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1. Introduction 
Linearized dynamic stochastic general equilibrium (DSGE) models with a unique non-explosive 

solution are the workhorses of modern quantitative macroeconomics (e.g., King and Rebelo, 

1999; Kollmann et al., 2011a,b).This paper shows that multiple stationary equilibria may exist in 

standard non-linear DSGE models, even when the linearized versions of those models have a 

unique solution. Thus, the non-linear models can exhibit stationary fluctuations of endogenous 

variables, even if there are no shocks to productivity, preferences or other exogenous 

‘fundamentals’. The Blanchard and Kahn (1980) conditions for the uniqueness of stable 

solutions to linear rational expectations models are, hence, irrelevant for non-linear models. In 

the equilibria considered here, the economy may temporarily diverge from the steady state, but 

with some (exogenous) probability the economy reverts towards the steady state later. These 

boom-bust cycles are consistent with rational expectations. Importantly, the ‘rational bubbles’ 

studied here are stationary.  

The multiple equilibria identified here have similarities and important differences, 

compared to the rational bubbles in linearized models analyzed by Blanchard (1979).  Like 

Blanchard (1979), the study here focuses on models whose linearized versions have a unique 

non-explosive equilibrium. Like the Blanchard bubbles, the rational bubbles in non-linear 

models discussed here imply that endogenous variables can diverge from the steady state, before 

abruptly reverting towards the steady state. The key difference is that the bubbles in non-linear 

models considered here are stationary, while Blanchard’s bubbles in linearized models exhibit 

explosive expected trajectories that tend to  .±∞  This feature greatly limits the appeal of the 

Blanchard bubbles for DSGE models. In a standard DSGE model with decreasing returns to 

capital and capital depreciation, an explosive trajectory of the capital stock and output is 

infeasible. A linear model approximation does not take this into account. The accuracy of linear 

approximations deteriorates sharply when the state variables deviate substantially from the point 

of approximation—in particular, non-negativity constraints on endogenous variables and other 

technological feasibility restrictions may be violated. A linear model approximation is, thus, not 

suitable for studying rational bubbles. 

By contrast, the non-linear model analysis here takes non-negativity constraints and 

decreasing returns into account. Decreasing returns and risk aversion generate stabilizing forces 

that prevent explosive trajectories. While rational bubbles in linearized models can be positive or 
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negative, I find that rational bubbles in standard non-linear models are generally one-sided; e.g., 

they tend to predict over-accumulation of capital, but not under-accumulation. I show that 

rational bubbles in non-linear models can induce fluctuations that remain close to deterministic 

steady state most of the time; the unconditional mean of endogenous variables can thus be close 

to the deterministic steady state.  

This paper analyzes bubbles in both closed and open economies. Numerical simulations 

suggest that non-linear DSGE models driven solely by stationary bubbles can generate persistent 

fluctuations of real activity and capture key business cycle stylized facts. A key finding for a 

two-country model is that, with integrated financial markets, investment bubbles have to be 

perfectly correlated across countries. Global bubbles may help to explain the synchronization of 

international business cycles. Country-specific bubbles can only arise when there are 

impediments to international capital flows.  

 The standard DSGE models discussed in this paper are usually presented as structures 

with an optimizing infinitely-lived representative household. The set of optimality conditions of 

that household’s decision problem includes a transversality condition (TVC) that stipulates that 

the value of capital has to be zero, at infinity. The TVC (in conjunction with Euler equations and 

static efficiency conditions) implies a unique equilibrium, in standard DSGE models. When 

TVCs do not hold, the economy is ‘dynamically inefficient’ (e.g., Abel et al. (1989)).  

I do not impose the TVC in this paper. My goal is to show that stationary rational bubbles 

can exist in standard non-linear DSGE models. Note that explosive bubbles in linear models 

(Blanchard (1979)) likewise violate the TVC.  

A possible justification for disregarding the TVC is that there is no TVC because agents 

are finitely-lived. I show that there exists an overlapping generations (OLG) structure with 

finitely-lived households that delivers the same Euler equations and static efficiency conditions 

as the standard DSGE models discussed here. However, the TVC does not hold in that OLG 

structure. The OLG structure proposed here provides thus a motivation for exploring bubble 

equilibria in standard DSGE models. The key features of this OLG structure are: (i) there is 

complete risk sharing among generations that are alive at the same dates; (ii) newborn agents 

receive a wealth endowment such that the consumption of newborns represents a time-invariant 

share of aggregate consumption (under log utility, this requires that the wealth endowments of 

newborns is a time-invariant fraction of aggregate wealth). The linearized version of the OLG 
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structure presented here has a unique non-explosive solution, but the non-linear model has 

multiple stationary bubble equilibria.  

Another motivation for disregarding the TVC is that detecting TVC violations can be 

very difficult in non-linear stochastic economies, for which no closed form solution exists. TVC 

violations may be caused by low probability events in a distant future. Households may thus lack 

the cognitive/computing power to detect deviations from TVC (see discussion in Blanchard and 

Watson (1982), Lansing (2010) and Ascari et al. (2019)).  

A large literature has studied linearized DSGE models with stationary sunspot equilibria 

(i.e. multiple stationary equilibria). These equilibria exist (in linearized models) if the number of 

eigenvalues (of the linearized state-space form) outside the unit circle is less than the number of 

non-predetermined variables (Blanchard and Kahn (1980), Prop. 3).1 By contrast, the paper here 

focuses on models for which the number of eigenvalues equals the number of non-predetermined 

variables, so that the linearized structure has a unique non-explosive solution (Blanchard and 

Kahn (1980), Prop. 1). Linearized models may exhibit stationary sunspot equilibria if increasing 

returns and/or externalities (e.g., Schmitt-Grohé (1997), Benhabib and Farmer (1999)), financial 

frictions (e.g., Martin and Ventura (2018)) or certain OLG population structures (e.g., Woodford 

(1986), Galí (2018)) are assumed. The specific assumptions and calibrations that deliver sunspot 

equilibria in linearized models can be debatable.2 By contrast, the paper here shows that very 

standard DSGE models (without the features that were just mentioned) whose linearized versions 

have a unique stationary solution can have multiple equilibria, if non-linear effects are 

considered.  

 The role of non-linearities for multiple equilibria is also studied by Holden (2016a,b) who 

shows that multiple equilibria can emerge when occasionally binding constraints (such as 

borrowing constraints  or non-negativity constraints) are integrated into an otherwise linear 

model (where that linear model has a unique stable solution when the occasionally binding 

constraints are ignored). By contrast, the analysis here considers fully non-linear models; the 

solutions considered here are globally accurate. The multiple equilibria described here have a 

‘bubbly’ dynamics that differs from the dynamics highlighted by Holden (2016a,b).  

                                                 
1 See Taylor (1977) for an early example of a model with sunspots, due to the presence of ‘too many’ stable roots. 
2 E.g., increasing returns/externalities need to be sufficiently strong; in OLG models the steady state interest rate has 
to be smaller than the trend growth rate (r<g) etc. Note that, in the novel OLG structure developed in the paper here 
r>g holds. Linearized versions of the OLG structure here have a unique equilibrium (as discussed above).   
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 The bubble equilibria discussed in this paper imply that the distribution of endogenous 

variables is heteroscedastic: the condition variance of future forecast errors of endogenous 

variables is greater, the longer a boom driven by self-fulfilling expectations has lasted. In this 

sense, the paper here is related to Bacchetta et al. (2012) who study a stylized asset pricing 

model with two-period lived agents in which stationary stock price bubbles can arise if the 

sunspot shock is heteroscedastic. The work here highlights the importance of heteroscedasticity, 

for generating stationary bubbles, in non-linear DSGE business cycle models. 

 The next Section discusses stationary rational bubbles in a one-sector version of the Long 

and Plosser (1983) model, i.e. in a closed-economy RBC model with log utility, a Cobb-Douglas 

production function and full capital depreciation per period. Closed form solutions with bubbles 

can be derived for that model. Section 3 considers a more realistic non-linear closed economy 

RBC model with incomplete capital depreciation. Sections 4 and 5 study stationary rational 

bubbles in non-linear two-country RBC models.  

 

 

2. Rational bubbles in the Long-Plosser RBC model 
Following Long and Plosser (1986), this Section considers a closed economy inhabited by a 

household with time-separable life-time utility. The period utility function is logarithmic:  

( ) ln( ),t tu C C=  where tC  is consumption in period t. The production function is Cobb-Douglas:  

                                                               t t tY K αθ= , 0 1α< < ,                                                         (1) 

where , , 0t t tY K θ >  are output, capital and exogenous total factor productivity (TFP). For 

simplicity, I assume that labor hours are constant and normalized at 1 (the next Sections allow 

for variable hours).3 The resource constraint is  

                                                                    ,t t tC I Y+ =                                                                   (2) 

where tI  is gross investment. The capital depreciation rate is 100%, so that gross investment 

equals next period’s capital stock: 1.t tI K +=  The household’s Euler equation is    

                                                        1 1 1( / ) / 1t t t t tE C C Y Kβ α+ + + = ,                                                       (3) 

                                                 
3 With endogenous hours, and a period utility function that is additively separable in consumption and hours, hours 
are constant  in the no-bubbles solution of the Long-Plosser model, while hours fluctuate in bubble equilibria.  
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where 0 1β< <  is the household’s subjective discount factor. Substitution of the resource 

constraint into the Euler equation gives an expectational difference equation in the 

investment/output ratio 1/ :t t tZ K Y+≡  

                                             1 1( , ) [(1 )/(1 )]/ 1.t t t t t t tE H Z Z E Z Z Zαβ+ +≡ − − =                                     (4)          

tZ tαβ= ∀  solves (4). This corresponds to the textbook solution of the Long-Plosser model (see, 

e.g., Blanchard and Fischer (1989)). Under this solution, consumption and investment are 

constant shares of output: (1 ) ,t tC Yαβ= −  1t tK Yαβ+ =   .t∀   

 

2.1. Bubbles in the linearized Long-Plosser model 

Linearization of (4) around Z αβ=  gives:  

                                             1t t tE z zλ+ = , with t tz Z Z≡ −  and 1/( ) 1.λ αβ≡ >                                  (5)             

λ, the eigenvalue of (5) exceeds unity. The model has one non-predetermined variable ( ).tz  Thus, 

the linearized model has a unique non-explosive solution (Blanchard and Kahn (1980), 

Proposition 1). This solution is given by 0tz = , i.e. tZ αβ= t∀ .  

Blanchard (1979) pointed out that a linear expectational difference equation of form (5) is 

also solved by a process { }tz  such that   

        1 [ /(1 )]t tz zλ π+ = − ⋅  with probability 1 π−   and 1 0tz + =  with probability π   (0 1).π< <           (6) 

If there is a bubble at date t, i.e. 0,tz ≠  then next period the bubble grows with probability 

1 ;π−  the bubble bursts with probability .π  The larger the bubble, the greater the magnitude of 

the subsequent ‘correction’. The bubble process (6) implies that after a bubble has burst, a new 

bubble never arises again (the bubble is ‘self-ending’). As noted by Blanchard (1979), recurrent 

bubbles obtain if a bursting bubble reverts to a value 0 :μ≠   1 ( )/(1 )t tz zλ μπ π+ = − −  with 

probability 1 π−   and 1tz μ+ =  with probability .π  

An important feature of bubbles in the linearized model (5) is that the expected path of 

the bubbles explodes: lims t t sE z→∞ + =∞  when 0tz >   and lims t t sE z→∞ + =−∞  when 0.tz <  As 

discussed in Sect. 1, this feature greatly limits the appeal of the Blanchard (1979) type bubble. 

Note that, in the Long-Plosser model, the investment/output ratio is bounded by 0 and 1: an 
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infinite investment ratio is not feasible. The linear approximation (on which (5) is based) 

neglects this constraint. A linear approximation is thus not suitable for studying rational bubbles.  

 

2.2. Stationary bubbles in the non-linear Long-Plosser model 

I now show that, by contrast to the linearized model, the non-linear Long-Plosser model can 

produce stationary bubbles. Note that (4) holds for any process { }tZ  such that  

                                                      1 1[(1 )/(1 )]/ 1 ,t t t tZ Z Zαβ ε+ +− − = +                                                (7) 

where 1tε +  is a forecast error with zero conditional mean: 1 0.t tEε + =  1tε +  reflects unanticipated 

changes in 1tZ +  that are driven by changes in households’ expectations about the future path 

1{ } .t s sZ + >  (7) can be written as:  

                                             1 1 1( , ) 1 (1/ 1) /(1 ).t t t t tZ Z Zε αβ ε+ + += Λ ≡ − − +                                         (8) 

1tZ +  is strictly increasing and strictly concave in both tZ  and in 1tε + , for 1 1.tε + >−  The 

strict concavity reflects decreasing returns and risk aversion. Fig.1 plots 1tZ +  as a function of 

,tZ  and that for three values of 1:tε +  1 0tε + =  (thick black line), 1 0.5tε + =  and 1 0.5tε + =−  (thin 

dashed lines). Throughout this Section, I set α=0.35 and β=0.99, so that =0.3465;αβ  these 

parameter values are standard in quarterly business cycle models.  

 In a deterministic economy, 0tε =  holds ,t∀  and the dynamics of the investment/output 

ratio obeys thus 1 ( ,0)t tZ Z+ =Λ  (see (8)). Fig. 1 shows that the function 1 ( ,0)t tZ Z+ =Λ  cuts the 45-

degree line at two points: 1t tZ αβ+Ζ = =  and 1 1.t tZ +Ζ = =  In a deterministic economy, the slope of 

the mapping from tZ  to 1tZ +  is 1/(αβ), at the steady state Z=αβ.  In a deterministic economy, a 

realization t αβΖ <  puts the investment ratio on a trajectory that reaches Z=0 in finite time; after 

Z=0 has been reached, output and consumption are zero indefinitely. By contrast, a realization 

t αβΖ >  initiates a path that converges asymptotically to Z=1 (without ever reaching Z=1), in a 

deterministic economy.    

