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ABSTRACT. Monitoring changes in financial conditions provides valuable information on the contribu-

tion of financial risks to future economic growth. For that purpose, central banks need real-time indica-

tors to promptly adjust their policy stance. In this paper, we extend the quarterly Growth-at-Risk (GaR)

approach of Adrian et al. (2019) by accounting for the high-frequency nature of financial conditions in-

dicators. Specifically, we use Bayesian mixed data sampling (MIDAS) quantile regressions to exploit the

information content of both a financial stress index and a financial conditions index leading to real-time

high-frequency GaR measures for the euro area. We show that our daily GaR indicator (i) displays good

GDP nowcasting properties and (ii) can provide an early signal of GDP downturns.During the first six

months of the Covid-19 pandemic period, it has provided a timely measure of tail risks weighing on the

euro area GDP.

JEL: C22, E37, E44.
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1. INTRODUCTION

There is a growing body of research, from both theoretical and empirical literature, suggesting that

the information content of financial indicators is relevant for macroeconomic forecasting and that fi-

nancial shocks are influential in driving global activity.1 It follows that a good understanding of the

evolution of economic conditions would require to monitor the tension in the financial sector. Based

on this observation, Adrian et al. (2019) developed a tool for evaluating financial risks to economic

growth, using a tail-risk approach known as the Growth-at-Risk (GaR), that can be seen as equiva-

lent to the Value-at-Risk concept in finance. This approach is used to keep track of the distortion of

the entire expected growth distribution according to financial market developments using quantile

regression methods (Giglio et al., 2016). Quantile regressions provide an estimate of the elasticity of
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FIGURE 1. Elasticity of GDP growth to quarterly financial conditions for different quantiles

Notes: Q10, Q50 and Q90 represent the 10% quantile, 50% quantile (or median) and
90% quantile, respectively. Estimates are obtained by replicating the one-step ahead
quarterly model in Adrian et al. (2019) over the 2001q1-2019q4 sample. The euro-area
financial conditions index is the one proposed by Petronevich and Sahuc (2019) and
the U.S. financial conditions index comes from the Chicago Fed (NFCI).

the Gross Domestic Product (GDP) growth rate to financial conditions for any range of values of the

economic growth rate, thus capturing the non-linear nature of this relationship. Figure 1 displays the

values of these elasticities for various quantiles in the United States and the euro area and shows that

the relationship is strongest for changes in GDP located at the bottom of the distribution. This illus-

trates that a tightening of financial conditions tends to amplify the effects of negative shocks to the real

economy, as notably emphasized by Bernanke and Gertler (1989), while an easing of these conditions

has a more limited impact on economic activity at the peak of the cycle.

However, the standard GaR approach suffers from several drawbacks arising primarily from a mod-

elling of tail-risks based on quarterly data, while financial indicators are often sampled at higher fre-

quency. To ensure the same frequency, financial conditions indexes are usually aggregated by simple

averaging to get the data sampled at the same low-frequency as GDP. Such data aggregation is likely to

lead to biased estimates if the underlying data generating process does not feature a flat-aggregation

scheme from high to low frequencies. Asymptotically inefficient and inconsistent estimates may hence

dampen the information content of daily financial indicators and have adverse effects on forecasting.

In addition, this strategy makes the standard GaR relying on somewhat outdated financial informa-

tion, the latter usually entering the model with one quarter lag, while central banks need the most

current information to adjust promptly their policy stance. Higher-frequency data series are thus
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helpful to more accurately assess economic conditions, as evidenced by Clements and Galvao (2009),

Rodriguez and Puggioni (2010), Schorfheide and Song (2015), Ghysels (2016), Mazzi and Mitchell

(2020), Lima et al. (2020) or Carriero et al. (2020). More particularly, Andreou et al. (2013) show that

model regressions exploiting high-frequency financial data series provide a substantial gain as regards

current and next quarter output growth forecasting accuracy, against various benchmark models as

well as survey forecasts.

In this paper, we implement a mixed data sampling (MIDAS) quantile regression approach (Ghy-

sels et al., 2016) to obtain a real-time high-frequency GaR measure. More specifically, we consider a

bayesian approach for estimation (Korobilis, 2017; Carriero et al., 2020) and a restricted Almon lag

polynomial approximation of the high-frequency component (Mogliani and Simoni, 2021).2 We then

consider the 10th percent quantile of the conditional predictive distribution of current euro area GDP

growth – which is akin to nowcasting – and compute a high-frequency measure of current tail-risks

on activity that we call the daily GaR(10%). Our model combines the information stemming from two

daily euro area financial indicators in order to better capture different features of the financial side

of the economy: (i) the Composite Indicator of Systemic Stress (CISS) of the European Central Bank

(Holló et al., 2012) and (ii) the financial indicator proposed by Petronevich and Sahuc (2019). The first

one is a financial stress indicator, which is designed to react more to systemic fragility in financial

markets, whereas the second one is a financial conditions index, which is more useful in exploring

macro-financial linkages. We also collect seasonally and calendar adjusted vintages of quarterly GDP

into a real-time triangle spanning from 1999Q1 to 2020Q2 to perform an historical analysis on a pseudo

real-time basis.

We propose several applications to highlight the practical interest of our daily GaR(10%) measure.

We first evaluate the nowcasting ability of our model, i.e. the ability to assess current GDP growth,

based on the entire predictive distribution. Second, we look at the real-time evolution of the indicator

before and during a specific recession episode, namely the sovereign debt crisis that affected the euro

area from 2010 to 2013. Third, we inspect the link between the GaR measure and the main uncon-

ventional monetary policy decisions announced by the ECB between 2013 and 2018. Finally, we focus

on the Covid-19 pandemic period during the first half-2020, which offers an interesting case study for

assessing extreme macroeconomic risks through our high-frequency measure.

We show that our high-frequency approach provides an efficient monitoring of financial risks weigh-

ing on the euro area. For instance, our daily GaR(10%) measure would have led to an advanced detec-

tion of the GDP downturn observed during the European sovereign debt crisis, by steadily declining

by approximately 1 percentage point, more than a quarter ahead of the start of the recession in 2011Q4.

2Carriero et al. (2020) show that Bayesian mixed frequency quantile regressions may provide superior predictive accu-
racy compared to the frequentist approach.
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In addition, it provides a day-to-day benchmark for monetary policy by revealing information about

how economic activity is likely to react to new announcements. We observe in particular an increase in

the value of the GaR(10%) around (either following or anticipating, consistently with the narrative and

the expectations prevailing at that time) each announcement of the main unconventional monetary

policies between 2013 and 2018. Finally, during the first half-2020, it has provided a timely indication

of tail risks on euro-area GDP, especially since the World Health Organization (WHO) announcement

recognizing the Covid-19 epidemic as a global pandemic on March 11th, 2020.

