SV 1.077 0.941 1.029 0.940 1.003 0.936 0.935 0.901 1.059 0.931 0.764*** 0.782***
errorBART SV 1.176 0.914 0.994 0.889 1.052 0.936 0.953 0.902 1.065 0.935 0.802** 0.826**
fullBART SV 1.177 1.044 0.949 0.847 1.061 0.975 0.836 0.791** 1.039 0.920 0.778*** 0.765***
BVAR heteroBART 1.224 1.035 1.197 1.163 1.124 1.030 1.070 1.092 1.128** 0.980 0.944 0.968
BART heteroBART 1.138 1.123 0.960 0.860 1.024 1.028 0.845 0.772** 0.993 0.938 0.796*** 0.754***
mixBART heteroBART 1.151 1.037 1.091 1.026 1.046 0.995 0.924 0.915 1.071 0.947 0.802*** 0.810***
errorBART heteroBART 1.198 0.897 1.057 0.964 1.078 0.927 1.003 0.962 1.089 0.945 0.860* 0.901
fullBART heteroBART 1.132 1.093 0.998 0.888 1.030 1.001 0.869 0.792** 1.028 0.925 0.779*** 0.736***

Large
BVAR cons 1.129 1.061 1.257* 1.058 0.981 0.993 1.095 0.969 1.053 0.953 0.836 0.838
BART cons 1.222 0.978 0.873 0.867 1.072 0.898* 0.796** 0.770** 1.059 0.873* 0.760*** 0.746***
mixBART cons 0.899** 0.946 0.996 0.895 0.891** 0.971 0.948 0.925 0.978 0.988 0.822 0.875
errorBART cons 0.922 0.933 1.012 0.976 0.911 0.963 0.975 0.977 0.989 1.007 0.931 0.910**
fullBART cons 1.210 0.967 0.894 0.874 1.057 0.907* 0.809* 0.794** 1.021 0.882* 0.761*** 0.755***
BVAR SV 0.100 0.144 0.149 0.199 0.182 0.241 0.254 0.318 0.304 0.421 0.495 0.529
BART SV 1.165 0.943 0.872 0.852 1.014 0.865** 0.807* 0.763** 1.010 0.853** 0.765*** 0.758***
mixBART SV 0.907* 0.948 0.978 0.865 0.901* 0.956 0.949 0.904 0.971 0.947 0.808 0.851
errorBART SV 0.959 0.975 1.001 0.931*** 0.930 0.960 0.954 0.933** 0.987 0.956 0.877 0.846*
fullBART SV 1.679** 0.997 0.875 0.844 1.341** 0.919 0.807* 0.759** 1.185** 0.867* 0.749*** 0.745***
BVAR heteroBART 1.030 1.088 1.119 1.156 0.961 1.039 1.109 1.088* 0.982 1.002 1.025 1.056
BART heteroBART 1.459* 1.049 0.913 0.907 1.199 0.953 0.820* 0.805** 1.120 0.884* 0.798*** 0.788***
mixBART heteroBART 0.936 0.946 0.978 0.891 0.899** 0.950 0.928 0.888 0.965 0.946 0.813** 0.857
errorBART heteroBART 0.932 0.931 1.048* 1.045 0.914 0.972 0.987 1.010 0.994 1.011 0.947 0.945
fullBART heteroBART 1.386 1.025 0.933 0.874 1.147 0.931 0.847 0.792** 1.126 0.873** 0.767*** 0.773***

Table 8: Quantile scores (QS) for GDPCTPI with the holdout ending in 2019:Q4.