 The main contribution of this paper is to show that there exist stationary bubble 

equilibria. These bubble equilibria do not converge to Z=0 or Z=1. Thus, consumption and 

capital are strictly positive in all periods.  In what follows, I focus on these stationary (interior) 
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model solutions. When tZ αβ< , then the law of motion (8) implies that the economy can hit a 

zero-capital corner solution in subsequent periods. I thus restrict attention to solutions for which 

{ }Zτ  stays forever in the interval [ ,1).αβ    It is apparent from Fig. 1 that this requires that the 

support of the distribution of 1tε +  has to be bounded from below. (8) implies that when 

[ ,1)tZ αβ∈  holds, then 1 [ ,1)tZ αβ+∈  requires 1 1 [ /(1 )] [1/ 1] 1.t tZε αβ αβ+ ≥− + − ⋅ − ≥ −  4  

For simplicity, and analogy to the Blanchard (1979) bubbles, I assume that 1tε +  only 

takes two values:  tε−   and /(1 )tε π π⋅ −  with exogenous probabilities π  and 1 ,π−  respectively, 

where [0,1).tε ∈  1tZ +  then takes these two values with probabilities π  and 1 :π−   

            1 ( , )L
t t tZ Z ε+ ≡Λ −  and 1 ( , /(1 ))H

t t tZ Z ε π π+ ≡Λ −  with 1 1 1.L H
t tZ Z+ +≤ ≤                              (9) 

In the spirit of Blanchard (1979), I assume that when an investment ‘crash’ occurs in 

period t+1, then the investment/output ratio takes a value that is close to the no-bubble 

investment/output ratio αβ. Specifically, I postulate that 1 ,L
tZ αβ+ = +Δ where 0Δ>  is a small 

positive constant. A strictly positive value of Δ  is needed to generate recurrent bubbles.5  When 

we set 1 ,L
tZ αβ+ = +Δ  the first equation in (9) pins down tε− ; substitution into the second equation 

shown in (9) then determines 1
H
tZ + .  

Alternatively, note that under the assumed bubble process with 1 ,L
tZ αβ+ = +Δ the Euler 

equation (4) can be expressed as  

                                      1( , ) (1 ) ( , ) 1.H
t t tH Z H Z Zπ αβ π ++Δ + − =                                        (10) 

For any [ ,1)tZ αβ∈ +Δ  there exists a unique value 1 [ ,1)H
tZ αβ+ ∈ +Δ  that solves (10).  

 Consider an economy that starts in period t=0, with an initial capital stock 0.K  Let 

{0;1}tu ∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. A bubble equilibrium is a sequence of investment/output ratios 0{ }t tZ ≥  defined by 

                                                 
4 The lower bound of 1tε +  is strictly negative if ,tZ αβ>  and it is strictly decreasing in .tZ   
5 Assume that  0Δ=  (so that 1 )L

tZ αβ+ =  and consider what happens when .tZ αβ=  The first equation shown in (9) 

then becomes ( , )tαβ αβ ε≡Λ −  which implies 0,tε =  so that 1 1 ,H L
t tZ Z αβ+ += = i.e. Z is (forever) stuck at αβ . Setting

0Δ>  rules out that absorbing state. 
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0 [ ,1)Z αβ∈ +Δ  and  1 1
L

t tZ Z αβ+ += ≡ +Δ  if 1 0tu + =  and 1 1
H

t tZ Z+ +=  if 1 1,tu + =  for t≥0, where 1
H
tZ +  

solves the date t Euler equation (10).   

Note that the investment/output ratio in the initial period, 0Z , does not obey the recursion 

that governs investment ratios in subsequent periods. However, 0 [ ,1)Z αβ∈ +Δ  has to hold to 

ensure that investment/output ratios in all subsequent periods lie in the interval [ ,1).αβ + Δ  Given 

a sequence 0{ } ,t tZ ≥  the path of capital 1 0{ }t tK + ≥  can be generated recursively (for the given initial 

capital stock 0K ) using 1 1 ( )t t t tK Z K αθ+ +=  for t≥0.  

I now discuss numerical simulations in which I set 0.01Δ=  and 0.5.π =  Panel (a) of Fig. 

2 plots 1 1,L H
t tZ Z+ +  and 1 1 1(1 ) ,L H

t t t t t tE Z Z Zπ π+ + += + −   as functions of .tZ  Also shown in Panel (a) is 

the value of 1tZ +  that would obtain in a deterministic economy 1( 0) :tε + = 1 ( ,0).t tZ Z+ =Λ  In the 

stochastic bubble equilibrium, the investment/output ratio grows between t and t+1 1( )t tZ Z+ >  

when 1 /(1 ) 0t tε ε π π+ = ⋅ − > ; when 1 ,t tε ε+ =− the investment rate either remains unchanged at 

αβ +Δ  (if )tZ αβ= +Δ , or it drops to 1tZ αβ+ = +Δ  (if ).tZ αβ> +Δ   

Fig. 2 shows that 1
H
tZ +  is a steeply increasing function of tZ . A sequence of positive 

draws of the forecast error ε  thus generates a run of rapid increases in the investment ratio, that 

is followed by an abrupt contraction in the investment ratio once a negative draw of ε  is 

realized. A sequence of negative forecast errors keeps the investment ratio at the lower bound 

.αβ +Δ  

The strict concavity of the recursion 1 1( , )t t tZ Z ε+ += Λ  with respect to 1tε +  (which reflects 

household risk aversion)  implies that 1 ( ,0).t t tE Z Z+ <Λ  For any given ,tZ  the conditional mean of 

the date t+1 investment ratio 1t tE Z +  is thus strictly below the value of 1tZ +  that would obtain in a 

deterministic economy ( ( ,0)).tZΛ   

1t tE Z +  is an increasing and strictly concave function of :tZ  1 ( ),t t tE Z Zζ+ =  ' 0, '' 0.ζ ζ> <  

The graph of 1t tE Z +  intersects the 45-degree line at 0.62.tZ =  Strict concavity of ζ  implies that 

the unconditional mean of the investment/output ratio ( )E Z  is smaller than 0.62 (as 

( ) ( ( )) ( ( )).E Z E Z E Zζ ζ= <  The unconditional mean of the investment ratio is ( ) 0.45.E Z =  As 
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discussed above, in a deterministic economy, the investment-output ratio would rise steadily and 

converge to 1, after a value t αβΖ >  is realized. With stochastic bubbles, by contrast, the 

investment ratio does not converge to 1; instead, it fluctuates around a mean value that is close to 

the stationary no-bubbles investment ratio (αβ). 

A stochastic bubble implies that the absolute value of the forecast error 1tε +  is larger the 

greater .tZ  Thus, the variance of the forecast error 1tε +  is an increasing function of .tZ  Figure 1 

shows that the conditional variance of 1tZ +  is likewise increasing in .tZ  Furthermore, the 

conditional distribution of 1tZ +  is left skewed. The left-skewness is likewise increasing in :tZ  

the greater the bubble at date t, the bigger the (negative) ‘correction’ if the bubble bursts in t+1.  

Panel (b) of Fig. 2 shows representative simulated paths of output, consumption, gross 

investment (I) and of the investment/output ratio (Z).  In order to assess whether the bubble alone 

can generate a realistic business cycle, I assume that TFP is constant. The Figure shows that the 

model generates massive swings in investment and output. During an expanding bubble, the 

rapid rise in investment is accompanied by a contraction in consumption.  

Table 1 reports moments of HP filtered logged time series generated by the model. Line 1 

of Panel (a) shows moments for specification I, with probability 0.5.tπ =  Predicted moments are 

based on a simulation run of 10000 periods.6 The predicted standard deviation of output is 11.7% 

which is about five times larger than the historical standard deviation of quarterly GDP in 

advanced economies. The model-predicted volatility of consumption and investment too is 

excessive, when compared to the data. The model predicts that output, consumption and 

investment are serially correlated. However, consumption is predicted to be countercyclical, 

which is inconsistent with the data. 

 The model variant above assumes a constant 50% probability that the bubble grows next 

period. The model predicts smaller, more realistic, fluctuations in real activity occur if we 

assume that the probability of growth in the bubble falls once the investment/output ratio exceeds 

a threshold. As an illustration, assume that tπ  is very close to unity, for values of the 

                                                 
6 The initial investment/output ratio is set at 0Z αβ= +Δ . Due to stationarity, 0Z does not affect simulated moments 
over a long simulation run. The effect of the initial 0Z on subsequent simulated values vanishes fast.   
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investment/output ratio greater than 0.36.7 This threshold is chosen as it generates (more) 

realistic output volatility. It implies that the investment/output ratio oscillates between these two 

values: 0.3565 and 0.3916 (see below). Note that   the ‘High’ investment ratio exceeds the ‘Low’ 

ratio by about 10%. When the investment/output ratio at date t takes the ‘Low’ value 

0.3565,LZ αβ≡ +Δ=  then next period’s investment ratio is either ‘Low’ ( )LZ  of ‘High’ 

( ( ,0.5) 0.3916)HZ αβ+Δ =  with 50% probability. If the date t investment ratio is ‘High’, then the 

investment ratio falls to the ‘Low’ value in the next period almost surely. Panel (c) of Figure 2 

shows simulated sample paths generated for this model version, and the second Line in Panel (a) 

of Table 1 reports the corresponding model-predicted business cycle statistics.  This model 

variant produces output fluctuations that are more in line with the data (predicted standard 

deviation of GDP: 1.33%), however now output, consumption and investment are negatively 

serially correlated.  

 

2.3. How should policy respond to bubbles? 

A state-contingent tax on capital income can eliminate stochastic bubbles. Assume that date t 

capital income is taxed at rate ,K tτ  and that tax proceeds are rebated to the household in a lump 

sum fashion. The household’s Euler equation then is: 1 , 1 1 1( / )(1 ) / 1t t t K t t tE C C Y Kβ τ α+ + + +− = , which 

implies 1 , 1 1 1 1( / )(1 ) / 1 ,t t K t t t tC C Y Kβ τ α ε+ + + + +− = + where 1tε +  is a forecast error 1( 0)t tE ε + = . Setting   

, 1 1K t tτ ε+ +=−  implies 1 1 1( / ) / 1t t t tC C Y Kβ α+ + + =   and thus 1 1 (1/ 1)t tZ Zαβ+ = − −  holds. This tax policy  

hence neutralizes stochastic sunspot shocks (however, if 0Z ,  the investment/output ratio in the 

initial period t=0, is larger than αβ, then Z  will converge to 1).  

 

 

2.4. Transversality condition 

Long and Plosser (1983) assume an infinitely-lived representative household. The competitive 

equilibrium of the Long-Plosser economy corresponds to the maximum of the household’s 

decision problem. As that decision problem is a well-behaved concave programming problem, its 

                                                 
7 I set 0.5tπ =  when [ , 0.36]tZ αβ∈ +Δ  and 1001 10tπ

−= −  when 0.36.tZ >  
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solution is unique. The necessary and sufficient optimality conditions of that decision problem 

are the resource constraint (2), the Euler equation (3) and a transversality condition (TVC) that 

requires that the value of the capital stock is zero, at infinity: 1lim '( ) 0.t t tE u C Kτ
τ τ τβ→∞ + + + =  Note 

that, under the assumptions of the Long-Plosser model, 1 1'( ) / /(1 ).t t t t t tu C K K C Z Z+ += = −   When 

tZ αβ=  holds, then 1'( ) /(1 )t tu C K αβ αβ+ = − , which shows that the textbook solution tZ tαβ= ∀  

satisfies the TVC. Uniqueness of the infinitely-lived household’s decision problem implies that 

any other process { }tZ  that is consistent with (2) and (3) has to violate the TVC. This implies 

that the  bubble equilibrium discussed above violates the TVC.8 

 This paper focuses on stationary model solutions consistent with the resource constraint 

and the Euler equation, but it disregards the TVC. The purpose of the paper is to show that 

stationary rational bubbles can exist in standard non-linear DSGE models. Note that explosive 

bubbles in linear models (Blanchard (1979)) likewise violate the TVC.  

 One possible justification for disregarding the TVC is to assume an OLG structure with 

finitely-lived households. The Appendix presents an OLG structure that has the same aggregate 

resource constraint and the same aggregate Euler equation as the Long-Plosser model. Thus 

equations (1)-(4) continue to hold in that OLG structure, but there is no TVC in the OLG 

structure. Such an OLG structure provides a motivation for exploring rational bubbles in 

standard DSGE models. The two key features of the OLG structure are: 9 (I) Efficient risk 

sharing between periods t and t+1, among all agents who are alive in both periods. (II) Newborn 

agents receive a wealth endowment such that consumption by newborns represents a time-

invariant share of aggregate consumption -- under log utility, this requires that the wealth 

endowments of newborns is a time-invariant fraction of total wealth across all generations. 10  

                                                 
8 Under the bubble process (9), tZ  approaches 1 if a long uninterrupted string of positive draws of the sunspot ε  is 
realized, which entails large positive values of /(1 ).t tZ Z−  Although this only happens with a very small probability, 
it causes the TVC to be violated. 
9 Assumption I is also used by Gali (2018). Assumption II is novel (to the best of my knowledge). Assumptions I 
and II allow to derive simple non-linear dynamic relations among aggregate variables for the OLG economy. 
Without these two assumptions, approximate aggregation across generations may be possible, based on linear 
approximations. The focus of the paper here is on stationary rational bubbles induced by non-linearity. Thus, 
aggregation based on linear approximations is not useful here. 
10 Assume that the young can appropriate a constant share of total wealth. The wealth endowment of newborn may 
be provided by bequest, or by a government transfer financed by a (lump sum) tax levied on older generations. In 
reality, all societies make significant transfers to young generations (e.g., through spending on their health and 
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Another motivation for disregarding the TVC is that detecting TVC violations may be 

very difficult, in models that are more complicated than the Long-Plosser model, i.e. in models 

for which no closed form solution exists (see below). TVC violations may be caused by low-

probability events in a distant future. Agents may thus lack the cognitive/computing power to 

detect deviations from TVC; see discussion in Blanchard and Watson (1982), Lansing (2010) 

and Ascari et al. (2019). 11 

 

 

3. Stationary rational bubbles in an RBC model with incomplete capital depreciation 
I next construct an equilibrium with stationary rational bubbles for an RBC model with 

incomplete capital depreciation and variable labor. It is now assumed that the period utility 

function is ( , ) ln( ) ln(1 ),t t t tU C L C L= +Ψ⋅ −  0,Ψ>  where 0 1tL≤ ≤  are hours worked. (The 

numerical methods discussed below allow to handle richer, non-logarithmic, functional forms for 

period utility.) The household’s total time endowment (per period) is normalized to one, so that 