Our paper contributes to the very recent literature on the use of quantile regressions to evalu-

ate macroeconomic risks (see Giglio et al., 2016, Adrian et al., 2019, Gonzalez-Rivera et al., 2019, or

Figueres and Jarocinski, 2020, Adams et al., forthcoming), as well as on mixed frequency data models

to assess current economic conditions. In addition, we do not solely focus on nowcasting but also

propose a new piece to the policymakers’ toolkit for real-time macro-financial surveillance.

In the remainder of the paper, Section 2 introduces the Growth-at-Risk approach with mixed data

sampling and describes the bayesian approach. Section 3 presents the data and the computational

approach. Section 4 proposes some applications, including a focus on the Covid-19 crisis, and Section

5 concludes.

2. GROWTH-AT-RISK WITH MIXED FREQUENCY DATA SAMPLING

2.1. The Growth-at-Risk approach. Since the Global Financial Crisis and the ensuing Great Reces-

sion in 2008-09, financial institutions have step up their monitoring of financial conditions in order to

be able to rapidly react to any possible financial shocks before its transmission to the real economy.

Adrian et al. (2019) have recently developed a methodology, referred to as Growth-at-Risk (GaR), for

measuring financial risks or vulnerabilities to U.S. economic growth. This approach is now widely

used by the International Monetary Fund to assess risks to the global financial system in its flagship

biannual Global Financial Stability Report (see, for instance, IMF, 2019).

The GaR approach relies on a quantile regression of GDP growth on past financial conditions and

past GDP, accounting thus for non-linearities in a very simple econometric model of macro-financial

linkages. Indeed, both theoretical and empirical literature have shown that financial markets play

a key role in the transmission and propagation of shocks to the economy, but the channels of trans-

mission are highly complex and present a strong degree of non-linearity. For instance, building on

earlier theoretical contributions such as Bernanke and Gertler (1989), Carlstrom and Fuerst (1997),

Kiyotaki and Moore (1997) or Bernanke et al. (1999), the recent literature shows that financial con-

straints can lead to highly nonlinear dynamics in the economy’s response to shocks (asymmetric im-

pulse responses following a negative or a positive shock). Recently, Hubrich and Tetlow (2015) have

empirically assessed models of financial frictions and have shown that (i) a single-regime model of
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the macroeconomy and financial stress is inadequate to capture the dynamics of the economy and (ii)

output reacts more strongly to financial shocks in times of financial stress than in normal times.

As in Adrian et al. (2019), let us assume that we want to assess the joint effect of past GDP growth

(yt−h) and a given financial conditions indicator (xt−h), where h is the forecast horizon, on the current

GDP growth (yt). Furthermore, consider an additional vector wt−h of K control variables. We assume

at this stage that both the target variable and the vector of regressors have been sampled at the same

quarterly frequency. The methodology dealing with frequency mismatches is the core of this paper

and will be presented in the following section. Beyond the standard linear ordinary least squares

(OLS) approach, the quantile regression framework put forward by Koenker and Bassett (1978) is

an efficient way to introduce non-linearities in the relationship between a given variable yt and its

predictors. Instead of minimizing the sum of squared errors, as in the OLS approach, the quantile

estimation is based on the asymmetric minimization of the weighted absolute errors.

Let’s consider the following quantile regression:

yt = β1(τ)yt−h + β2(τ)xt−h + γ(τ)′wt−h + εt, (1)

where the vector of coefficients β(τ) := (β1(τ), β2(τ), γ(τ)′)′ depends on the τ-th quantile of the

random error term εt. The coefficients !β(τ) are obtained by minimizing the following loss function:

T

∑
t=1

ρτ

"
yt − β(τ)′zt−h

#
, (2)

where zt−h = (yt−h, xt−h, wt−h)
′, ρτ(u) = u(τ − I(u < 0)) is the check loss function, with I(·) de-

noting the indicator function. Koenker and Bassett (1978) proved that the predicted value !Qyt(τ|z) =
!β(τ)′zt−h is a consistent linear estimator of the conditional quantile function of yt. In order to provide

an evaluation of financial risks to future economic activity, an estimate of the future quantile function

of yT|T−h, conditional on sample information available up to T − h, is given by:

!QyT|T−h(τ|z) = !β(τ)′zT−h. (3)

Based on estimates of the conditional quantile function over a discrete number of quantile levels,

it is possible to estimate the full continuous conditional distribution of yT|T−h. As in Adrian et al.

(2019), we choose to fit a flexible distribution, known as the generalized Skewed-Student distribution,

in order to smooth the estimated conditional quantile function of yT|T−h and recover a probability

density function.3 This specific distribution allows for fat tails and asymmetry and boils down to the

Normal distribution as a specific case. The generalized Skewed-Student distribution has the following

3As noted by Adrian et al. (2019), Equation (3) represents an approximate estimate of the quantile function, which is
difficult to map into a probability distribution function due to approximation error and estimation noise.
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density function:

f (y; µ, σ, α, ν) =
2
σ

t
$

y − µ

σ
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σ
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ν +
,
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σ
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.

/0 , (4)

where µ is a location parameter, σ a scale parameter, ν a fatness parameter and α a shape parame-

ter. t(·) and T(·) are respectively the probability density function (pdf ) and the cumulative density

function (cdf ) of the standard Student distribution (Azzalini and Capitanio, 2003).

In practice, the four parameters of the generalized Skewed-Student distribution are estimated through

a quantile matching approach aiming at minimizing the squared distance between the estimated con-

ditional quantile functions and the inverse cdf of the generalized Skewed-Student distribution given

by:

min
µ,σ,α,ν ∑

τ

1
!QyT|T−h(τ|z)− F−1(τ; µ, σ, α, ν)

22
, (5)

where F−1(·) is the inverse cumulative Skewed-Student distribution. Finally, from the fitted quantile

function, F−1(τ; !µ, !σ,!α, !ν), it is possible to compute some downside risk measures, such as the ex-

pected shortfall, at any given probability level. Due to the short data sample used in our empirical

part, we shall focus on the lower 10th percent quantile of the predicted distribution (see also Figueres

and Jarocinski, 2020), called the GaR(10%), which is given by:

Q∗
yT|T−h

(τ = 0.10|z) := F−1(τ = 0.10; !µ, !σ,!α, !ν). (6)

This can be interpreted as the expected value of future GDP at 10% probability, stemming from the

conditional quantile function of yT|T−h.