Notes: QSs for the 5th, 10th, and 25th quantile are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Asterisks indicate statistical significance of the Diebold-Mariano test for equal
predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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QS5 QS10 QS25
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Small
BVAR cons 1.169 0.965 0.938 0.944 1.319*** 1.032 0.995 1.003 1.332*** 1.069 1.032 1.025
BART cons 0.739** 0.963** 1.006 1.012 0.790** 0.957** 1.010 1.035** 0.935 0.963 1.012 1.047***
mixBART cons 0.744** 0.962** 0.981 0.985 0.804** 0.963* 0.990 1.001 0.890* 0.965 0.988 1.014***
errorBART cons 0.991 0.995 0.968*** 0.977 1.033 1.006 0.971*** 0.980 1.038 1.017 0.968*** 0.979
fullBART cons 0.742** 0.965** 1.002 1.014 0.791** 0.961 1.007 1.038*** 0.929 0.967 1.009 1.051***
BVAR SV 1.097*** 1.024 1.019 1.015 1.130*** 1.019 1.018 1.020 1.114*** 1.017 1.002 1.003
BART SV 0.777** 0.968* 1.012 1.008 0.818** 0.964 1.008 1.023** 0.939 0.975 1.002 1.029
mixBART SV 0.851 0.973 0.993 0.993 0.906 0.974 0.999 1.005 0.962 0.974 0.993 1.006
errorBART SV 1.086*** 1.025 1.010 1.009 1.116*** 1.017 1.010 1.010 1.102*** 1.018 0.993 0.990
fullBART SV 0.741** 0.965* 0.994 1.000 0.793** 0.960* 0.995 1.012 0.931 0.970 0.996 1.015
BVAR heteroBART 1.075 1.017 1.025 1.022 1.083 0.999 1.008 1.010 1.083** 0.988 0.973 0.978
BART heteroBART 0.806** 0.981 1.020 1.024 0.854** 0.972 1.008 1.028 0.975 0.983 0.993 1.030
mixBART heteroBART 0.813* 0.969*** 1.007 0.997 0.855* 0.963*** 0.999 1.006 0.951 0.963 0.979 1.003
errorBART heteroBART 0.992 0.995 0.979** 0.987 1.026 0.997 0.977* 0.984 1.049** 1.001 0.966** 0.975
fullBART heteroBART 0.801** 0.976 1.019 1.026 0.857* 0.971 1.007 1.026 0.969 0.980 0.989 1.026

Medium
BVAR cons 1.169 0.968 0.942 0.943 1.326*** 1.032 0.998 0.999 1.321*** 1.073 1.034 1.025
BART cons 0.876* 0.973 0.989 0.997 0.901 0.965* 1.003 1.024 0.970 0.985 1.025 1.058**
mixBART cons 0.892** 0.976 0.972 0.979 0.914** 0.982 0.988 0.993 0.931* 0.992 1.009 1.018
errorBART cons 1.085 0.995 0.972*** 0.978 1.082* 1.002 0.971*** 0.977 1.055* 1.023 0.972** 0.977
fullBART cons 0.861** 0.971 0.995 1.000 0.896* 0.962* 1.002 1.028 0.962 0.989 1.021 1.058**
BVAR SV 1.174** 1.023 1.005 1.005 1.145** 1.018 1.005 1.007 1.119*** 1.019 0.991 0.989
BART SV 0.875* 0.972* 0.990 1.004 0.904* 0.967** 0.998 1.019* 0.969 0.991 1.012 1.039***
mixBART SV 0.986 0.985 0.980 0.984 0.991 0.992 0.988 0.992 0.980 0.993 0.997 1.005
errorBART SV 1.168** 1.024 1.006 1.005 1.156*** 1.018 1.004 1.002 1.115*** 1.022 0.989 0.984
fullBART SV 0.844** 0.970* 0.985 0.995 0.867** 0.963** 0.992 1.010 0.960 0.993 1.008 1.034***
BVAR heteroBART 1.087 1.010 1.010 1.007 1.070 0.992 0.996 0.998 1.063 0.992 0.966 0.970
BART heteroBART 0.896 0.978 0.995 1.007 0.902* 0.967* 0.993 1.020 0.962 0.992 1.001 1.032***
mixBART heteroBART 0.929 0.976** 0.988 0.988 0.924* 0.973** 0.988 0.998 0.959 0.980 0.986 1.002
errorBART heteroBART 1.098 0.995 0.977*** 0.983 1.085* 0.999 0.977** 0.979 1.066** 1.013 0.971** 0.973
fullBART heteroBART 0.861** 0.977 0.996 1.009 0.901* 0.963* 0.992 1.018 0.973 0.998 1.000 1.035***

Large
BVAR cons 1.097 0.953 0.939 0.951 1.238** 1.021 0.999 1.012 1.247*** 1.059 1.039 1.045
BART cons 0.712*** 0.928* 0.970* 0.984 0.785*** 0.931** 0.983 0.993 0.869** 0.959 1.003 1.019
mixBART cons 0.790** 0.944 0.955 0.972 0.832*** 0.956 0.988 1.006 0.878** 0.987 1.023 1.039
errorBART cons 0.924* 0.969* 0.974*** 0.982 0.936* 0.971* 0.977** 0.978 0.951** 0.995 0.979* 0.972
fullBART cons 0.685*** 0.920* 0.971* 0.986 0.770*** 0.926* 0.984 0.995 0.880** 0.959 1.004 1.019
BVAR SV 0.032 0.146 0.154 0.159 0.046 0.160 0.172 0.177 0.067 0.177 0.196 0.204
BART SV 0.722*** 0.940 0.971 0.991 0.796*** 0.947 0.986 0.998 0.874*** 0.975 1.012 1.025
mixBART SV 0.865* 0.955 0.967 0.977 0.900** 0.968 0.988 1.001 0.918** 0.983 1.011 1.025
errorBART SV 1.025* 1.006 1.016 1.006 1.025* 1.000 1.010 1.005 1.006 1.003 0.994 0.983
fullBART SV 0.673*** 0.925* 0.973 0.985 0.762*** 0.937 0.984 0.998 0.907 0.969 1.004 1.025
BVAR heteroBART 0.842*** 0.972*** 0.995 0.993 0.872*** 0.962*** 0.985 0.988 0.920*** 0.957*** 0.966* 0.976
BART heteroBART 0.773*** 0.938* 0.980** 0.992 0.835** 0.939** 0.981** 0.994 0.914* 0.960 0.989 1.009
mixBART heteroBART 0.769** 0.942 0.970 0.983 0.835*** 0.945 0.980 0.994 0.877*** 0.958* 0.992 1.010
errorBART heteroBART 0.936 0.972* 0.982** 0.987 0.968 0.972* 0.979** 0.981 0.974 0.992 0.978* 0.974
fullBART heteroBART 0.695*** 0.922* 0.976*** 0.990 0.781*** 0.926* 0.978 1.001 0.893* 0.963 0.988 1.013