1 tL−  is household leisure.12 The resource constraint and the production technology are  

                                              1 (1 )t t t tC K Y Kδ++ = + −  with 1( ) ( ) ,t t t tY K Lα αθ −=                                 (10) 

where 0 1δ< ≤  is the depreciation rate of capital. TFP tθ  is exogenous and follows a stationary 

AR(1) process. The economy has these efficiency conditions:  

                                                     /(1 ) (1 ) ( ) ( )t t t t tC L K Lα αα θ −Ψ − = −   and                                    (11) 

                                          1 1
1 1 1 1{ / }( ( ) ( ) 1 ) 1.t t t t t tE C C K Lα αβ αθ δ− −
+ + + + + − =                                     (12) 

                                                                                                                                                             
education and through bequests). Wealthy countries make bigger transfers to the young than poor countries. It seems 
reasonable to assume that the wealth endowment of the young is a (roughly) constant share of total wealth.  
11 Blanchard and Watson (1982) and Ascari et al. (2019) analyze explosive bubbles in linearized models without 
TVC. Lansing (201) Lansing (2010) disregards the TVC in a non-linear Lucas-style asset pricing models with 
bubbles, arguing that “agents are forward-looking but not to the extreme degree implied by the transversality 
condition” (p.1157); Lansing documents the existence of stationary asset price bubbles, when the TVC is dropped. 
The present paper considers fully-fledged DSGE macro models with endogenous output and capital accumulation. 
The method for constructing stationary bubble equilibria here is different and more general than that proposed by 
Lansing (it can be applied to a wide range of macro models). 
12 Due to decreasing returns to capital and a positive capital depreciation rate, the assumed upper bound on hours 
worked implies that the support of the distribution of capital and output is bounded, in equilibrium, which greatly 
simplifies the analysis. Some widely used preference specifications (such as ( , ) ln( ) ( ) , 0, 1)t t t t tU C L C L Lμ μ= −Ψ⋅ ≥ >  
do not impose an upper bound on hours worked. Then the support of the distribution of hours, capital and output 
may be unbounded, in stationary bubble equilibria, which makes it much harder to analyze (and compute) those 
equilibria.  
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(11) indicates that the household’s marginal rate of substitution between leisure and consumption 

is equated to the marginal product of labor, while (12) is the Euler equation.  

 (11) shows that hours worked tL  are a decreasing function of consumption .tC  

Maximum hours worked 1tL =  are chosen when consumption is zero. Provided gross investment 

1 (1 )t t tI K Kδ+≡ − −  does not exceed maximum output (i.e. output with 1)tL=  

                                                                   ( )t t tI K αθ≤ ,                                                              (13) 

equations (10) and (11) uniquely pin down consumption and hours worked as functions of 

1, , :t t tK K θ+   

                                                  1( , , )t t t tC K Kγ θ+=  and 1( , , ).t t t tL K Kη θ+=                                      (14) 

Using these expressions to substitute out consumption and labor in the Euler equation gives:  

            1 1
1 2 1 1 1 1 2 1 1[ { ( , , )/ ( , , )}( ( ) ( ( , , )) 1 )] 1t t t t t t t t t t t tE K K K K K K Kα αβ γ θ γ θ αθ η θ δ− −
+ + + + + + + + + + − = ,           (15) 

which can be written as 

                                                   2 1 1( , , , , ) 1t t t t t tE H K K K θ θ+ + + = ,                                                 (16) 

where the function H  maps 5R+  into R. (The function ‘H’ in (16) differs from the H function used 

to denote the Euler equation (4) in Sect. 2).  

The model thus boils down to an expectational difference equation in capital. Once a 

process for capital has been found that is consistent with (16) in all periods, one can use (14) to 

generate sequences for consumption, hours and output that are consistent with the resource 

constraint (10) and with the intra-temporal efficiency condition (11). Solving the model amounts, 

thus, to finding a stochastic process for capital that solves (16).  

The conventional “no-bubbles” solution that imposes a TVC can be described by a 

unique policy function 1 ( , )t t tK Kλ θ+ =   (e.g., Schmitt-Grohé and Uribe (2004)). Disregarding the 

TVC allows to generate stationary model solutions in which agents deviate from that no-bubbles 

decision rule.    

By analogy to the bubble process in the Long-Plosser model (see Sect. 2), I consider 

equilibria with the property that, in any period t, the capital stock 1tK +  takes one of two values: 

1 1 1{ , }L H
t t tK K K+ + +∈  with exogenous probabilities π  and ,π1−  respectively, with 1 ( , ) ,L

t t tK K eλ θ Δ
+ =  

where Δ  is a constant. ∆ is set to a positive value close to zero in the simulations reported 
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below. Whether  1
L
tK +  or 1

H
tK +   is realized depends on an exogenous i.i.d. sunspot that is assumed 

independent of TFP (see below). At date t, agents anticipate that the capital stock set in t+1, 2tK +  

likewise takes one of two values 2 2 2{ , }L H
t t tK K K+ + +∈  with probabilities π  and ,π1−  respectively, 

where 2 1 1( , ) .L
t t tK K eλ θ Δ
+ + +=  The Euler equation between dates t and t+1 (see (16)) can then be 

written as:  

   1 1 1 1 2 1 1( ( , ) , , , , ) (1 ) ( , , , , ) 1H
t t t t t t t t t t t t tE H K e K K E H K K Kπ λ θ θ θ π θ θΔ

+ + + + + + ++ − ⋅ =  for 1 1 1{ , }.L H
t t tK K K+ + +∈      

(17a) 

Consider an economy that starts in period t=0, with an initial capital stock 0.K  Let 

{0;1}tu ∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. A sequence of capital stocks 0{ }t tK ≥  such that, for all t≥0,  2 2 1( , )L
t t t tK K K eλ θ Δ
+ + += ≡  

if 1 0tu + =  and 2 2
H

t tK K+ +=  if 1 1,tu + =  where 2
H
tK +  solves (17), is a ‘bubble equilibrium’.  

1K  (the capital stock set in period 0) is not pinned down by the conditions of the bubble 

equilibrium. Henceforth, I set 1 0 1( , )K K eλ θ Δ= . (The effect of 0K and 1K on endogenous variables 

in later periods vanishes as time progresses, due to the stationarity of the process).  

The capital stock chosen in a ‘bust’ state at date t+1 (if 1 0tu + = ) is: 2 1 1( , )L
t t tK K eλ θ Δ
+ + += . 

Thus, 2
L
tK +  depends on 1.tθ +  I assume that, conditional on date t information, a productivity 

innovation at t+1 has an equiproportional effect on 2
L
tK +  and 2.

H
tK +  Specifically: 2 2,H H L

t t tK s K+ += ⋅

where 0H
ts >  is in the date t information set. Thus, 2 1 1( , ) .H H

t t t tK s K eλ θ Δ
+ + += ⋅  13 This greatly 

simplifies the analysis. Substituting the above formula for 2
H
tK +  into the Euler equation (17a) 

gives:  

      1 1 1 1 1 1 1 1( ( , ) , , , , ) (1 ) ( ( , ) , , , , ) 1H
t t t t t t t t t t t t t t tE H K e K K E H s K e K Kπ λ θ θ θ π λ θ θ θΔ Δ

+ + + + + + + ++ − ⋅ ⋅ = .    (17b) 

H
ts  can be determined by solving this Euler equation. 

The trajectory of the capital stock is determined in the following sequence: Given 0 1,K K  

the Euler equation (17b) for period t=0 pins down .H
ts   At date t=0, agents expect that the capital 

                                                 
13 The AR(1) specification of TFP implies 1

1 ( ) t
t t e

θερθ θ +
+ = ⋅ . Thus 2 1 2 1ln( )/ ln( )/ .H L

t t t tK Kθ θε ε+ + + +∂ ∂ =∂ ∂  
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stock  2K  chosen in period t=1 will equal 2 1 1( , )LK K eλ θ Δ=  of 2 0 1 1( , )H HK s K eλ θ Δ= ⋅ , with 

probabilities π and 1-π, respectively, where 0
Hs  solves the date t=0 Euler equation (17b). These 

expectations (about 2 , )L H
sK K , held at t=0, validate the agents’ date t=0 choice of 1K . In t=1, the 

random sunspot 1u  determines whether 2K  equals 2
LK  or 2 .HK  Given  the realized 1 2, ,K K  

agents expect at t=1 that 3K  will equal 3 2 2( , )LK K eλ θ Δ=  or 3 1 2 2( , ) ,H HK s K eλ θ Δ= ⋅  where 1
Hs  is 

determined by the date t=1 Euler equation. This process is repeated in all subsequent periods.  

The key feature of this equilibrium is, thus, that agents expect at date t that 2tK +  will 

equal 2 1 1( , )L
t t tK K eλ θ Δ
+ + +=  or 2 1 1( , )H H

t t t tK s K eλ θ Δ
+ + += ⋅  with probabilities π and 1-π, respectively. In 

period t+1, agents are free to select a value of 2tK +  that differs from 2
L
tK +  or 2

H
tK + , but they chose 

not to do so, in equilibrium, because a choice 2 2 2{ , }L H
t t tK K K+ + +∈  is validated by their date t+1 

expectation that 3 3 3{ , }.L H
t t tK K K+ + +∈   

 

3.1. Economy with constant TFP 

To build intuition, consider first a model variant with constant TFP ,t tθ θ= ∀  so that the sunspot 

is the only source of fluctuations. In the constant TFP economy, I write the no-bubbles policy 

rule for capital as 1 ( )t tK Kλ+ = , and the Euler equation (16) as 2 1( , , ) 1.t t t tE H K K K+ + =   

In a deterministic economy, any deviation from the no-bubbles policy function puts the 

economy on a trajectory that converges to a zero-consumption and/or zero-capital corner (e.g., 

Blanchard and Fischer (1989)). The present paper shows that there exist stationary stochastic 

bubble equilibria that do not converge to zero consumption/capital. With constant TFP, the Euler 

equation (17) between periods t and t+1 becomes:  

                                     1 1 2 1( ( ) , , ) (1 ) ( , , ) 1H
t t t t t tH K e K K H K K Kπ λ πΔ
+ + + ++ − ⋅ = .                           (18) 

This equation determines 2
H
tK +  as a function of  tK  and 1.tK +   
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As discussed in the Appendix, 0Δ>  is needed to generate stationary bubbles. When 0Δ=  

then bubbles are self-ending.14 0Δ<  implies that the capital stock can be put on a downward 

trajectory that leads to a zero capital corner. Throughout the subsequent analysis, I will thus 

assume 0.Δ>  As discussed in the Appendix, 0Δ>  implies that 1 1
L H
t tK K+ +<  holds, i.e. we can 

interpret 0tu =  and 1tu =  as investment ‘bust’ and ‘boom’ states, respectively, while π  represents 

the ‘bust’ probability.  

Let maxK  be the maximum feasible constant capital stock, max max max( ) (1 ) ,K K Kαθ δ= + −  

and let minKΔ  be the steady state capital stock that would hold if 1 ( )t tK K eλ Δ
+ =  held each period: 

min min( ) .K K eλ Δ
Δ Δ=  Clearly, min maxK KΔ <  (for values of ∆ close to zero). If the initial capital stock is 

in the range min max
0 ( , ),K K KΔ∈  then the capital stock stays in that range, in all subsequent periods, 

when 0Δ≥  is assumed. An uninterrupted infinite sequence of investment booms (driven by an 

uninterrupted string of u=1 sunspot realizations) would asymptotically drive the capital to the 

upper bound maxK . An uninterrupted infinite sequence of investment busts (i.e. a string of u=0 

realizations) would asymptotically drive the capital stock to lower bound min.K  Of course, such 

infinite boom or bust runs have zero probability.  

 

3.2. Economy with stochastic TFP 

As in the case with constant TFP, we have to set ∆>0 to ensure existence of a stationary bubble 

equilibrium. Simulations of the RBC model with stochastic TFP discussed below assume the 

following process for TFP:  1 1ln( ) ln( ) , 0 1,t t t
θθ ρ θ ε ρ+ += + ≤ <  where 1t

θε +  is a white noise with 

standard deviation 0.θσ >  To simplify computations, it is assumed that 1t
θε +  only takes 2 values  

with equal probability: 1 { , }.t
θ

θ θε σ σ+ ∈ −   

 

 

                                                 
14 Let ∆=0. Consider a situation with 0,tu =  so that 1 1 ( ).L

tt tK K Kλ+ += ≡ Then (18) is solved by 

12 ),( ( ) (t t
H
tK K Kλ λ λ ++ ≡ = because 1( ( ( )), ( ), ) 1.t ttH K K Kλ λ λ+ = Thus, 1 1 1 ( )L H

v v vK K K Kνλ+ + += = ≡  holds .tν∀ >  Hence, 
if 1tK +  equals the value defined by the no-bubbles decision rule, then the agent has to continue sticking to the no-
bubbles decision rule in all subsequent periods, and thus the trajectory of the capital stock becomes deterministic.  
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3.3. Simulation results 

I set 1/3, 0.99.α β= =  The capital depreciation rate is set at 0.025.δ =  The preference parameter 

Ψ  (utility weight on leisure) is set so that the Frisch labor supply elasticity is unity, at the steady 

state.15 In model variants with stochastic TFP, I set the autocorrelation of TFP at 0.979,ρ=  

while the standard deviation of TFP innovations is set at 0.0072.θσ =  Parameters in this range are 

conventional in quarterly macro models (King and Rebelo, 1999). The no-sunspot policy rule for 

capital, 1( , ),t tKλ θ+  is approximated using a second-order Taylor expansion.  

 Table 2 reports simulated business cycle statistics for several model variants. Standard 

deviations (in %) of GDP (Y), consumption (C), investment (I) and hours worked (L) are 

reported, as well as correlations of these variables with GDP, autocorrelations and mean values. 

The reported statistics are based on a simulation run of T=10000 periods.16 The standard 

deviations and correlations are median moments computed across rolling windows of 200 

periods.17 By contrast, mean values (of Y,C,I,L) are computed for the whole simulation run (T 

periods) and expressed as % deviations from the deterministic steady state. The Table also 

reports the sample mean of the difference between capital income and investment spending 

(where this difference is normalized by GDP), as well as the fraction of the T periods in which 

this difference is positive.   