2.2. Introducing the MIDAS-quantile regression. The problem with the setup described above is

that both the aggregation of high-frequency (financial) indicators into the lower frequency of GDP

and the lag structure of the specification in Equation (1), prevent the model from reacting readily to

sudden shocks. Hence, from the policymaker point of view, the GaR model appears an impractical

tool for monitoring financial risks to activity in real-time.

We thus propose to adapt Equation (1) to account for the possible high-frequency nature of the re-

gressors. Let us assume that the financial indicator xt is available on a daily basis, i.e. virtually without

delay, and denote it x(d)t (i.e. it is observed about d = 60 times on average between quarters t − 1 and

t). Further, let us note that also the set of control variables can be sampled at higher frequency than

the target variable. Hence, for notation convenience and consistently with the applications presented

in the next sections, let us assume that K = 1 and that wt is sampled at monthly frequency, and let

us denote it w(m)
t , with m = 3. According to these features, we can build a high-frequency real-time
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GaR measure which relates current quarterly GDP growth to past and current values (up to the latest

available observation) of high-frequency financial conditions and the control variable. For this pur-

pose, the general model used throughout this paper follows a mixed data sampling (MIDAS)-quantile

regression (MIDAS-QR):

yt = β1(τ)yt−1 + β2(τ)
Cx−1

∑
c=0

3B (c; θx(τ)) Lc
4

d x(d)t−hd
+ γ(τ)

Cw−1

∑
c=0

3B (c; θw(τ)) Lc/m w(m)
t−hm

+ εt (7)

where 3B
"
c; θj(τ)

#
is a weighting function (normalized to sum up to 1), which depends on a vector of

parameters θj(τ), for j = {x, w}, and a lag order c. Note that the forecast horizon is expressed in high-

frequency terms (h f = 0, 1/ f , 2/ f , . . . , (Cj − 1)/ f , for f = {d, m}). While Ghysels et al. (2016) propose

the Beta lag polynomial function for the quantile weighting function, we choose a simple polynomial

approximation of the underlying true weighting structure provided by the (un-normalized) Almon

lag polynomial B
"
c; θj(τ)

#
= ∑

p
i=0 θi,j(τ)ci, where θj(τ) :=

"
θ0,j(τ), θ1,j(τ), . . . , θp,j(τ)

#′, similarly to

Lima et al. (2020) and Mogliani and Simoni (2021). Under the so-called “direct method”, Equation (7)

with (un-normalized) Almon lag polynomials can be reparameterized as:

yt = β1(τ)yt−1 + θx(τ)
′3x(d)t−hd

+ θw(τ)
′ 3w(m)

t−hm
+ εt, (8)

where θx(τ) and θw(τ) are vectors featuring (p + 1) parameters, 3x(d)t := Qxx(d)t and 3w(m)
t := Qww(m)

t

are ((p + 1) × 1) vectors of linear combinations of the observed high-frequency variables, x(d)t :=,
x(d)t , x(d)t−1

4
d , . . . , x(d)t− (Cx − 1)

4
d

-′
and w(m)

t :=
,

w(m)
t , w(m)

t−1/m , . . . , w(m)
t− (Cw − 1)

4
m

-′
are (Cj × 1) vectors of high-

frequency lags, and Qj is a (p + 1 × Cj) polynomial weighting matrix (for j = {x, w}), with (i + 1)-th

row [0i, 1i, 2i, . . . , (Cj − 1)i] for i = 0, . . . , p. Note that estimates of the slope coefficients β2(τ) and γ(τ)

in Equation (7) can be computed as !β2(τ) = !θx(τ)′QxιCx
and !γ(τ) = !θw(τ)′QwιCw

, where ιCj
is a

(Cj × 1) vector of ones.

The main advantage of the Almon lag polynomial is that Equation (8) is linear and parsimonious,

as it depends only on (p + 1) parameters for the high-frequency variable. Further, linear restrictions

on the value and slope of the lag polynomial B
"
c; θj(τ)

#
may be placed for any c ∈ (0, Cj − 1). End-

point restrictions, such as B
"
Cj − 1; θj(τ)

#
= 0 and ∇cB

"
c; θj(τ)

#
|c=Cj−1 = 0, may be desirable and

economically meaningful, as they jointly constrain the weighting structure to tail off slowly to zero

(Mogliani and Simoni, 2021). As a result, the number of parameters in Equation (8) reduces from

(p + 1) to (p − r + 1), where r ≤ p is the number of restrictions.

2.3. Bayesian estimation. In the standard quantile regression (Koenker and Bassett, 1978), the dis-

tribution of the residuals εt in Equation (8) is unspecified (a non-parametric distribution) and the

estimation of the τ-th quantile regression coefficients is the solution to the minimization of the loss
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function given by (2). Let’s denote Xt = (yt−1,3x(d)t−hd
, 3w(m)

T−hm
)′ and Θ(τ) = (β1(τ), θx(τ)′, θw(τ)′)′. Yu

and Moyeed (2001) showed that the minimization of ∑T
t=1 ρτ (yt − Θ(τ)′Xt) is equivalent to maximiz-

ing a likelihood function under the asymmetric Laplace error distribution (ALD) for εt.4 According

to Kozumi and Kobayashi (2011), the ALD f (ε|σ) can be viewed as a mixture of an exponential and

a scaled Normal distribution. Considering the random variables ν ∼ Exp(1) and ω ∼ N (0, 1), then

ε = ξ1σν + ξ2σ
√

νω follows the skewed distribution f (ε|σ) above, with:

ξ1 =
1 − 2τ

τ(1 − τ)
and ξ2

2 =
2

τ(1 − τ)
.

Hence, using this expression for ε, we can rewrite Equation (8) as:

yt = Θ(τ)′Xt + ξ1ν̃t + ξ2
√

σν̃tωt, (9)

where ν̃t = σνt follows the exponential distribution Exp(σ), with density function f (ν̃t|σ) = σ−1 exp(−ν̃t/σ).

Then, the conditional likelihood function stems from a Normal distribution and takes the following

form:

f (y|X, Θ, ν̃, σ, τ) ∝
T

∏
t=1

1
ξ2
√

σν̃t
exp

5
−1

2

T

∑
t=1

(yt − Θ(τ)′Xt − ξ1ν̃t)
2

ξ2
2σν̃t

6
.