Table 9: Quantile scores (QS) for UNRATE with the holdout ending in 2019:Q4.

Notes: QSs for the 5th, 10th, and 25th quantile are computed as the ratio with respect to the large-scale Bayesian VAR with SV. Asterisks indicate statistical significance of the Diebold-Mariano test for equal
predictive performance at the 1, 5, and 10 percent level. The row associated with the benchmark shows absolute numbers.
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B.3 Additional results for Kullback-Leibler distances

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]
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Figure 1: CRPS over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). The figure is based on
the large information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART
( ). Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 2: qwCRPS-tails over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). The figure is based on
the large information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART
( ). Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 3: qwCRPS-left over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). The figure is based on
the large information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART
( ). Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 4: QS5 over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). Figure is based on the large
information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART ( ).
Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 5: QS10 over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). Figure is based on the large
information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART ( ).
Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 6: QS25 over time.

Notes: Recursive mean in percent relative to the benchmark model (large BVAR SV). Figure is based on the large
information set. Models: BVAR ( ), BART ( ), mixBART ( ), errorBART ( ) and fullBART ( ).
Solid line indicates homoskedastic variances, short dashes mark SV, and long dashes are heteroBART.
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Figure 7: KLD between exact and approximate predictive distribution, GDPC1.
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Figure 8: KLD between exact and approximate predictive distribution, GDPCTPI.
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Figure 9: KLD between exact and approximate predictive distribution, UNRATE.
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BVAR, h=1

−10

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

BVAR, h=4

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

BART, h=1

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

BART, h=4

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

mixBART, h=1

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

mixBART, h=4

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

errorBART, h=1

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

errorBART, h=4

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

fullBART, h=1

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

fullBART, h=4

−5

0

5

10

2000 2005 2010 2015 2020

G
D

P
C

1

−40

−20

0

20

Q1 Q4
2020

Figure 10: Predictive densities for GDPC1.

Notes: Constant volatility ( ), SV ( ), heteroBART ( ). Thin colored lines mark the 5/95th percentile,
thick lines the 10/90th percentile. Black lines and points are realizations of the final vintage.
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Figure 11: Predictive densities for GDPCTPI.

Notes: Constant volatility ( ), SV ( ), heteroBART ( ). Thin colored lines mark the 5/95th percentile,
thick lines the 10/90th percentile. Black lines and points are realizations of the final vintage.
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Figure 12: Predictive densities for UNRATE.

Notes: Constant volatility ( ), SV ( ), heteroBART ( ). Thin colored lines mark the 5/95th percentile,
thick lines the 10/90th percentile. Black lines and points are realizations of the final vintage.
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Figure 13: Volatility predictions for GDPC1 (posterior median).

Notes: Constant volatility ( ), SV ( ), heteroBART ( ).
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Figure 14: Volatility predictions for GDPCTPI (posterior median).

Notes: Constant volatility ( ), SV ( ), heteroBART ( ).
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Figure 15: Volatility predictions for UNRATE (posterior median).

Notes: Constant volatility ( ), SV ( ), heteroBART ( ).
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Figure 16: Percentiles of the posterior predictive distributions for different quantiles of the
NFCI.

Notes: The quantiles range from 0 to 1 with step size of 0.05. The legend refers to the quantiles.
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Figure 17: One-step-ahead predictive distributions based on different values of the NFCI

Notes: The quantiles range from 0 to 1 with step size of 0.05. The legend refers to the quantiles.
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Figure 18: KLD between exact and approximate predictive distribution, GDPC1.
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Figure 19: KLD between exact and approximate predictive distribution, GDPCTPI.
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Figure 20: KLD between exact and approximate predictive distribution, UNRATE.
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