 

3.3.1. Model versions with just bubble shocks 

Cols. (1)-(4) of Table 2 pertain to model variants with just bubble shocks (constant TFP). Cols. 

(5)-(8) assume simultaneous bubble and TFP shocks. Cols. (9)-(10) assume just TFP shocks, 

without bubbles (the no-bubbles equilibrium is computed using a linear model approximation). 

                                                 
15 (11) implies that the Frisch labor supply elasticity (LSE) with respect to the real wage rate (marginal product of 
labor) is (1 )/LSE L L= −  at the steady state, where L are steady state hours worked. Ψ  is set such that L=0.5, which 
implies LSE=1.  
16 For several of the model variants, I also considered simulation runs with T=1000000 periods. The predicted 
statistics are virtually unchanged when the much longer runs are used.  
17 For each 200-periods window of artificial data, I computed standard deviations and correlation, using logged 
series that were HP filtered in the respective window. The Table reports median values (across all windows) of these 
standard deviations and correlations. 200-periods windows of simulated series are used as the historical business 
cycle statistics reported in Col. 11 of Table 2 pertain to an empirical sample of 200 quarters (see below). 
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Col. (11) reports historical statistics for the US.18  Cols. labelled ‘Unit Risk Aversion’ (or ‘Unit 

RA’) assume log utility (see above). Columns labelled ‘High RA’ assume greater risk aversion 

for consumption: ( , ) ln( ) ln(1 ),t t t tU C L C C L= − +Ψ⋅ −  where C is a constant that is set at 0.8 times 

steady state consumption. The ‘High RA’ preferences imply that consumption has a strictly 

positive lower bound: 0.tC C≥ >  In the ‘High RA’ case, the coefficient of relative risk aversion is 

5, at the steady state consumption level (risk aversion is higher for consumption levels below 

steady state consumption).  

All numerical simulations in Table 2 assume ∆=0.001. That value generates standard 

deviations of real activity that are roughly in line with empirical statistics (higher values of ∆ 

induce greater volatility and a greater unconditional mean of real activity variables).  Cols. (1), 

(3), (5) and (7) assume a bust probability π=0.5, while Cols, (2),(4),(6) and (8) assume π=0.2.   

Simulated paths of GDP (continuous black line), consumption (red dashed line), 

investment ( blue dash-dotted line) and hours worked (blue dotted line) are shown in Figure 3. 

Panel (i) (i=1,..,10) of the Figure assumes the model variant considered in Col. (i) of Table 2. 

GDP, C and I series shown in Fig. 2 are normalized by steady state GDP; hours worked are 

normalized by steady state hours.   

Cols. (1) of Table 2 assumes unit risk aversion and a bust probability π=0.5. Constant 

TFP is postulated, so that economic fluctuations are purely driven by the bubble shocks. The 

predicted standard deviations of output, consumption, investment and hours are 0.49%, 1.08%, 

4.29% and 0.74%, respectively. The model-predicted output volatility is about 1/3 of the 

empirical GDP volatility. Consistent with the data, investment is predicted to me more volatile 

than output. However, the model predicts that consumption is more volatile than output, which is 

counterfactual. As in other models driven by investment shocks, the model variant here predicts 

that consumption is negatively correlated with output; however, the model predicts that 

investment and hours worked are strongly procyclical, as is consistent with the data. In the 

model, output, consumption, investment and hours worked are serially correlated, but the 

predicted autocorrelations (about 0.35) are smaller than the empirical autocorrelations (about 

0.85).  

                                                 
18 Historical standard deviations and correlations (HP filtered logged quarterly series) are taken from King and 
Rebelo (1999) and pertain to the period 1947Q1-1996Q4. Statistics for capital income minus investment were 
computed using annual data (1929-1985) reported in Abel et al. (1989).  
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As pointed out above, the bubble equilibrium implies capital over-accumulation 

(compared to a no-bubbles equilibrium), i.e. the economy is ‘dynamically inefficient’ (the TVC 

is violated).  Abel et al. (1989) propose an empirical test of dynamic efficiency. Their key insight 

is that an economy is dynamically efficient if income accruing to capital (i.e. output minus the 

wage bill) exceeds investment. Table 2 shows that, for all variants of the bubbles model here, the 

average (capital income – investment)/GDP ratio is positive and large (the average ratio, 9.12%, 

is only slightly smaller than the value of that ratio in steady state, 9.59%).19 In fact, capital 

income also exceeds investment in close to 100% of all periods. This highlights the difficulty of 

detecting dynamic inefficiency (as discussed above).   

Panel (1) of Figure 3 shows that the bubble equilibrium, with unit risk aversion and 

π=0.5, generates output, labor hours and investment booms that are relatively infrequent and 

short-lived. Periods of high investment are also periods of low consumption: in the model, a 

sudden fall in consumption triggers a rise in labor hours and output. However, in most periods, 

real activity remains close to (but slightly above) its steady state level. This explains the low 

predicted autocorrelation of real activity.  

A lower bust probability π generates bigger and more persistent ‘spikes’ in real activity, 

and thus real activity becomes more volatile and more serially correlated. This is illustrated in 

Col. (2) of Table 2, where unit risk aversion and π=0.2 are assumed (see also Panel (2) of Figure 

3). Output, consumption, investment and hours worked are now excessively volatile, when 

compared to the data. Consumption, again, is predicted to be more volatile than output.  

Model variants with ‘high risk aversion (RA)’ generate less consumption volatility—

those variants capture the fact that consumption is less volatile than output; see Cols. (3) and (4) 

of Table 2 (and Panels (3) and (4) of Fig. 3), where π=0.5 and π=0.2 are assumed, respectively.  

In summary, the model versions with just bubbles shocks considered so far can generate a 

realistic volatility of real activity and of aggregate demand components. Real activity in the 

model is serially correlated, but less than in the historical data.  

Setting the bust probability at lower values (e.g., π=0.05) generates higher, more realistic 

serial correlation in real activity but the predicted volatility or real activity becomes too large. A 

                                                 
19The steady state (capital income – investment)/GDP ratio is αr/(δ+r) where r=(1-β)/β is the steady state interest 
rate.  
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lower labor supply elasticity and higher consumption risk aversion are then needed to produce 

realistic volatilities (results available on request).    

 

3.3.2. Model versions with TFP shocks 

The no-bubbles model driven by stochastic TFP shocks underpredicts the volatility of real 

activity, but it captures the fact that consumption is less volatile than output, while investment is 

more volatile (see Cols. (9),(10)).  In the no-bubbles model version, consumption and investment 

are pro-cyclical; furthermore, real activity is highly serially correlated, which reflects the high 

assumed autocorrelation (0.979) of TFP.   

 The bubble equilibrium with TFP shocks generates fluctuations in real activity that are 

more volatile than the fluctuations exhibited by the no-bubbles equilibrium (see Fig. 3, Cols. (5)-

(8)). In this sense, the bubble equilibrium (with TFP shocks) is closer to the historical data.  

 Panels (5)-(10) of Fig. 3 show that the effect of bubbles on the simulated series is clearly 

noticeable (compared to the ‘no-bubbles’ series with just TFP shocks): the bubbles induce rapid, 

but short-lived increases in investment, hours worked and output.  

  

4. Stationary rational bubbles in Dellas’ (1986) two-country RBC models 
I next consider the two-country RBC model proposed by Dellas (1986). This model can be 

viewed as a two-country version of Long and Plosser (1983) model, in the sense that it also 

assumes full capital depreciation, log utility and Cobb-Douglas production functions. Like the 

Long-Plosser model, the Dellas model can be solved in closed form.  

Assume a world with two symmetric countries, referred to as Home (H) and Foreign (F). 

The household of country i=H,F  has preferences of the type assumed in the closed economy 

RBC model of Sect. 3. Thus, her period utility function is: , , ,( , ) ln( ) ln(1 ),i t t i t i tU C L C L= +Ψ⋅ −  0,Ψ>   

where ,i tC  and ,i tL are consumption and hours worked. Each country is specialized in the 

production of a distinct tradable intermediate good. Country i’s intermediate good production 

function is 1
, , , ,( ) ( ) ,i t i t i t i tY K Lα αθ −=  where ,i tY , ,i tθ , ,i tK  are the intermediate good output, TFP and 

capital in country i. Capital and labor are immobile internationally. TFP is exogenous and 

follows a stationary Markov process. The country i household combines local and imported 

intermediates into a non-tradable final good, using the Cobb-Douglas production aggregator 
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                                                           1
, , ,( / ) ( /(1 ))i j

i t i t i tZ y yξ ξξ ξ −= ⋅ −                                                  (19)   

where ,
j

i ty  is the amount of input j used by country i. There is local bias in final good production: 

1
2 1.ξ< <  The final good is used for consumption, , ,i tC  and gross investment, , :i tI  , , , .i t i t i tZ C I= +  

The law of motion of country i’s  capital stock is  , 1 , .i t i tK I+ =   

At date t, the price of country i’s final good ,( )i tP  equals its marginal cost:    

                                                    1
, , ,( ) ( ) .i t i t j tP p pξ ξ−= ⋅                                                        (20) 

where ,j tp  is the price of intermediate good j.  Input demands are:  

                                 1
, , , ,( / ) ,i
i t i t i t i ty p P Zξ −= ⋅  1

, , , ,(1 ) ( / )j
i t j t i t i ty p P Zξ −= − ⋅ ,  for .j i≠                                (21) 

Market clearing for intermediate goods requires  

                                                        , , ,
i i
H t F t i ty y Y+ =  for i=H,F.                                                       (22) 

Country i’s terms of trade and real exchange rate are defined as , , ,/i t i t j tq p p≡  and , , ,/ ,i t i t j tRER P P≡  

with i≠j, respectively. Thus, increases in ,i tq and ,i tRER  represent an improvement in country i’s 

terms of trade, and an appreciation of its real exchange rate, respectively.  

The model assumes complete international financial markets, so that consumption risk is 

efficiently shared across countries. In equilibrium, the ratio of Home to Foreign households’ 

marginal utilities of consumption is, thus, proportional to the Home real exchange rate 

(Kollmann, 1991, 1995; Backus and Smith, 1993). Under log utility, this implies that Home 

consumption spending is proportional to Foreign consumption spending: , , , , ,H t H t F t F tP C P C=Λ⋅

where Λ  is a date- and state-invariant term that reflects the (relative) initial wealth of the two 

countries. In what follows, I assume that the two countries have the same initial wealth, and I 

hence set Λ=1.  Thus:  

                                                            , , , , .H t H t F t F tP C P C=                                                            (23) 

Each household equates the marginal rate of substitution between leisure and 

consumption to the marginal product of labor, expressed in units of consumption, which implies  

                                               , , , , , , ,/(1 ) ( / )(1 ) ( ) ( ) .i t i t i t i t i t i t i tC L p P K Lα αα θ −Ψ − = −                                 (24) 

The capital Euler equation of the country i household is:  
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                                   1 1
, , 1 , 1 , 1 , 1 , 1 , 1( / )[( / ) ( ) ( ) 1 ] 1t i t i t i t i t i t i t i tE C C p P K Lα αβ αθ δ− −

+ + + + + + + − = .                     (25)                     

 

Substitution of the intermediate good demand functions (21) into the market clearing condition 

for intermediates (22) gives:  

                               , , , , , , 1 , , , , 1( ) (1 ) ( )H t H t H t H t H t H t F t F t F t F tp Y P C P K P C P Kξ ξ+ += ⋅ + + − ⋅ + ,                  

                                     , , , , , , 1 , , , , 1(1 ) ( ) ( )F t F t H t H t H t H t F t F t F t F tp Y P C P K P C P Kξ ξ+ += − ⋅ + + ⋅ + .                (26) 

Using the risk sharing condition (23), we can write (26) as:  

, , . , , , 1 , , 1(1 )H t H t H t H t H t H t F t F tp Y P C P K P Kξ ξ+ += + ⋅ + − ⋅ ,     

                                      , , . , , , 1 , , 1(1 )F t F t H t H t H t H t F t F tp Y P C P K P Kξ ξ+ += + − ⋅ + ⋅ .                                 (27) 

The labor supply equation (24) can expressed as: 

                                      , , , , , ,/( ) ( /(1 )) /(1 )i t i t i t i t i t i tp Y P C L Lα= Ψ − −   for i=H,F.                                    (28) 

With full capital depreciation, the Euler equation can be written as:  

                           , , , 1 , 1 , 1 , 1 , , 1{( ) /( )}( ) /( ) 1t i t i t i t i t i t i t i t i tE P C P C p Y P Kαβ + + + + + =  for i=H,F .                        (29) 

These equations can be expressed in terms of Home and Foreign investment/consumption ratios 

and nominal output/consumption ratios: 

                                                      , , , 1 , ,/( )i t i t i t i t i tP K P Cκ +≡   for i=H,F;                                            (30) 

                                                        , , , , ,/( )i t i t i t i t i tg p Y P C≡   for i=H,F.                                             (31) 

The market clearing, labor supply and Euler conditions (27), (28) and (29) can be written as 

                                       , , ,1 (1 )H t H t F tg ξκ ξ κ= + + − ,  , , ,1 (1 )F t H t F tg ξ κ ξκ= + − + ,                               (32) 

                                                , , ,( /(1 )) /(1 )i t i t i tg L Lα= Ψ − −   for i=H,F,                                          (33) 

                                            and       , 1 ,t i t i tE gαβ κ+ =    for i=H,F.                                                (34) 

Using the market clearing conditions (32), we can express the Euler equations (34) as: 

           , 1 , 1 ,(1 (1 ) )t H t F t H tEαβ ξκ ξ κ κ+ +⋅ + + − =   and , 1 , 1 ,(1 (1 ) )t H t F t F tEαβ ξ κ ξκ κ+ +⋅ + − + = .       (35)        

The deterministic steady state value of the Home and Foreign investment/consumption ratios is 

/(1 ).κ αβ αβ= − Let , ,i t i tκ κ κ≡ −  denote the deviation of ,i tκ  from its steady state value. (35) 

implies:  

                , 1 , 1 ,( (1 ) )t H t F t H tEαβ ξκ ξ κ κ+ +⋅ + − =   and  , 1 , 1 ,((1 ) )t H t F t F tEαβ ξ κ ξκ κ+ +⋅ − + = .         (36) 
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Therefore,   , 1 ,

, 1 ,

t H t H t

t F t F t

E
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E

κ κ

κ κ
+

+

⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, where 
1

1
A

ξ ξ
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ξ ξ
−⎡ ⎤

≡ ⋅⎢ ⎥−⎣ ⎦
.  Hence,  

                         , 1 ,

, 1 ,

t H t H t

t F t F t

E
B

E

κ κ

κ κ
+

+

⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, with 1 (1 )1 .