We consider standard conditionally Normal prior that leads to the following hierarchical represen-

tation of the Bayesian MIDAS quantile regression (BMIDAS-QR):

y|X, Θ, σ, ν̃, τ ∼ N
"
Θ(τ)′Xt + ξ1ν̃t, ξ2

2σν̃
#

,

Θ|τ ∼ N (Θ0, Σ0),

ν̃|σ ∼ Exp (σ) ,

σ ∼ Inv-Gamma (a1, b1) .

As shown notably by Khare and Hobert (2012), the full conditional posteriors are given by:

Θ|X, σ, ν̃, τ ∼ N
,

A−1B, A−1
-

,

ν̃t|X, Θ, σ, τ ∼ GiG
$

1
2

,
(yt − Θ(τ)′Xt)

ξ2
2σν̃t

,
ξ2

1 + 2ξ2
2

σξ2
2

ν̃t

%
,

4The ALD has density

f (ε|σ) = τ(1 − τ)

σ
exp

!
− ρτ(ε)

σ

"
,

and moments:

E(ε) = σ
1 − 2τ

τ(1 − τ)
V(ε) = σ2 1 − 2τ(1 − τ)

τ2(1 − τ)2 .

Both theoretical and empirical results support the use of the ALD in the context of quantile regressions, even when the true
distribution of the data is not ALD (Sriram et al., 2013).
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σ|X, Θ, ν̃, τ ∼ inv-Gamma

7
3T
2

+ a1,
T

∑
t=1

(yt − Θ(τ)′Xt − ξ1ν̃t)2

2ξ2
2ν̃t

+
T

∑
t=1

ν̃t + b1

8
,

where A =
,

X′
tD

−1Xt + Σ−1
0

-−1
, B = X′

tD
−1(yt − ξ1ν̃) + Σ−1

0 Θ0, and D = diag(ξ2
2σν̃t).

3. DATA AND COMPUTATIONAL APPROACH

3.1. Data. In our applications, we focus on recent events that have impacted the euro area economy.

As an aggregate measure of economic activity, we use the quarter-on-quarter growth rate of GDP for

the euro area as whole (Figure 2a). To perform the analysis on a pseudo real-time basis, we collect

seasonally and calendar adjusted vintages of quarterly GDP from Eurostat and ECB. The data are

composed of multiple releases for the same vintage (preliminary flash estimates, flash estimates and

regular estimates), whose number and publication delays vary overtime, and are collected into a real-

time triangle spanning from 1999Q1 to 2019Q4. Actual historical release dates are also identified and

matched with each vintage.

As regards the high-frequency financial indicators, we consider two alternative daily euro area time

series: (i) a financial stress indicator, which is designed to react to systemic fragilities within financial

markets, and (ii) a financial conditions index, which is more useful in exploring macro-financial link-

ages. The two indicators complement each other in capturing different features of the financial side of

the economy, as can be seen on Figure 2b.5

The financial stress indicator is the Composite Indicator of Systemic Stress (CISS) developed by the

European Central Bank (Holló et al., 2012). The main methodological innovation of the CISS is the

application of basic portfolio theory to the aggregation of five market-specific sub-indexes, namely

the foreign exchange market, the equity market, the money market, the bond market and the financial

intermediaries. The aggregation takes into account time-varying cross-correlations between the five

sub-indexes. As a result, the CISS puts relatively more weight on situations in which stress prevails in

several market segments at the same time, capturing the idea that financial stress is more systemic and

thus more dangerous for the economy as a whole if financial instability spreads more widely across

the whole financial system. Holló et al. (2012) proposed the determination of critical levels for the

CISS using the endogenous outcomes of two econometric regime-switching models.

The financial conditions index (FCI) is the one proposed by Petronevich and Sahuc (2019). This

new FCI is based on six main components (rates, credit, equity, uncertainty, inflation, and exchange

rates) extracted from eighteen daily series through a principal component analysis. The FCI is then

5Both financial indicators are freely available on the European Central Bank Statistical Data Warehouse (CISS) and on
the Banque de France Webstat (FCI), respectively.

https://sdw.ecb.europa.eu/browse.do?node=9689686
http://webstat.banque-france.fr/en/browseSelection.do?node=DATASETS_FCI
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FIGURE 2. Euro area GDP and daily financial conditions indices (1999-2019)

(A) GDP growth rate (B) Daily financial indicators: FCI (left axis) and CISS

Notes: Panel A displays the GDP growth rate with the uncertainty associated with the estimates represented by the
gray area. Panel B plots the two euro-area daily financial indicators: the financial conditions index (FCI) proposed by
Petronevich and Sahuc (2019) and the composite indicator of systemic stress (CISS) proposed by Holló et al. (2012).

computed by aggregating these components using time-varying weights, which are based on univari-

ate conditional volatilities estimated through a GARCH(1,1) model. As greater volatility increases the

weight of the corresponding component, the FCI may put relatively more weight on single stressed

components, whose signal is hence not muted by the state of the other components. As a result, the

FCI resorts on information stemming from the actual level of the components and their volatility.

Finally, we control for macroeconomic news by setting w(m)
t as the Euro area Composite Purchas-

ing Managers Index Output (PMI hereafter).6 This choice is dictated by the fact that the financial

indicators considered are not explicitly designed to reflect real side developments and expectations,

although they may indirectly capture such signals. Controlling for real factors can be important to

gauge the real-time effect of financial indicators on real activity (see also Plagborg-Møller et al., 2020

and De Santis and Van der Veken, 2020). In this sense, survey data, such as PMI, provide timely

and mostly unrevised macroeconomic news information that can be easily exploited in our mixed-

frequency framework.

3.2. Computing the high-frequency GaR(10%). As shown in Figure 2b, the FCI and the CISS present

very similar high-frequency patterns, pointing to a strong correlation between these two series. Using

the two indicators together in quantile regression (10) would then likely introduce multicollinearity in

the model, leading to poor inference and predictive results. Hence, the first step for the construction of

our GaR(10%) measure consists in estimating regression (9) through the Bayesian approach described

6We thank an anonymous referee for this suggestion.
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in Section 2.3 and using two distinct set of regressors X. Both include one lag of GDP growth and

the PMI, but only one financial indicator, i.e. either the FCI or the CISS. In the regressions we use

a third-degree Almon lag polynomial (p = 3) and two end-point restrictions (r = 2) for both daily

and monthly predictors, and we set the high-frequency lag windows to Cx = 60 (days) and Cw = 6

(months). We use standard diffuse priors for the model parameters Θ and σ, except for the autoregres-

sive lag of GDP, whose prior mean and variance are set such that the probability mass is concentrated

below unity. The Gibbs sampler is run for N = 250, 000 iterations, with the first 50, 000 used as burn-in

period, and every 10th draw is saved. The estimation sample spans 1999Q1 to 2019Q4 and the daily

forecasts start on July 1st, 2009.