(1 )(2 1)
B A

ξ ξ
ξ ξαβ ξ

− − −⎡ ⎤
≡ = ⋅⎢ ⎥− −− ⎣ ⎦

                (37) 

The eigenvalues of the matrix B are 1/( )Sλ αβ≡  and 1/( (2 1)).Dλ αβ ξ≡ −  Both eigenvalues are 

greater than 1, as 0.5 1ξ< <  Hence, the only non-explosive solution of (37) is given by , 0i tκ =  and 

thus , /(1 ),i tκ αβ αβ= − for i=H,F.  Dellas (1986) focuses on this ‘no-bubble’ solution.  

 

4.1. Bubble equilibria in the Dellas model 

In what follows, I will study bubble equilibria with , 0.i tκ ≠  As for previous models discussed in 

this paper, I focus on ‘interior’ equilibria for which consumption, capital and output are strictly 

positive for all dates and states of the world. It can be seen immediately from (30)-(35) that an 

interior equilibrium requires that the Home and Foreign investment/consumption ratios are 

strictly positive for all dates and states.   

Any strictly positive process for Home and Foreign investment/consumption ratios that 

satisfies the Euler equations (35),(36) has to be such that  

                                                     , , 0 .H t F t tκ κ= ≥ ∀                                                           (38) 

Thus, the bubbly investment/consumption ratio has to be always at least as large as the 

steady state ratio; as in the closed economy models discussed previously, the bubble equilibria in 

the two-country world exhibit capital over-accumulation. Also, a strictly positive bubble process 

has to be identical across the two countries. To understand this, let , ,t H t F tS κ κ≡ +  and 

, ,t H t F tD κ κ≡ −   respectively denote the sum and the difference of the two countries’ 

investment/consumption ratios, expressed as deviations from steady state. (37) implies

1t t S tE S Sλ+ = ⋅  and 1t t D tE D Dλ+ = ⋅ , where Sλ    and Dλ   are the eigenvalues of the matrix B (see 

(37)). Note that 1
, 2 ( )H t t tD Sκ = ⋅ +  and 1

, 2 ( ).F t t tS Dκ = ⋅ −  Hence,  

     1
, 2 ( ) { (1/(2 1)) }s s

t H t s S t tE S Dκ λ ξ+ = ⋅ + −  and 1
, 2 ( ) { (1/(2 1)) },s s

t F t s S t tE S Dκ λ ξ+ = − −                (39) 
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where I use the fact that /(2 1).D Sλ λ ξ= −  0.5 1ξ< <  implies 1/(2 1) 1ξ− >   and thus .D Sλ λ>  A 

necessary condition for non-negativity of ,H τκ  and ,F τκ  in all future dates and states τ≥t is 0tD =  

and 0tS ≥  which implies (38). 20 

 What explains why only global bubbles are possible? Intuitively, an investment bubble 

that occurs solely in the Home country ,( 0)H tκ >  would trigger a growing Home trade deficit, 

due to growing intermediate imports by Home, fueled by the boom in Home investment. This 

would put Foreign investment on a downward trajectory. If the Home bubble lasts sufficiently 

long, the Foreign capital stock would ultimately reach zero.  

More formally, we can note from the Euler equation (36) that if , , 1, 0H t t H tEκ κ + >  holds, 

then , , 1 0F t t F tEκ κ += =  is impossible.  Thus a bubble cannot occur just in country H.  

The Euler equation prescribe that country i’s country’s investment/consumption ratio at 

date t equals the country’s expected date t+1 output/consumption ratio multiplied by the factor 

0<αβ<1. The future output/consumption ratio equals 1 plus a weighted average of future 

domestic and foreign investment/consumption ratios, with weights ξ and 1-ξ, respectively (see 

(32)). If Home and Foreign had identical final good technologies (zero local spending bias: 

ξ=1/2), the date t investment/consumption ratio would thus be identical across countries, 

irrespective of the expected date t+1 investment/consumption ratios. With a local spending bias 

(1/2<ξ<1), the difference between Home and Foreign investment/consumption ratios at date t is 

smaller (in absolute value) than the expected cross-country difference at t+1 (as 1/ 1).Dλ <  Any 

difference between domestic and foreign investment/consumption ratios at date t  ( 0)tD ≠  would 

trigger a larger expected difference in period t+1; thus, the expected cross-country difference 

would explode, and that at a faster rate than the sum of these two-country’s 

investment/consumption ratios (as ).D Sλ λ>  This would induce potential violations of the non-

negativity constraint in future periods τ>t.   

                                                 
20 0tD ≠  would imply ,lims t H t sE κ→∞ + =−∞  or ,lims t F t sE κ→∞ + = −∞ . With strictly positive probability, ,H τκ  or  ,F τκ  

would thus be negative at some date(s) τ≥t. Setting  0tD =  in (39) shows that 0tS <  would imply ,lims t H t sE κ→∞ + =−∞  

and ,lims t F t sE κ→∞ + = −∞ , so that  , 0H τκ <  or  , 0F τκ <  with positive probability at some date(s) τ≥t.   
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The subsequent discussion thus assumes that (38) holds. Let , ,t H t F tκ κ κ= =  denote the 

(common) investment/consumption ratio in both countries, and let t tκ κ κ≡ −  be its deviation 

from the steady state ratio κ. (36) implies  

                                                                1 .t t tEαβ κ κ+ =                                                                (40) 

By analogy to the bubble processes discussed in earlier Sections, assume that 1tκ +  takes 

two values: 1 1{ , }H
t tκ κ+ +∈ Δ  with exogenous probabilities π  and 1 ,π−  respectively, and 0.Δ>   

Consider a world economy that starts in period t=0, with initial capital stocks ,0 ,0, .H FK K  Let 

{0;1}tu ∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. An (interior) bubble equilibrium is a sequence of investment/consumption ratios 

0{ }t tκ ≥  such that 1tκ + =Δ    if 1 0tu + =  and 1 1
H

t tκ κ+ +=  if 1 1,tu + =  for t≥0, where 1
H
tκ +  solves the date t 

Euler equation (40).  Note that (40) implies 1{ (1 ) } ,H
t tαβ π π κ κ+Δ+ − =  so that 

1 ( )/( (1 )).H
t tκ κ αβπ αβ π+ = − Δ −  If tκ ≥Δ holds, then 1 .H

t tκ κ+ >   

The investment/consumption ratio in the initial period, 0κ , does not obey the recursion 

that governs investment/consumption ratios in subsequent periods. However, 0κ ≥Δ  has to hold 

to ensure that tκ ≥Δ  holds ∀t>0. 21  

 Given the tκ process, one can solve for the real exchange rate, hours worked, 

consumption, investment and output in both countries, using the static equilibrium conditions 

(26)-(33). (33) implies that labor hours in country i are determined by the output/consumption 

ratio ,i tg . In equilibrium, both countries have the same (nominal) output/consumption ratio, as 

, 1i t tg κ= +  for i=H,F. Equilibrium hours worked are, thus, identical across countries:  

                                                    , (1 )/{1 /(1 )}i t t t tL L κ κ α= ≡ + + +Ψ −  for i=H,F.                                 (41) 

and country i output is: 

                                                              1
, , ,( ) ( ) .i t i t i t tY K Lα αθ −=                                                       (42)       

                                                 
21 Note that /(1 ).t tκ κ αβ αβ= + −  As in the models discussed in earlier Sections, ∆>0 is needed to ensure a strictly 

positive recurrent bubble. ∆=0 would imply that the bubble is self-ending ( 0tκ =  would imply 0τκ =  ∀ τ>t.) 
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, ,H t F tκ κ=  also implies that investment and output, valued at market prices, are equated across 

countries: , , 1 , , 1H t H t F t F tP K P K+ +=  and , , , ,H t H t F t F tp Y p Y=  (from (23), (30) and (31)).  Because 

consumption spending is likewise equated across countries (see (23)), net exports are zero, in 

equilibrium. Country i’s terms of trade equal the inverse of i’s relative output: , , , , ,/ /i t i t j t j t i tq p p Y Y≡ =  

with j≠i. The real exchange rate is 1
, ,( ) .i t i tRER q ξ2 −=  (31) implies , , , ,(1/(1 ))( / )i t t i t i t i tC p P Yκ= + . Note 

that 1 1
, , , , ,/ ( ) ( / )i t i t i t j t i tp P q Y Yξ ξ− −= =  with j≠i.  Thus:   

                           1
, , ,(1/(1 ))( ) ( )H t t H t F tC Y Yξ ξκ −= +    and   1

, , ,(1/(1 ))( ) ( )F t t H t F tC Y Yξ ξκ −= + .                     (43) 

Finally, note from (30) that , 1 ,i t t i tK Cκ+ = . Therefore, date t investment is given by:  

                       1
, 1 , ,( /(1 ))( ) ( )H t t t H t F tK Y Yξ ξκ κ −
+ = +  and   1

, 1 , ,( /(1 ))( ) ( )F t t t H t F tK Y Yξ ξκ κ −
+ = + .                 (44) 

Hours worked, investment and output at date t are increasing functions of ,tκ  while consumption 

is decreasing in .tκ   

(44) implies that logged capital follows a stable vector autoregression: 

                           , 1 , , ,

, 1 , , ,

ln( ) ln( ) ( , , )(1 )
ln( ) ln( ) ( , , )(1 )

H t H t H H t F t t

F t F t F H t F t t

K K
K K

ω θ θ κξα ξ α
ω θ θ κξ α ξα

+

+

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,                       (45) 

where 1
, , , ,( , , ) ( /(1 ))( ) ( ) ( )i H t F t t t t t i t j tL α ξ ξω θ θ κ κ κ θ θ1− −≡ +   with j≠i is a function of hours worked, of TFP 

in the two countries, and of tκ . Note that /(1 )t tκ κ+  is strictly positive and bounded: 

/(1 ) /(1 ) 1.t tκ κΔ +Δ ≤ + <  Hours too are strictly positive and bounded: (1 )/{1 /(1 )} 1.tLα+Δ +Δ+Ψ − ≤ <

Assume that the TFP process is strictly positive and bounded (as in Sect. 3.3.2).  Then ,H tω  and 

,F tω  are strictly positive and bounded. The eigenvalues of the autoregressive matrix of the law of 

motion of capital (α  and α(2ξ-1)) are smaller than 1 in absolute value; thus, the capital stock in 

each country too is strictly positive and bounded, and so are output, consumption and the terms 

of trade.   

In a deterministic economy, any deviation of the investment/consumption ratio from its 

steady state value /(1 )αβ αβ−  puts the capital stock on a divergent trajectory that converges to the 

maximum feasible capital stock. By contrast, the stochastic bubble equilibrium considered here 

does not entail convergence to the maximum capital stock.  
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4.2. Simulation results 

Table 3 reports simulated business statistics for the Dellas two-country model with bubbles. The 

capital share, and the subjective discount rate are respectively set at α=1/3 and β=0.99. The share 

of spending devoted to domestic intermediates is set at ξ=0.9.22 I set the bust probability at 

π=0.5. Δ  is set at 2.22%, as this implies that, in a bust state the ratio of capital spending divided 

by nominal GDP , , , ,, 1/( )i t i t i t i ti tZ P K p Y+≡  is 1% above its steady state value αβ. 23 Versions of the 

model with TFP shocks assume that Home and Foreign TFP follow the (symmetric) 

autoregressive process that Backus et al. (1994) estimated using quarterly TFP series for the US 

and an aggregate of European economies: 

                                       , 1 , , 1

, 1 , , 1

ln ln.906 .088
,

ln ln.088 .906
H t H t H t

F t F t F t

θ

θ

θ θ ε
θ θ ε

+ +

+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                     (46) 

where , 1 , 1,H t F t
θ θε ε+ +  are white noises with , 1 , 1( ) ( ) 0.852%H t F tStd Stdθ θε ε+ += =  and 

, 1 , 1( , ) 0.258.H t F tCorr θ θε ε+ + =  Thus, productivity is a highly persistent process, and there are delayed 

positive cross-country spillovers (positive off-diagonal elements of the autoregressive matrix); 

also, productivity innovations are positively correlated across countries.  

 Col. 1 of Table 3 considers a version of the model with just bubble shocks (while TFP is 

constant). Col. 2 assumes joint bubble and TFP shocks, while Col. 3 assumes just TFP shocks 

(no bubble: tκ κ=  ∀t).   

In the Dellas model with just bubble shocks, output, consumption, investment and hours 

are identical across the two countries (see Col. 1). The dynamics of these variables corresponds, 

thus, to that predicted by a closed economy model Long-Plosser model. Like the Long-Plosser 

model, the Dellas model with bubbles predicts excessive fluctuations of real activity; 

                                                 
22 This calibration is consistent with the fact that the mean US trade share (0.5×(imports+exports)/GDP) was 10% in 
the period 1973-2013.  
23 Note that , /(1 ).t ti tZ κ κ= +  Hence, ,, .F tH t ZZ =  The assumption that 0.0222tκ κ= + holds in a bust ensures that the 
bust value of ,i tZ  exceeds its steady state value by 0.01. This parallels the calibration of a bust in the closed 
economy Long-Plosser model (see Sect. 2).  
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consumption and investment are predicted to be more volatile than output.24 Because of the 

predicted perfect correlation of Home and Foreign output, the terms of trade and the real 

exchange rate are constant, when there are just bubble shocks.  

 The variant of the Dellas model with just TFP shocks (no bubbles) generates realistic 

output and consumption variances (see Col. 3). However, investment, hours worked and the real 

exchange rate are less volatile than in the data (this model variant predicts that hours are 

constant). The model variant with just TFP shocks generates fluctuations in output, consumption 

and investment that are positively correlated across countries. The predicted cross-country 

correlation of output (0.37) is smaller than the empirical correlation (0.52), while predicted 

cross-country correlations of consumption and investment (0.55) are higher than in the data.  

 The model variant with simultaneous bubble shocks and TFP shocks generates 

fluctuations that are dominated by the bubble shocks. For example, with the joint shocks, real 

activity is almost perfectly correlated across countries. However, the presence of TFP shocks 

implies that the real exchange rate shows non-negligible fluctuations.  

 

4.3. Financial autarky 

Country-specific bubbles can arise when there are impediments to international capital flows. 

Consider, for example, a variant of the Dellas model with financial autarky, so that net exports 

are constrained to be zero (balanced trade). Then the budget constraint of the country i household 

is  

                                                           , , , , , 1( )i t i t i t i t i tp Y P C K += + ,                                                      (47) 

i.e. the value of a country’s intermediate good output equals the value of its consumption and 

investment spending. Under financial autarky, we thus have (from (47)):   

                                                                  , ,1i t i tg κ= + .                                                                 (48) 

Substituting (47) into the market clearing conditions (26) for the Home and Foreign intermediate 

goods gives: , , , , , ,(1 )i t i t i t i t j t j tp Y p Y p Yξ ξ= ⋅ + − ⋅ , i≠j. Thus: , , , ,i t i t j t j tp Y p Y=  holds, as is the case under 

complete markets. The labor supply condition (28) and the Euler equation (29) continue to hold 

under financial autarky, and hence (33) and (34) likewise continue to hold:  
                                                 
24 The version of the Dellas model considered in Table 3 assumes endogenous labor. Hours worked respond to 
bubble shocks. This explains why real activity is more volatile than in the Long-Plosser model with fixed labor 
considered in Table 1.  
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                             , , ,( /(1 )) /(1 )i t i t i tg L Lα= Ψ − −    and   , 1 ,t i t i tE gαβ κ+ =    for i=H,F.                                                 

(48) implies that, under financial autarky, labor hours are given by 

                                                       , , ,(1 )/{1 /(1 )}i t i t i tL κ κ α= + + +Ψ − ,                                                  (49) 

while the Euler equation can be expressed as                 

                                                            , 1 ,(1 )t i t i tEαβ κ κ++ = .                                                        (50) 

(47) implies , , , , ,(1/(1 ))( / ) .i t i t i t i t i tC p P Yκ= +  As 1 1
, , , , , ,/ ( / ) ( / ) ,i t i t i t j t j t i tp P p p Y Yξ ξ− −= =  j≠i  we find    

                         1
, , , ,(1/(1 ))( ) ( )i t i t i t j tC Y Yξ ξκ −= +    and  1

, 1 , , , ,( /(1 ))( ) ( ) .i t i t i t i t j tK Y Yξ ξκ κ −
+ = +                    (51) 

Note that , , , , , ,/ ((1 )/(1 )) / .H t F t F t H t F t H tC C P Pκ κ= + +  Thus,  

                                                    , , , , , ,((1 )/(1 )) .H t H t F t H t F t F tP C P Cκ κ= + +                                           (52) 

Recall that the complete markets model too implies that trade is balanced, in equilibrium.  (By 

contrast, balanced trade is a constraint under financial autarky.) If , , ,H t F tκ κ= then bubble 

equilibria under financial autarky are observationally equivalent to bubble equilibria under 

complete markets. (52) shows that, in that case, consumption spending under financial autarky is 

equated across countries, i.e. the international risk sharing condition (23) continues to hold.   

Under financial autarky, ,i tκ solely has to satisfy the country i Euler equation (50); thus, 

country-specific bubbles are possible,  , ,H t F tκ κ≠  (By contrast, under complete markets, ,i tκ  also 

enters the Euler equation of country j, and thus the two countries’ bubbles are jointly 

determined—as shown above, this restriction implies that country-specific bubbles are 

impossible, when markets are complete.) Local bubbles, under financial autarky, induce 

violations of the international risk sharing condition (see (52)).  

 

5. Rational bubbles in a two-country RBC model with incomplete capital depreciation 
This Section discusses a two-country RBC model with incomplete capital depreciation, non-

unitary risk aversion and a CES final good aggregator. As in the Dellas model, complete 

financial markets are assumed. This richer model version cannot be solved in closed form.  

The period utility now is: , , ,( , ) ln( ) ln(1 ),i t t i t i tU C L C C L= − +Ψ⋅ −  with 0.C ≥  The country i 

final good production function is 1/ ( 1)/ 1/ ( 1)/ /( 1)
, , ,[ ( ) (1 ) ( ) ]i j

i t i t i tZ y yφ φ φ φ φ φ φ φξ ξ− − −= ⋅ + − ⋅ ,  j≠i,   where φ  is the 
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substitution elasticity between domestic and imported goods. The price of country i’s final good 

,( )i tP  now is 1 1 1/(1 )
, , ,[ ( ) (1 ) ( ) ]i t i t j tP p pφ φ φξ ξ− − −= ⋅ + − ⋅ , j≠i, and input demands are , , , ,( / ) ,i

i t i t i t i ty p P Zφξ −= ⋅    

, , , ,(1 ) ( / )j
i t j t i t i ty p P Zφξ −= − ⋅ . The law of motion of country i’s capital stock is , 1 , ,(1 ) ,i t i t i tK K Iδ+ = − +  

where 0 1δ< ≤  is the capital depreciation rate.  

The static equilibrium conditions (i.e. the market clearing condition and the labor supply 

equation) allow to express date t consumption, hours worked and terms of trade , , ,, ,i t i t i tC L q  for 

i=H,F as functions of both countries’ date t productivity and capital stocks in t and t+1, 

, , 1 ,, ,i t i t i tK K θ+  for i=H,F. Substituting these functions into the two countries’ capital Euler 

equations (25) allows to express these Euler equations as  expectational difference equations in 

terms of Home and Foreign capital stocks:   

                                                2 1 1( , , , , ) 1t i t t t t tE H K K K θ θ+ + + =   for i=H,F,                                  (53) 

 where , ,( ; )t H t F tK K K≡  and , ,( ; )t H t F tθ θ θ≡  are vectors of Home and Foreign capital and TFP, 

respectively. The function iH  maps 10R+  into R. 

The no-bubble solution of the two-country model is described by policy functions 

, 1 ( , )i t i t tK Kλ θ+ =  that map date t capital and TFP into capital at date t+1. 

The specification of the bubble process parallels the specification used in the closed 

economy RBC model (see Sect. 3). It is, thus, assumed that , 1i tK +  takes two possible values: 

, 1 , 1 , 1{ , }L H
i t i t i tK K K+ + +∈ , where  , 1 ( , )L

i t i t tK K eλ θ Δ
+ = ⋅ , with ∆>0.  As in the Dellas model (with complete 

financial markets), the investment bubble has to be perfectly synchronized across countries.  

Consider an economy that starts at date t=0, with initial capital stocks ,0 ,0, .H FK K  Let 

{0;1}tu∈  be an exogenous i.i.d. sunspot that takes values 0 and 1 with probabilities π and 1 ,π−  

respectively. A ‘bubble equilibrium’ is a sequence of capital stocks , , 0{ , }H t F t tK K ≥  such that, for 

all t≥0,   

(a) , 1 , ,( , )L
i t i H t H tK K eλ θ Δ
+ = ⋅   for i=H,F  if 1 0;tu + =   

(b) , 2 , 2
H

i t i tK K+ +=  i=H,F, if 1 1,tu + =  where , 2 , 2,H H
H t F tK K+ +  solves (53).  
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By analogy with the specification in Sect. 3.2, I assume that, conditional on date t information, 

Home and Foreign productivity innovations at t+1 have equiproportional effects on , 2
L
i tK +  and 

, 2.H
i tK +  Specifically: , 2 , , 2

H H L
i t i t i tK s K+ += ⋅ , where , 0H

i ts >  is in the date t information set. This greatly 

simplifies the analysis, as it allows to write the Euler equations (53) as:  

                               1 1 1 1 1 1( ( , ) , ( , ) , , , , )t i H t t F t t t t t tE H K e K e K Kπ λ θ λ θ θ θΔ Δ
+ + + + + + +             

, ,1 1 1 1 1 1(1 ) ( ( , ) , ( , ) , , , , ) 1H H
t i H t H F t F t tt t t t t tE H s K e s K e K Kπ λ θ λ θ θ θΔ Δ

+ + + + + +⋅− ⋅ =   for i=H,F.  

Given the date t+1 capital stocks selected by the realization of the sunspot, the date t Euler 

equations of both countries only feature two endogenous variables chosen in period: ,
H
H ts  and 

, .H
F ts  Thus, simulating the bubble equilibrium boils down to solving two equations in two 

unknowns in each period.  

 

5.1. Simulation results 

As in previous models, I set 1/3, 0.99.α β= =  The capital depreciation rate is set at 0.025.δ =  The 

preference parameter Ψ  (utility weight on leisure) is set so that the Frisch labor supply elasticity 

is unity, at the steady state. As in the calibration of the Dellas model, I set the local spending bias 

parameter at 0.9.ξ =  The substitution elasticity between domestic and imported intermediates is 

set at 1.5;φ=  that value is widely used in the International RBC literature, which is consistent 

with estimated price elasticities of aggregate trade flows (e.g., Backus et al. (1994)). Model 

versions with TFP shocks assume that Home and Foreign TFP obey the vector autoregression 

(46). The parameters of the bubble process are identical to the bubble process in the closed 

economy RBC model. I consider two values of the bust probability: π=0.2 and π=0.5. ∆ is set at 

∆=0.001. The no-sunspot decision rules for capital, ( , )i t tKλ θ  for i=H,F are again approximated 

using a second-order Taylor expansion. 

Predicted business cycle statistics generated by the two-country RBC model with 

incomplete capital depreciation are shown in Table 4. Cols. labelled ‘Unit Risk Aversion’ (or 

‘Unit RA’) assume a log utility function (i.e. minimum consumption is set at 0).C=   In Cols. 

labelled ‘High RA’, C is set at 0.8 times steady state consumption.  
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Cols. (9) and (10) of Table 4 show simulated business cycle moments for model variants 

driven just by TFP shocks, i.e. without bubbles. The results confirm findings that are well-know 

from the International RBC literature (e.g., Backus et al. (1994), Kollmann (1996)): a complete 

markets model driven just by TFP shocks captures well the volatilities of output and investment, 

but it underpredicts the volatility of the real exchange rate. The model reproduces the fact that 

net exports are countercyclical. However, the model-predicted cross-country correlations of 

output and investment are markedly lower than the corresponding historical correlations. By 

contrast, the model predicts that consumption is almost perfectly correlated across countries. The 

low predicted cross-country correlation of output reflects the fact that, with complete financial 

markets, a positive shock to Home productivity raises Foreign consumption, which reduces 

Foreign labor supply, and thus Foreign output falls, on impact (while Home output increases).25  

 Simulated business cycle statistics for model variants with just bubble shocks (constant 

TFP) are reported in Cols. (1)-(4) of Table 4. Standard deviations, correlations with domestic 

GDP and autocorrelations are identical to the corresponding statistics (with just bubble shocks) 

for the closed economy RBC model (see Col. (1)-(4) of Table 2). This is due to the fact that, in 

the two-country model with complete markets, bubbles are perfectly correlated across countries; 

with just bubble shocks, real activity is thus perfectly correlated across countries, the terms of 

trade are constant and net exports are zero. The volatility of real activity induced by bubble 

shocks is broadly comparable to the volatility generated by TFP shocks, but the implied volatility 

of hours worked is higher under bubble shocks. 

 Simulated business statistic under joint bubbles and TFP shocks are shown in Cols. (5)-

(8) of Table 4. With joint shocks, the predicted volatilities of endogenous variables are higher, 

and thus closer to the data, then with just TFP shocks. The model with joint bubble and TFP 

shocks is especially successful at matching the positive empirical cross-country correlations of 

output, investment and hours worked, and the counter-cyclical trade balance; however the 

predicted cross-country consumption correlation is too high, when compared to the data.  

 Fig. 4 shows simulated sample paths for the model version with ‘High Risk Aversion’ 

and a bust probability π=0.2.  Panels (1),(2) and (3) respectively show results for cases with just 

bubble shocks; with joint bubble and TFP shocks; and with just TFP shocks.  With just TFP 

                                                 
25 The Dellas model with just TFP shocks (no bubbles) generates higher cross-country output correlations (see 
above) because, in that model, hours worked are constant (in the no-bubbles equilibrium). 
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shocks (no bubbles), a negative cross-country correlation of high-frequency output and 

investment fluctuations is clearly discernible (see Panel (3)). Bubble shocks induce relatively 

widely spaced output and investment booms that are perfectly correlated across countries (Panel 

(1)). In the setting with joint bubble and TFP shocks, output and investment are markedly more 

synchronized across countries than when there are just TFP shocks.   

 

6. Conclusion 
Linearized Dynamic Stochastic General Equilibrium (DSGE) models with a unique stable 

solution are the workhorses of modern macroeconomics. This paper shows that stationary 

sunspot equilibria exist in standard non-linear DSGE models, even when the linearized versions 

of those models have unique solutions. In the sunspot equilibria considered here, the economy 

may temporarily diverge from the no-sunspots allocation, before abruptly reverting towards that 

allocation. In contrast to rational bubbles in linear models (Blanchard (1979)), the bubbles 

considered here are stationary--their expected path does not explode to infinity. Numerical 

simulations suggest that non-linear DSGE models driven solely by stationary bubbles can 

generate persistent fluctuations of real activity and capture key business cycle stylized facts. This 

paper analyzed bubbles in both closed and open economies. A key finding for a two-country 

model is that, with integrated financial markets, investment bubbles have to be perfectly 

correlated across countries. Global bubbles may help to explain the synchronization of 

international business cycles. Country-specific bubbles can only arise when there are 

impediments to international capital flows.  
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Appendix 1: OLG model with same aggregate Euler equation as a model with 
an infinitely-lived representative agent 
This Appendix shows that an economy inhabited by overlapping generations (OLG) of finitely-
lived agents can have the same aggregate equations—with the exception of the transversality 
condition (TVC)--as an economy with an infinitely lived representative agent. Here, this point is 
made for the Long-Plosser model discussed in Sect.2. It is assumed that the economy has the 
same aggregate production function and the same aggregate resource constraint as the 
corresponding representative agent economy.  