Let’s denote !Q(n)
i,yT|T−hd

(τ|Xi) the n-th posterior conditional quantile estimate of yT|T−hd
provided by

the Markov Chain Monte Carlo (MCMC) algorithm, for n = 1, . . . , N. The subscript i denotes whether

the underlying specification includes the FCI (i = 1) or the CISS (i = 2). The τ-th conditional quantile

point estimate is then given by:

!Qi,yT|T−hd
(τ|Xi) =

1
N

N

∑
n=1

!Q(n)
i,yT|T−hd

(τ|Xi),

that is the average predicted value from regression (9) for each quantile τ.7 The generalized Skewed-

Student distribution is then fitted on !Qi,yT|T−hd
(τ|Xi), and we hence recover our high-frequency daily

GaR(10%) indicator (see Equation (6)):

Q∗
i,yT|T−hd

(τ = 0.10|Xi). (10)

Finally, note that the Bayesian estimation provides a natural estimate of the standard error of the

quantile function, as the conditional likelihood implies that the conditional quantile function is nor-

mally distributed. We can hence provide a measure of uncertainty surrounding the estimated daily

GaR(10%) by computing its credible interval at some (1 − α) level. In order to obtain asymptotically

valid credible intervals, we implement the correction to the covariance matrix of the posterior chain

proposed by Yang et al. (2016).

3.3. Combining Growth-at-Risk measures. In the previous step, we computed competing Gar(10%)

measures, based on two alternative –although broadly complementary– financial indicators. How-

ever, for the ease of analysis and interpretation of the results, it would be preferable from the policy-

maker point of view to summarize the information stemming from these two indicators into a single

GaR measure. For this purpose, we adopt a strategy based on density forecasts combination (see for

7It is worth noting that yT−1 is not available until its actual publication, usually around 30-45 days after the end of
quarter T − 1. To overcome this issue without affecting the real-time nature of the analysis, we use the EuroCoin indicator
as a proxy of past GDP growth. This indicator is released by the end of quarter T − 1, and real-time vintages are available
on the CEPR website.

https://eurocoin.cepr.org/
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FIGURE 3. The daily combined GaR(10%) and the weight associated with each indi-
vidual model, over the 2010Q3–2019Q4 period

(A) The daily combined GaR(10%) (B) Weight of each individual model

Note: The daily combined GaR(10%) corresponds to the lower 10th percentile of the distribution of the expected real GDP
growth, based on the combination of two individual GaR(10%) measures, estimated from models including each a different
financial conditions indicator (FCI or CISS).

instance Hall and Mitchell, 2007, and Geweke and Amisano, 2011). More specifically, we implement

the following algorithm:

(1) From Section 3.2, the individual smoothed conditional predictive quantile functions Q∗
i,yT|T−hd

(τ|Xi),

for τ ∈ (0, 1), are computed sequentially (i.e. on a daily basis from July 1st, 2009 onwards) for

each specification including either the FCI (i = 1) or the CISS (i = 2).

(2) The individual predictive quantile functions are then converted into density forecasts and

a real-time measure of their predictive performance is computed. We choose the Quantile

Weighted Probability Score (QWPS; Gneiting and Ranjan, 2011), which provides a metrics for

the evaluation of the predictive ability of a model by emphasising the (left) tail of the estimated

density forecasts.8

(3) Combination weights ωi,T−hd are computed recursively (i.e. from the first to the last business

day of each quarter) using a discounted QWPS combinations method, similar to the point

8The QWPS is a quantile-weighted version of the CRPS (Gneiting and Raftery, 2007), given by QWPS( f , y) =! 1
0 QSτ(F−1(τ), y)ν(τ)dτ, where QSτ(F−1(τ), y) is the quantile score and ν(τ) is a weighting function. While ν(τ) = 1

leads to the standard CRPS, in our application we chose ν(τ) = (1 − τ)2, which emphasise the left tail of the predictive dis-
tribution and reflects implicitly an asymmetric loss function weighing more on lower quantiles. Alternative popular metrics
for combining density forecasts, such as the log-Score or the CRPS (see Geweke and Amisano, 2011, and Pettenuzzo et al.,
2016, among others) provided nevertheless very similar results.
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forecast approach of Stock and Watson (2004) and Andreou et al. (2013):

ωi,T−hd =
w−κ

i,T−hd

∑i w−κ
i,T−hd

,

where

wi,T−hd =
Tℓ

∑
j=T0

δTℓ−jQWPSi,j,

with κ = 2, δ = 0.9 (the discount factor), T0 the point at which the first prediction is computed,

and Tℓ the point at which the most recent prediction can be evaluated in real-time.9

(4) Finally, the combined conditional predictive quantile function is computed recursively as:

Q∗
yT|T−hd

(τ|X) = ∑
i

ωi,T−hd × Q∗
i,yT|T−hd

(τ|Xi).

From the obtained combined quantile function, we recover the high-frequency (daily) combined

GaR(10%) indicator Q∗
yT|T−hd

(τ = 0.10|X). This daily indicator, along with its estimated 90% credi-

ble interval, as well as the evolution of the weights ωi,T−hd , are presented in Figure 3 (panel A and B,

respectively) over the period 2010Q3-2019Q4.10

4. EMPIRICAL RESULTS

This section presents four applications on the euro area economy which illustrate the practical inter-

est of using a daily GaR measure. In the first application, we evaluate its nowcasting properties when

trying to track in real-time GDP growth. A second application focuses on the real-time evolution of

the indicator during the European sovereign debt crisis. The third one highlights its strong link with

the main monetary policy decisions taken between 2013 and 2018. Finally, we evaluate the behaviour

of our high-frequency measure during the first six months of the Covid-19 pandemic.