The two key assumptions that deliver this result are: I. Efficient risk sharing between 
periods t and t+1, among all agents who are alive in both periods. II. Newborn agents receive a 
wealth endowment such that consumption by newborns represents a time-invariant share of 
aggregate consumption. Under log utility, this requires that newborn agents receive a wealth 
endowment that is a time-invariant share of total wealth.  

Assume that agents live N<∞ periods. A measure 1 of agents is born each period. Thus, a  
fraction 1/N of the population is aged n=1,…,N. All members of the same age cohort are 
identical. All agents have log utility and the same subjective discount factor, .β  Let ,i tc  denote 
the date t consumption of agents who are in the i-th period of their life (‘generation i’) at date t. 
The expected life-time utility of the generation born at date t is, thus, 1

,0
ln( ).N s

t i s t ss
E cβ−

+ +=∑  

Aggregate consumption at date t is ,1
.N

i titC c
=

=∑  Assume that there exists a market at date t in 
which a complete set of one-period claims with state-continent date t+1 payouts is traded. This 
implies that, in equilibrium, the consumption growth rate between t and t+1 is equated across all 
agents who are alive in both periods (risk sharing):   

                                     1, 1 , 2, 1 1,/ /i t i t t tc c c c+ + +=  for i=1,..,N-1.                                              (A.1) 
Let , , /i t i t tc Cλ ≡  denote the ratio of generation i’s consumption divided by aggregate consumption, 
in period t. I refer to ,i tλ as the ‘consumption share’ of generation i, in period t. (A.1) implies  
                                               1, 1 , 2, 1 1,/ /i t i t t tλ λ λ λ+ + +=  for i=1,..,N-1.                                              (A.2) 

(A.2) and the adding up constraint , 11
1N

i ti
λ +=

=∑  provide a system of N equations that pin down 

the date t+1 consumption shares , 1 1,..,{ }i t i Nλ + = for given date t shares , 1,..,{ } :i t i Nλ =  

1, 1 , 1, ,(1 )/(1 )i t i t t N tλ λ λ λ+ + = − −  for i=1,..,N-1.  
 Assume that the consumption share of newborn agents, during the first period of their 
life, is time-invariant: 1, 1tλ λ=  t∀ . A constant newborn consumption share can be sustained by 
allocating to newborns a suitable time-invariant wealth share (see below). When 1, 1tλ λ= , then 
(A.1) is a stable difference equation in the consumption shares, and the consumption shares of 
generations i=2,..,N converge asymptotically to a constant consumption shares iλ  (numerical 
experiments show that  convergence to the steady state shares is fast). The N steady state 
consumption shares obey 
                                            1 1(1 ) /(1 )i i Nλ λ λ λ+ = − −  for i=1,..,N-1.                                              (A.3) 
Given any newborn’s consumption share 10 1,λ< ≤ these equations  pin down unique 
consumption shares of generations i=2,..,N that are consistent with the adding up constraint 
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1
1.N

ii
λ

=
=∑   The following discussion assumes that the consumption shares equal their steady 

state values, so that all generational consumption shares are time-invariant: 1, 1tλ λ=  
, 1,.., .t i N∀ ∀ = .    

The Euler equation for capital of generation i=1,..,N-1 between periods t and t+1 is 
, 1 , 1 1,t t t K tE rρ + + =  where , 1K tr +  is the gross rate of return (between t and t+1) on capital investment, 

while , 1 , , 1/t t i t i tc cρ β+ +=  is the common intertemporal marginal rate of substitution (IMRS) of these 
generations. Full risk sharing implies that the IMRS is equated across generations i=1,..,N-1 (see 
(A.1)). Thus 

                                    1 1
, 1 , , 11 1

/N N
t t i t i ti i

c cρ β − −

+ += =
= ∑ ∑   and                                               (A.4) 

                                     , 1 , 1 1, 1 1( )/( ) [(1 )/(1 )] / .t t t N t t t N t tC c C c C Cρ β β λ λ+ + += − − = − − ⋅                             (A.5) 
The capital Euler equation can thus be expressed as 

                             1 , 1/ 1,t t t K tE C C rβ + + =  with 1(1 )/(1 ).Nβ β λ λ≡ × − −                                  (A.6)     

We thus see that, up to a rescaling of the subjective discount factor when 1 ,Nλ λ≠  this 
OLG model implies that the same ‘aggregate’ Euler equation (in terms of aggregate 
consumption) holds as in a model with an infinitely-lived representative agent. If the initial 
wealth endowment of newborns is such  that 1 1/ ,Nλ=  then 1/i Nλ =  holds for i=1,..,N, which 

implies .β β≡  In the special case where 1 1/ ,Nλ=  the aggregate Euler equation of the OLG 
economy is thus identical to the Euler equation of an economy with an infinitely-lived agent. The 
only difference between the two economies is that the transversality condition 

1lim '( ) 0t t tE u C Kτ
τ τ τβ→∞ + + + =  does not hold in the OLG economy, as there is no infinitely-lived 

agent in the OLG economy. This OLG structure thus provides a motivation for considering a 
business cycle models that lack a TVC, but whose other equilibrium conditions (aggregate 
resource constraint, aggregate Euler equation) are identical to those of a standard business cycle 
model with an infinitely-lived representative agent.  
 
Wealth shares 
A time-invariant consumption share 1λ  of the new-born cohort is sustained by allocating to 
newborn agents a time-invariant share of the aggregate wealth of all cohorts. To see this, let ,i tω  
denote the wealth of generation i in period t. ,i tω equals the present value of generation i’s 

consumption stream: , , ,0

N i
i t t t t s i s t ss

E cω ρ−

+ + +=
= ∑ , where the stochastic discount factor ,t t sρ +  is a 

product of the one-period-ahead discount factors defined in (A.5): , 1t tρ =  and 1
, 1 , 1

s
t t s

τ
τ τ τρ ρ= −

+ = +=Π  

for s>1.  Note that , , ,/s
t t s i t i s t sc cρ β+ + +=  for 0<s≤N-i. Therefore , , 0

N i s
i t i t s

cω β−

=
= ∑  and hence 

                                     , , ,i t i i tc φ ω= ⋅  with   1(1 )/(1 )N i
iφ β β − +≡ − − for i=1,..,N.                            (A.7) 

Thus, in each period, generation i consumes a fraction iφ  of her wealth that is generation-
specific, but time invariant. In an equilibrium with time-invariant generational consumption 
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shares, the period t wealth of generation i equals thus , ( / )i t i i tCω λ φ= , and the wealth share 
generation i is  
                                               , ,1 1

/ ( / )/ ( / )N N
i t s t i i s s is s

ω ω λ φ λ φ κ
= =

= ≡∑ ∑ .                                       (A.8) 
Note that this wealth share is time-invariant. Thus, an equilibrium with time-invariant 
generational consumption shares exhibits time-invariant generational wealth shares. As pointed 
out above, the consumption share of newborn generations, 1,λ  pins down uniquely the 
consumption shares of older generations, i.e.  iλ  is a function of 1 :λ   1( ).i iλ λ=Λ   There is, 
hence, a unique mapping from 1λ  to the wealth shares of all generations (see (A.8) for definition 
of iκ ):  

                                               1 1 11
( ) ( ( )/ )/ ( ( )/ )N

i i i i s ss
κ λ λ φ λ φ

=
= Κ = Λ Λ∑ .                                    (A.9) 

If the new-born generation is allocated a wealth share 1 1 1 11
( / )/ ( ( )/ )N

s ss
κ λ φ λ φ

=
= Λ∑ , then this 

sustains an equilibrium in which the consumption share of the new-born generation is 1.λ  A 
consumption allocation in which all generations have consumption share 1/i Nλ= is sustained by 

allocating to the newborn generation a wealth share 1 1 1
(1/ )/ 1/ .N

ss
κ φ φ

=
= ∑  As an example, assume 

that life lasts 80 years, i.e. N=320 quarters, and that the quarterly subjective discount factor is 
0.99;β =  then the consumption allocation with equal consumption shares 1/ 0.3125%i Nλ= =  

requires a newborn wealth share of 1 0.4267%.κ =   
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Appendix 2: Bubble equilibrium in RBC model with incomplete capital 
depreciation (constant TFP)  
This Appendix discusses the role of ∆ for the bubble equilibrium, in the RBC model with 
constant TFP. Recall that ∆ denotes the deviation of the capital stock selected in the bust state, 
from the no-bubbles decision rule, λ: 1 ( ) .L

t tK K eλ Δ
+ =   

 
Consider first a decision economy with ∆=0, so that  1 ( )t tK Kλ+ =  .t∀  Then the agent’s Euler 
equation holds between t and t+1: ( ( ( )), ( ), ) 1.t t tH K K Kλ λ λ =  If 1 ( )t tK K eλ Δ

+ =  t∀  the Euler 
equation fails to hold if 0.Δ≠  Specifically: 
                                        ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <   when 0Δ> ,                               (A.10) 
                                 while ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ >  when 0Δ< .                             (A.11) 
(Intuitively, 0Δ>  implies overinvestment in capital, and thus the intertemporal marginal rate of 
transformation is smaller than the intertemporal marginal rate of transformation, IMRS, which 
implies H<1; 0Δ<  implies underinvestment in capital, and thus the intertemporal marginal rate 
of transformation is greater than the IMRS and hence H>1.)  
 
I now discuss bubble equilibria. Recall that the bubble equilibria considered here are such that 
the capital stock set at date t takes two possible values: 1 1 1{ , }L H

t t tK K K+ + +∈  with exogenous 
probabilities π  and ,π1−  respectively, where 1 ( ) .L

t tK K eλ Δ
+ =  I now show that a bounded 

equilibrium with recurrent bubbles exists if  0.Δ >  When 0,Δ =  the bubble equilibrium is self-
ending. When 0Δ <  the Euler equation between t and t+1 fails to have a solution for 2 ,H

tK +  for 
certain values of 1, .t tK K +  Thus, there is not bubble equilibrium if  ∆<0. 
I) Consider first a situation in which the date t+1 capital stock equals 1

L
tK + : 1t tK K eλ Δ( ) .+ =  

Then 2 ( ( ) )L
t tK K e eλ λ Δ Δ
+ =  and the Euler equation (17) between periods t and t+1 becomes: 

                    2( ( ( ) ) , ( ) , ) (1 ) ( , ( ) , ) 1H
t t t t t tH K e e K e K H K K e Kπ λ λ λ π λΔ Δ Δ Δ

++ − ⋅ = .                     (A.12)             
To establish the existence of a ‘bubble equilibrium’, one needs to show that there exists a

min max
2 ( , )H

tK K K+ Δ∈ that solves (A.12).  
 
● Consider first the case where 0.Δ=  Recall that ( ( ( )), ( ), ) 1.t t tH K K Kλ λ λ =  Thus, for ∆=0,  
the Euler equation of the bubbly economy (A.12) requires that 2( , ( ), ) 1H

t ttH K K Kλ+ =  holds. This 
implies 2 ( ( )),H

ttK Kλ λ+ =  and thus 2 2 2 1( ).H L
t t t tK K K Kλ+ + + += = =  By the same logic, 1 ( )s sK Kλ+ =  has 

to hold 1.s t∀ ≥ +  Thus, if 1 ( )s sK Kλ+ = , then the agent has to continue sticking to the no-bubbles 
decision rule in all subsequent periods. Hence, the bubble is self-ending when 0.Δ=  
 
● Consider next the case 0.Δ>  Because ( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <  when 0Δ> , the  Euler 
equation (A.12) can only holds when 2( , ( ) , ) 1.H

t t tH K K e Kλ Δ
+ >  Note that 2( , ( ) , ) 1H

t t tH K K e Kλ Δ
+ <  

when 2 ( ( ) ) .H
t tK K e eλ λ Δ Δ
+ =  It can be verified that 2( , ( ) , )H

t t tH K K e Kλ Δ
+  is an increasing function 
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of 2
H
tK +  (as a rise in 2

H
tK +  lowers 1tC +  and raises hours worked 1tL +  which raises the marginal 

utility of consumption at t+1, and raises the marginal product of capital at t+1). Setting 2
H
tK +  

arbitrarily close to (but below) the maximum feasible value max( ( ) ) (1 ) ( )t tK e K e Kαθ λ δ λΔ Δ+ − <  
makes 1tC +  very close to zero (which implies that 1tL +  is very close to 1), which makes 

2( , ( ) , )H
t t tH K K e Kλ Δ
+  very big. This implies that there exists a unique value of  2

H
tK +  that solves 

the Euler equation (A.12). Note that  max
2 ( ( ) ) ,( ).H

t tK K e e Kλ λ Δ Δ
+ ∈  Thus, 2 2.

L H
t tK K+ +<  When 

min max( , ),tK K KΔ∈  then min max( ) ( , )tK e K Kλ Δ
Δ∈  and min max( ( ) ) ( , )tK e e K Kλ λ Δ Δ

Δ∈  for values of 
0Δ>  sufficiently close to 0. If min max( , )tK K KΔ∈  we thus have that min max

1 2 2, , ( , ).L L H
t t tK K K K K+ + + Δ∈  

 
● Finally, consider the case 0.Δ<  It follows from (A.11) that then the  Euler equation (A.12) 
requires that 2( , ( ) , ) 1H

t t tH K K e Kλ Δ
+ <  holds. If there exists a value of 2

H
tK +  that solves (A.12), 

then that value must be smaller than  2 :L
tK +  2 2 ( ( ) )H L

t t tK K K e eλ λ Δ Δ
+ +< =  when 0Δ< .  There is no 

solution for 2
L
tK +  when ( ( ( ) ) , ( ) , ) (1 ) (0, ( ) , ) 1t t t t tH K e e K e K H K e Kπ λ λ λ π λΔ Δ Δ Δ+ − ⋅ > .  When 

0,Δ<  then a succession of positive (!) draws of the sunspot (u>0) puts the capital stock on a 
downward trajectory until (A.12) cannot be solved anymore for 2 0.H

tK + ≥   
 
II) Consider next a situation in which the date t+1 capital stock equals 1

H
tK + : 1 1

H
t tK K+ +=  

Assume ∆>0. As shown above, 1 ( )H
t tK K eλ Δ
+ ≥  holds when ∆>0.  When 1 1

H
t tK K+ +=  (which is 

triggered by a positive realization of the date t sunspot, 0)tu > , then 2 1( )L H
t tK K eλ Δ
+ +=  and the Euler 

equation between periods t and t+1 is given by: 
                               1 1 2 1( ( ) , , ) (1 ) ( , , ) 1H H H H

t t t t t tH K e K K H K K Kπ λ πΔ
+ + + ++ − ⋅ = .                             (A.13)             

1 1( ( ) , , )H H
t t tH K e K Kλ Δ
+ +  is a decreasing function of 1

H
tK +  for 1 ( ) .H

t tK K eλ Δ
+ ≥   Recall that 

( ( ( ) ) , ( ) , ) 1t t tH K e e K e Kλ λ λΔ Δ Δ <  when ∆>0. Therefore 1 1( ( ) , , ) 1H H
t t tH K e K Kλ Δ
+ + <  for any 

1 ( ) .H
t tK K eλ Δ
+ ≥  Thus 2 1( , , ) 1H H

t t tH K K K+ + > . It follows from the discussion above that 

2 1( , , )H H
t t tH K K K+ +  is increasing in 2

H
tK + and that 2 1( , , )H H

t t tH K K K+ +  can be made arbitrarily big by 

setting 2
H
tK +  close to 1 1( ) (1 ) .H H

t tK Kαθ δ+ ++ −  Thus, there exists a unique 2
H
tK +  that solves (A.13). 