4.1. Nowcasting GDP. As a first illustration, we evaluate the overall nowcasting performance of our

BMIDAS-QR model, beyond the GaR measure. For this purpose, we consider the predictive densities

obtained from the conditional predictive quantile function Q∗
yT|T−hd

(τ|X). These densities are reported

9Given the size of the evaluation sample, we do not compute specifics weights for each forecast horizon hd, but we stack
QWPSi,T−hd

in a single vector. Further, because of the pseudo real-time nature of the analysis, Tℓ ∕= T − hd. It follows that
ωi,T−hd

= ωi,T−(hd+1) as long as a new point is available for evaluation. Finally, we use the first 97 daily predictions, from
July 1st, 2009 to June 30th, 2010, to warm-up the combination scheme. Over the period July 1st, 2009 - November 12th, 2009,
we initialise the combination weights by setting ωi,T−hd

= 0.5.
10The daily GaR(10%) series is obtained overtime in a pseudo real-time manner: every daily prediction corresponds to

a specific hd forecast horizon, depending on the date of the prediction and the number of business days in the quarter. For
instance, the GaR(10%) value for June 30 corresponds to the prediction obtained from a specification with hd = 0, while the
value for April 30 corresponds to the prediction obtained from a specification with hd = 40 (on average).
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FIGURE 4. Nowcasting GDP with the BMIDAS-QR model

Note: The BMIDAS-QR model is the Bayesian mixed data sampling (MIDAS) model
linking quarterly GDP and daily financial conditions indices estimated with quantile
regression (QR) methodology.

in Figure 4, along with the preliminary estimates of quarterly GDP. A visual inspection of the figure

suggests that the conditional distributions can track the actual GDP growth fairly well, notably during

the 2011-2013 recession episode (see Section 4.2), as well as during the acceleration of activity in 2016-

2017 and the following deceleration in 2018-2019.

Forecasts from our model are first compared to those from a benchmark specification, given by a

simple Bayesian AR(1) regression (BAR). Consistently with the conditional distribution approach in-

vestigated in the present paper, we concentrate mainly on density forecasts, which are evaluated by

the means of four various criteria: average log-Score differentials (LS), average Continuous Ranking

Probability Score ratios (CRPS; Gneiting and Raftery, 2007), average Quantile-Weighted Probability

Score ratios (QWPS; Gneiting and Ranjan, 2011) and average Quantile Score ratios (QS). For CRPS,

QWPS and QS criteria, values less than one indicate that our combined model outperforms the bench-

mark. For the LS criterion, positive values indicate that our model produces more accurate density

forecasts than the BAR. As a robustness check, we further consider density forecasts from two com-

peting models, namely a combined Bayesian MIDAS model (BMIDAS) and a Bayesian Quantile AR(1)

regression (BQAR). Combined BMIDAS density forecasts are computed using the same combination

strategy as outlined in Section 3.3, where the underlying univariate models and densities are estimated
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TABLE 1. Out-of-sample results: relative accuracy of density forecasts (2010Q3-2019Q4)

hd BMIDAS-QR BMIDAS BQAR(1)

LS CRPS QWPS QS(0.10) LS CRPS QWPS QS(0.10) LS CRPS QWPS QS(0.10)

0 0.30 0.81 0.81 0.64 0.23 0.90 0.83 0.63 0.11 0.97 0.98 0.98
10 0.22 0.91 0.86 0.60 0.19 0.95 0.85 0.61 0.11 0.97 0.98 0.98
20 0.26 0.88 0.84 0.60 0.20 0.94 0.85 0.62 0.11 0.97 0.98 0.97
40 0.09 1.05 1.10 0.88 0.03 1.13 1.10 0.84 0.07 0.99 1.01 0.92
60 0.11 1.03 1.08 0.87 0.02 1.10 1.08 0.82 0.08 0.99 1.00 0.92

Notes: LS, CRPS, QWPS, and QS denote respectively the log-score, the continuously ranked probability score, the quantile weighted
probability score, and the quantile score (evaluated at τ = 0.10), in relative terms with respect to the BAR(1) benchmark. Bold values
denote the best outcomes across the models considered for each forecast horizon hd.

using the approach described in Pettenuzzo et al. (2016). The BQAR model is similar to specification

(8) but with only the lagged GDP in the quantile regression.

The results, reported in Table 1, point to a systematic outperformance of our BMIDAS-QR model

with respect to the BAR(1) benchmark and the other competitors considered for relatively short fore-

cast horizons (up to 20 business days). For longer horizons, this evidence is less clear-cut, as our

model appears to outperform the competitors only according to the log-score criterion, while the re-

sults mostly favour the BQAR(1) regression. It is nevertheless worth noting that our model tends

to outperform, although sometimes only slightly, the combined BMIDAS regressions, which embed

exactly the same information as our quantile regressions.11

All in all, the empirical evidence reported here supports the importance of accounting for non-

linearities when modelling and predicting real activity with financial indicators. Moreover, our results

appear consistent with those for the United States reported by Plagborg-Møller et al. (2020), suggest-

ing that financial data can provide accurate and timely indications of downward risks to GDP growth

in the short-term, while their contribution fades away as macroeconomic information becomes pro-

gressively available.

4.2. The European sovereign debt crisis. As a second illustration, we take the example of the Eu-

ropean sovereign debt crisis that affected the euro area from 2010 to 2013. The 2008 financial crisis

had indeed left its mark on public finances, leading to a significant increase in government bond yield

spreads. Despite a rescue package for Greece, financial tensions intensified again due to the wors-

ening of public finances in several other euro area countries and to the contagion arising from the

undertaken agreement to restructuring the Greek sovereign debt by mid-July 2011. The sovereign

11According to the tests proposed by Rossi and Sekhposyan (2019), we can reject the null hypothesis of correct calibration
of the predictive densities of the BMIDAS-QR model at a 5% level only. In addition, the Diebold-Mariano-West test (Diebold
and Mariano, 1995; West, 1996) for unconditional equal predictive accuracy (computed over point and density forecasts)
tends to statistically support the outperformance of the BMIDAS-QR model over the BMIDAS model.
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FIGURE 5. The GaR(10%) during the euro- area sovereign debt crisis

Note: The GaR(10%) corresponds to the lower 10th percentile of the distribution of the
expected real GDP growth.

debt crisis increasingly turned into a twin sovereign debt and banking crisis. Further negative feed-

back loops between vulnerable banks, indebted sovereigns and weak economies took hold in several

countries and led to acute financial fragmentation along country borders (Hartmann and Smets, 2018).

Economic confidence fell, the economy slowed down rapidly and the euro area entered a double-dip

recession in the fourth quarter of 2011 until the first quarter of 2013, according to the CEPR business

cycle chronology.