Furthermore, 2 2 1( ) .H L H
t t tK K K eλ Δ
+ + +> ≡  
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Table 1. Long-Plosser model with bubbles: predicted business cycle statistics 
 
                              Standard dev. %              Corr. with Y               Autocorr.            Mean (% deviation from SS) 
 Y C I C I Y C I Y C I Z 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 
(a) Specification I:  Zt

L =αβ+∆ 
πt=0.5                  11.72 100.19 33.48 -0.42 0.62 0.62 0.47 0.62 13.49 -7.62 53.31 31.15 
πt≅1 for zt>0.36   1.33 3.51 3.82 0.77 -0.26 -0.26 -0.66 -0.26 3.27 -0.13 9.71 6.25 
 
(b) US Data (from King and Rebelo (1999)) 
 1.81 1.35 5.30 0.88 0.80 0.88 0.80 0.87  
Note: all business statistics pertain to HP-filtered logged variables.  
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Table 2. RBC model (incomplete capital depreciation): predicted business cycle statistics  

 

Bubbles, no TFP shocks Bubbles & TFP shocks 
  Unit Risk aversion   High RA Unit RA High RA Just TFP shocks  
 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 Unit RA  High RA Data 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  
 

Standard deviations [in %] 
Y 0.49 1.16 0.68 1.43 1.27 1.60 0.98 1.57 1.14 0.72 1.81  
C 1.08 2.63 0.29 0.61 1.16 2.71 0.38 0.72 0.49 0.26 1.35 
I 4.29 9.38 3.22 6.51 5.38 9.85 3.86 6.72 3.33 2.20 5.30 
L 0.74 1.73 1.04 2.18 0.82 1.70 1.05 2.22 0.34 0.30 1.79 
 

Correlations with GDP 
C -0.97 -0.95 -0.99 -0.98 0.04 -0.54 0.01 -0.62 0.95 0.99 0.88 
I  0.98 0.96 0.99 0.99 0.89 0.86 0.97 0.98 0.99 0.99 0.80  
L 0.99 0.97 0.99 0.99 0.79 0.81 0.45 0.82 0.98 -0.96 0.88 
 

Autocorrelations 
Y 0.36 0.63 0.35 0.62 0.65 0.68 0.57 0.66 0.71 0.70 0.84 
C 0.33 0.60 0.35 0.62 0.43 0.62 0.53 0.65 0.76 0.72 0.80 
I 0.36 0.63 0.37 0.64 0.53 0.65 0.51 0.65 0.70 0.70 0.87 
L 0.34 0.61 0.35 0.62 0.45 0.62 0.41 0.63 0.70 0.74 0.88 
 

Means [% deviation from steady state] 
Y 1.41 2.80 1.25 2.12 1.37 2.75 1.31 2.17 0.00 0.00 -- 
C 0.73 1.39 0.33 0.55 0.68 1.34 0.33 0.55 0.00 0.00 -- 
I  3.62 7.33 4.22 7.19 3.61 7.28 4.44 7.40 0.00 0.00 -- 
L 0.36 0.74 -0.02 -0.02 0.34 0.73 0.01 -0.03 0.00 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 9.12 8.75 8.93 8.54 9.16 8.78 8.92 8.53 9.58 9.58 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 99.20 96.31 99.55 97.72 99.20 96.43 99.37 97.74 100 100 100 
Notes: Business cycle statistics reported here are based on one simulation run of T=10000 periods (for each model 
variant). Standard deviations, correlations of GDP and autocorrelations pertain to medians of statistics across rolling 
windows of 200 periods. These moments pertain to logged series that were HP filtered (for each window of 200 periods).  
“Means” are sample averages over the total sample of T periods. The “Fraction of periods with (capital income > 
investment)” likewise pertains to the whole simulation run of T periods. Cols. (1)-(4) pertain to model variants in which 
fluctuations are just driven by bubbles (constant TFP). Cols. (5)-(8) pertain to variants with bubbles and TFP shocks.  
Cols. (9)-(10) assume just TFP shocks (without bubbles). Col. (11) reports empirical statistics based on US data (statistics 
for Y,C,I,L: from King and Rebelo (1999), based on 1947q1-1996q4 quarterly data; statistics about capital income – 
investment: based on annual data 1929-1985 reported by Abel et al. (1989)).   
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Table 3. Two-country Dellas model: predicted business cycle statistics  
                 Bubble;    Bubble &  Just 
              no TFP shocks      TFP shocks      TFP shocks      Data 
 (1) (2) (3) (4)  

Standard deviations [in %] 
Y 22.08 22.11 1.38 1.81  
C 77.93 77.81 1.29 1.35 
I 46.75 46.73 1.29 5.30 
L 15.98 15.98 0.00 1.79 
RER 0.00 1.21 1.23 3.66 
NX 0.00 0.00 0.00 0.46 
 

Correlations with domestic GDP 
C -0.65 -0.65 0.99 0.88 
I  0.89 0.89 0.99 0.80    
L 0.76 0.76 -- 0.88 
RER -- -0.03 -0.57 -0.23 
NX -- -- --- -0.56 
 

Autocorrelations 
Y 0.72 0.72 0.80 0.84 
C 0.34 0.34 0.81 0.80 
I 0.59 0.59 0.81 0.87 
L 0.43 0.43 -- 0.88 
RER -- 0.75 0.75 0.80 
NX -- -- -- 0.78 
 

Cross-country correlations 
Y 1.00 0.99 0.37 0.52 
C 1.00 0.99 0.55 0.35 
I 1.00 0.99 0.55 0.38 
L 1.00 1.00 -- 0.43 
 

Means [% deviation from steady state] 
Y 29.16 29.05 -0.01 -- 
C -0.02 -0.02 -0.01 -- 
I  92.14 91.86 -0.01 -- 
L 12.51 12.51 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 -10.67 -10.67 0.33 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 0.00 0.00 100.00 100.00       
Notes: This Table reports simulated business cycle statistics for a two-country RBC model with full 
capital depreciation (see Sect. 4 of paper). Col. (1) pertains to a model variant in which fluctuations are 
just driven by bubbles (constant TFP). Col. (2) considers a model variant with simultaneous bubbles and 
TFP shocks.  Col. (3) assumes just TFP shocks (without bubbles). The bubble process assumes a bust  
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probability π=0.5. Simulated business cycle statistics are based on one simulation run of T=10000 periods 
(for each model variant). Simulated standard deviations, correlations of GDP and autocorrelations pertain 
to medians of statistics across rolling windows of  200 periods. These moments pertain to series that were 
logged (with exception of NX) and HP filtered  (HP filter applied separately for each window of 200 
periods).  “Means” are sample averages over the total sample of T periods. The “Fraction of periods with 
(capital income > investment)” likewise pertains to the whole simulation run of T periods.  
Col. (11) reports empirical statistics. Historical standard deviations, correlations with domestic GDP and 
autocorrelations of GDP, consumption, investment and hours worked, as well as the statistics on capital 
income-investment, correspond to statistics based on (logged and HP filtered) US data reported  in Table 
2 (see sources indicate there).  The ‘international’ empirical statistics are based on quarterly data for 
1973q1-2013q4: the reported moments of RER and NX (net exports/GDP) pertain to US data (RER: from 
BIS; NX: from BEA); Cross-country correlations of Y,C,I,L are correlations between US and Euro Area 
data, 1973q1-2013q4 (EA data: from Euro Area Wide Model database). 
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Table 4. International RBC model (incomplete capital deprec.): predicted business cycle statistics  
 

Bubbles, no TFP shocks Bubbles & TFP shocks 
  Unit Risk aversion   High RA Unit RA High RA Just TFP shocks  
 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 π=0.5 π=0.2 Unit RA  High RA Data 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  
Standard deviations [in %] 
Y 0.49 1.16 0.68 1.43 1.46 1.78 1.18 1.65 1.32 0.97 1.81  
C 1.08 2.63 0.29 0.61 1.18 2.79 0.41 0.70 0.56 0.31 1.35 
I 4.29 9.38 3.22 6.51 6.36 10.54 4.95 7.34 4.60 3.90 5.30 
L 0.74 1.73 1.04 2.18 0.88 1.79 1.13 2.24 0.44 0.62 1.79 
RER 0.00 0.00 0.00 0.00 0.32 0.32 0.44 0.44 0.32 0.44 3.66  
NX 0.00 0.00 0.00 0.00 0.16 0.16 0.14 0.14 0.16 0.13 0.46  
 

Correlations with domestic GDP 
C -0.97 -0.95 -0.99 -0.98 0.09 -0.46 0.03 -0.55 0.85 0.61 0.88 
I  0.98 0.96 0.99 0.99 0.90 0.88 0.97 0.98 0.95 0.96 0.80  
L 0.99 0.97 0.99 0.99 0.81 0.81 0.46 0.78 0.94 -0.01 0.88 
RER -- -- -- -- -0.44 -0.35 -0.58 -0.39 -0.48 -0.68 -0.23 
NX -- -- -- -- -0.53 -0.46 -0.58 -0.46 -0.58 -0.68 -0.56 
 

Autocorrelations 
Y 0.36 0.63 0.35 0.62 0.63 0.67 0.57 0.65 0.67 0.64 0.84 
C 0.33 0.60 0.35 0.62 0.46 0.62 0.57 0.65 0.75 0.71 0.80 
I 0.38 0.63 0.37 0.64 0.54 0.64 0.55 0.64 0.63 0.61 0.87 
L 0.34 0.61 0.35 0.62 0.46 0.62 0.48 0.64 0.63 0.69 0.88 
RER -- -- -- -- 0.84 0.82 0.80 0.79 0.84 0.81 0.80  
NX -- -- -- -- 0.61 0.62 0.65 0.66 0.61 0.66 0.78 
 

Cross-country correlations 
Y 1.00 1.00 1.00 1.00 0.29 0.54 -0.00 0.52 0.17 -0.46 0.52 
C 1.00 1.00 1.00 1.00 0.96 0.99 0.98 0.99 0.84 0.96 0.35 
I 1.00 1.00 1.00 1.00 0.27 0.74 -0.07 0.53 -0.35 -0.83 0.38 
L 1.00 1.00 1.00 1.00 0.63 0.92 0.85 0.96 -0.35 0.46 0.43 
 

Means [% deviation from steady state] 
Y 1.41 2.80 1.25 2.12 1.65 3.02 1.45 2.29 0.00 0.00 -- 
C 0.73 1.39 0.33 0.55 0.95 1.60 0.44 0.65 0.00 0.00 -- 
I  3.62 7.33 4.22 7.19 3.93 7.61 4.72 7.61 0.00 0.00 -- 
L 0.36 0.74 -0.02 -0.02 0.35 0.73 0.09 0.05 0.00 0.00 -- 
 

Mean (capital income – investment)/GDP  [in %] 
 9.12 8.75 8.93 8.54 9.15 8.78 8.89 8.51 9.55 9.58 13.42 
 

Fraction of periods with (capital income > investment)  [in %] 
 99.20 96.31 99.55 97.72 99.20 96.45 99.44 97.75 100 100 100 
Notes: This Table reports simulated business cycle statistics for different variants of the two-country RBC model with 
incomplete capital depreciation (see Sect. 5 of paper).  Cols. (5)-(8) pertain to model variants with bubbles and TFP 
shocks.  Cols. (9)-(10) assume just TFP shocks (without bubbles). In Cols. (1)-(8), π refers to the bust probability. ‘Unit  
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Risk aversion’ (RA): model versions with log utility. ‘High RA’: model version in which consumption utility is ,ln( ),i tC C−  

where 0C>  is a constant.  Business cycle statistics are based on one simulation run of T=10000 periods, for each model 
variant. Standard deviations, correlations of GDP and autocorrelations pertain to medians of statistics across rolling 
windows of 200 periods. These moments pertain to series that were logged (with exception of NX) and HP filtered (HP 
filter applied separately for each window of 200 periods).  “Means” are sample averages over the total sample of T 
periods. The “Fraction of periods with (capital income > investment)” likewise pertains to the whole simulation run of T 
periods. Cols. (1)-(4) pertain to model variants in which fluctuations are just driven by bubbles (constant TFP).  
Col. (11) reports empirical statistics. See Table 3 for information and data sources.  
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Figure 1. Long & Plosser model: investment/output ratio at t+1, 1,tZ +  as a function of  tZ  for 

1 { 0.5;0;0.5}tε + ∈ −   
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(a) ‘Low’ and ‘High’ values of date t+1 investment/output ratio 1 1( , )L H

t tZ Z+ +  and expected value 1( )t tE Z +  shown as function of 

[ ,1).tZ αβ∈ +Δ ( ,0)tZΛ  is value of 1tZ +  without random sunspot.  Probability of ‘Low’ value 1
L
tZ + : 0.5tπ =  [ ,1)tt Z αβ∀ ∈ +Δ  

 
 
 

       
(b) Simulated series with constant probability: 0.5.tπ =           (c) Simulated series with 0.5tπ = for 0.36tZ ≤  and 1tπ  
                                                                                                       for 0.36tZ >  
 
Figure 2. Long & Plosser model with bubbles.  
Simulated series of output (Y), consumption (C) and investment are normalized by steady state output.   
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