Figure 5 shows that the GaR(10%) hovered between 0% and -0.5% during the first half-2011. This is

consistent with very mild risks to activity as, up to end-June 2011, the growth rate of GDP for the euro

area could have only be expected to run into a slightly negative territory at 10% probability. As of mid-

April 2011, the contagion effects of the deterioration in the sovereign CDS spreads started to signal

that they may be long-lasting. The situation deteriorated in July 2011. On July 1st, the GaR measure

started dropping rapidly, reaching -1.2% in the fourth quarter of 2011 when the euro zone entered into

recession. This date precedes the announcement of the Moody’s downgrade of Portugal on July 5th.

This announcement, along with the continuing fears of a Greek default, could have triggered a sell-

off in Spanish and Italian government bonds. By July 18th, the Italian government bond yields had

increased by almost 100 basis points, while Spanish bond yields had increased by more than 80 basis

points. The downgrading of sovereign ratings escalated and pushed bond rates up to critical levels for

peripheral European countries. From April 1st, 2012, the GaR measure returned to its pre-crisis level,



17

consistently with the first signals of an easing in financial conditions and an exit from the economic

recession.

All in all, the results show that our daily GaR(10%) would have been able to correctly track in real-

time this specific recession episode. However, and more interestingly, the GaR(10%) measure tends to

rapidly fall a quarter ahead of the beginning of the recession, dropping from a value close to zero to

about -1% in only a few months. This swift change in the GaR can be interpreted as a possible early

signal of recession led by a deterioration in financial conditions.

4.3. Unconventional monetary policy measures announcements. We now turn to the link between

the daily GaR measure and the unconventional monetary policy carried out by the ECB. Since 2013,

the macroeconomic situation in the euro area has been characterised by increased risks threatening

price stability and the anchoring of inflation expectations. Price developments have gradually moved

away from values consistent with the ECB definition of price stability, i.e. a rate of inflation, as mea-

sured by the harmonised index of consumer prices (HICP), close but below 2%. Faced with growing

risks of disanchoring expectations, the Eurosystem responded by taking a number of unconventional

measures. In particular, four major announcements have been recorded between 2013 and 2018.

First, the ECB has implemented forward guidance about the future course of monetary policy since

July 4th, 2013. Forward guidance corresponds to a commitment on the future path of interest rates,

so as to influence not only the short-term rates, which reached their lower bound close to zero, but

mainly longer-term rates which are to a large extent determined by expectations of future short-term

rates. Second, the ECB decided to launch a large asset purchase programme ("APP") on January 22nd,

2015. It consists of purchases on the secondary market of private securities and euro-denominated

investment-grade securities issued by euro area governments and institutions. The APP programme

was subsequently extended and adjusted in several occasions, notably by increasing both duration

and total amount of purchases. On March 16th, 2016, the ECB decided to extend the monthly pur-

chases under the APP ("extended APP") from 60 billion to 80 billion euros, including a new corporate

securities purchase programme (CSPP), starting from April 2016, intended to run until the end of

March 2017, or beyond, if necessary. This measure was accompanied by a series of four targeted

longer-term refinancing operations (TLTRO II) in order to ease private sector credit conditions and

to stimulate credit creation.12 In addition, the rate on the deposit facility was lowered by 10 basis

points to -0.40%. Finally, on December 8th, 2016, the ECB decided to adjust the parameters of the

APP ("adjusted APP") : (i) the maturity range of the public sector purchase programme broadened by

decreasing the minimum remaining maturity for eligible securities from two years to one year and (ii)

12The interest rate on these operations, each with a maturity of four years, was fixed at the main refinancing operations
rate prevailing at the time of take-up.
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FIGURE 6. The GaR 10% and unconventional monetary policy announcements: an
event study analysis
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Notes: APP: asset purchase programme, Extended APP: extension of the APP, and Adjusted APP:
adjusted parameters of the APP. The vertical line corresponds to a specific announcement date. The
GaR(10%) corresponds to the lower 10th percentile of the distribution of the expected real GDP
growth (plain blue line). The dotted blue line corresponds to the implied GaR(10%) once included
dummies with respect to macroeconomic news. The dashed line corresponds to the forecast path of
an ARMA(1,1)-GARCH(1,1) representation of the GAR(10%).

purchases of securities under the APP with a yield to maturity below the interest rate on the ECB’s

deposit facility permitted to the extent necessary. In addition, the APP was announced to be contin-

ued at the monthly pace of 80 billion euros until the end of March 2017. From April 2017, the net asset

purchases were intended to continue at a monthly pace of 60 billion euros until the end of December

2017, or beyond, if necessary.

In order to analyse the reaction of the daily GaR(10%) to the four monetary policy announcement

dates, we perform a quasi event study analysis, in the spirit of Fama et al. (1969). Event studies quan-

tify an event’s economic impact in so-called "abnormal returns". In our context, abnormal returns are

calculated by deducting the GAR(10%) dynamics that would have been realized if the analyzed event

would not have taken place ("normal returns") from the actual dynamics of the GAR(10%). In order



19

to obtain the equivalent to "normal returns", we estimate an ARMA(1,1)-GARCH(1,1) process for the

GAR(10%) over a period starting in 1999 and ending 30 days before a specific event.13 We then com-

pute the forecast of the model over a 60 days period, centered on the event. The result of this exercise

is provided on Figure 6, in which the four monetary policy announcement dates are represented by the

vertical dotted lines. We observe that the daily GaR(10%) (plain blue line) deviates from the forecast

path implied by the "normal time" representation during the 60-days event window. That remains the

case, even when purged from the effects of macroeconomic news (the announcements of new figures

relating to GDP and PMI) through dummy variables (dotted blue line).14 The GaR(10%) was very

reactive to new monetary policy measures by increasing immediately after, sometimes before, each

announcement, then exhibiting an upward trend in the following weeks. An exception may be the

announcement of the APP, which has been anticipated by the markets for a while. As a result, the

impact of the APP announcement on the GAR(10%) may only reflects a fraction of the overall finan-

cial market effect of all APP-related news. Consequently, we argue that this new high-frequency GaR

measure can be useful for central banks in order to check the immediate effects of their policies on

macroeconomic risk and to subsequently adjust adequately their monetary policy stance.

4.4. The Covid-19 pandemic. In this subsection, we focus on the Covid-19 crisis period that affected

the euro area, as well as the global economy, during the first half-2020. This shock is the most damag-

ing event since the Great Depression and rather closer to a disaster, in the Robert Barro’s sense, than

to a classical recession.

During the first two months of 2020, the impact of Covid-19 on the euro area economy has been

basically non-significant, as it was not clear that the propagation of the coronavirus coming from China

was about to turn into a global pandemic. The first anecdotal evidence came through the disruption

of global value chains and diminishing external demand stemming from China. This lack of reaction

from financial markets can be seen in Figure 7: there is basically no shift in the conditional distribution

of GDP growth for the first quarter of 2020 predicted by our model between January 24th (yellow

curve) and February 26th (orange curve). Markets’ sentiment started to turn negative in the last days

of February, with the Euro Stoxx 50 dropping by about 27% by March 19th. Markets eased only after

the ECB announced on March 18th the deployment of a new Pandemic Emergency Purchase Program,

with an envelope of 750 billion euros until the end of the year, in complement of an initial smaller plan

of 120 billion euros decided on March 12th.
13The orders of the ARMA-GARCH process were selected according to standard information criteria (Akaike, Schwarz

and Hannan-Quinn).
14The macroeconomic news concerning new numbers for GDP and PMI are the following: 01/07/2013 (GDP: Eurocoin

2013-Q2), 20/06/2013 (PMI: 6th month), 01/01/2015 (GDP: Eurocoin 2014-Q4), 13/02/2015 (GDP: 2014-Q4), 23/01/2015
(PMI 1st month), 20/02/2015 (PMI: 2nd month), 01/04/2016 (GDP: Eurocoin 2016-Q1), 22/02/2016 (PMI 2nd month),
22/03/2016 (PMI: 3rd month), 02/01/2017 (GDP: Eurocoin 2016-Q4), 23/11/2016 (PMI 11th month), and 15/12/2016 (PMI:
12th month).
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FIGURE 7. Probability density functions of conditional GDP growth

In fact, as shown in Figure 8, the first significant decline in the GaR(10%) coincides with the WHO

announcement recognizing the Covid-19 epidemic as a global pandemic, that came on March 11th.

Mid-March also corresponds to the start of stringent lockdown measures within euro area countries.

Then, we observe a drop at the end of March due to the large fall in stock prices, previously mentioned,

and the release of March PMI. This can be also seen in Figure 7, where the predictive distribution of

GDP growth for 2020Q1 estimated on March 26th began to sink into negative territory (dashed blue

curve). Next, the daily GaR(10%) measure progressively falls to -6% at end of April driven by both

PMI and the integration on April 30th of the preliminary estimate of GDP growth for the 2020Q1

into the model. This shift at the end of April is also clearly visible in Figure 7 (dotted purple curve).

Starting from May 29th, the GaR(10%) started to increase again, driven by PMI appreciation due to an

improvement in business conditions and more optimistic expectations related to a sharp slowdown in

the pandemic evolution before the summer 2020.

Two interesting features arise from this empirical analysis. First, we compare our measure with

the EuroCoin indicator provided by the CEPR, that can be interpreted as a real-time nowcast of euro

area GDP growth. As can be seen on Figure 8, EuroCoin stayed quite high throughout the first half-

2020, showing only slightly negative values starting end of April onwards (-0.13), reaching -0.32 in

May while the strongly negative GDP growth in 2020Q1 was already known (-3.8% in quarter-on-

quarter growth, published on April 30th). As regards 2020Q2, EuroCoin was also unable to reproduce

the wide fall in quarterly GDP growth (-12.1%, as published on July 31st), only reaching a minimum
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FIGURE 8. The GaR 10% and the Covid-19 pandemic

Note: The GaR(10%) corresponds to the lower 10th percentile of the distribution of the
expected real GDP growth.

of -0.64% in August 2020. Although it is fair to say that EuroCoin only aims at tracking a monthly

smoothed estimate of quarterly GDP growth in the euro area, the deviation from actual GDP growth

is however huge. A potential reason underlying this discrepancy is that this index is mainly based

on macroeconomic information that comes with a delay and that industrial production information

is likely to be over-weighted in the index. In quite contrast, our daily GaR measure has started to

provide a clear signal of imminent deterioration of economic activity since mid-March.

Second, despite the timeliness of the signal provided by our daily GaR, its amplitude was fairly

lower than the drop observed on GDP growth. This gap can be explained by the nature of the shock

underlying the Covid-19 recession. Indeed, it turns out that this recession can be understood as a mix

of supply and demand shocks, amplified by an uncertainty shock. On the other hand, the financial

shock has been quite limited so far, mainly due to the swift and strong monetary policy response of

the ECB. The synchronised reaction of the largest central banks over the world also likely contributed

to globally sustain the financial sector. In our view, this explains the limited shift and skewness of

the estimated distributions presented in Figure 7. However, the financial risk on GDP growth is still

present, as we don’t know how the current crisis will evolve in upcoming months. In this respect, we

think that our daily GaR measure will continue to be useful to track future risks on economic growth

stemming from the financial sector during this major adverse economic event.
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5. CONCLUSIONS

This paper extents the quarterly Growth-at-Risk (GaR) approach of Adrian et al. (2019) by account-

ing for the high-frequency nature of financial conditions. Specifically, we use Bayesian mixed data

sampling (MIDAS) quantile regressions to exploit the information content of a financial stress indica-

tor and a financial conditions index to construct real-time high-frequency GaR measures for the euro

area. We show that our daily GaR indicator: (i) displays good GDP nowcasting properties, (ii) can

provide an early signal of GDP downturns, and (iii) allows day-to-day assessment of the effects of

monetary policies. During the first six months of the Covid-19 pandemic period, it has provided a

timely indication of tail risks on euro-area GDP. This new high-frequency GaR measure could be effi-

ciently used by monetary policy-makers in order to assess the impact of monetary policy decisions on

macroeconomic risk, through the lens of financial market perception.
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APPENDIX A - COMPETING NOWCASTING MODELS

FIGURE A.1. Nowcasting GDP with the combined BMIDAS regressions yt = β1yt−1 +

θ′x3x
(d)
i,t−hd

+ θ′w 3w(m)
t−hm

+ εt

Note: #x(d)i,t denotes either the FCI (i = 1) or the CISS (i = 2). Predictive densities are
combined using the QWPS metrics for the computation of combination weights.

FIGURE A.2. Nowcasting GDP with the BQAR(1) regression yt = β1(τ)yt−1 + ξ1ν̃t +
ξ2
√

σν̃tωt

FIGURE A.3. Nowcasting GDP with the BAR(1) regression yt = β1yt−1 + εt


