Low Interest Rates, Market Power, and Productivity Growth

Ernest Liu, Atif Mian, and Amir Sufi

- Secular decline in the long-run real interest rate over past decades
- What is the supply-side response to low interest rates?
 - investment decisions, market concentration, and productivity growth

- Secular decline in the long-run real interest rate over past decades
- What is the supply-side response to low interest rates?
 - investment decisions, market concentration, and productivity growth

- Secular decline in the long-run real interest rate over past decades
- What is the supply-side response to low interest rates?
 - investment decisions, market concentration, and productivity growth

- Secular decline in the long-run real interest rate over past decades
- What is the supply-side response to low interest rates?
 - investment decisions, market concentration, and productivity growth

A model of dynamic competition based on the patent race literature

- A model of dynamic competition based on the patent race literature
- ▶ We find: a reduction in interest rate has an "anti-competitive" effect
 - raises market concentration and profits
 - causes market power to become more persistent

- A model of dynamic competition based on the patent race literature
- ▶ We find: a reduction in interest rate has an "anti-competitive" effect
 - raises market concentration and profits
 - causes market power to become more persistent
- Very low interest rate $r \rightarrow 0$ is guaranteed to be contractionary
 - no financial frictions or Keynesian forces

- A model of dynamic competition based on the patent race literature
- ▶ We find: a reduction in interest rate has an "anti-competitive" effect
 - raises market concentration and profits
 - causes market power to become more persistent
- Very low interest rate $r \rightarrow 0$ is guaranteed to be contractionary
 - no financial frictions or Keynesian forces

Intuitions: under low r, firms are effectively more "patient"

- For the leader, small prospect of being caught up implies large change in value
- For the follower, low rates motivate investment only if future profits are attainable
 market leadership becomes *endogenously unattainable* for the follower

Model predictions

Model predictions

Other steady-state predictions as *r* declines:

- *r* profit share, markups, concentration, leader-follower productivity gap
- Jusiness dynamism, churn, and creative destruction

Short-run predictions:

declines in r benefit leaders (relative to followers), especially when initial r is low

Model

Continuous time; a continuum (measure 1) of markets

Each market has two forward-looking firms competing for profits

- interest rate r: rate at which future payoffs are discounted

$$v(t) = \int_0^\infty e^{-r\tau} \left\{ \pi \left(t + \tau \right) - c \left(t + \tau \right) \right\} d\tau$$

State variable $s \in \{0, 1, \dots, \infty\}$: a "ladder" of productivity differences

- s = 0: two firms are said to be "neck-to-neck"
- $-s \neq 0$: one firm is the temporary leader while the other is the follower

Productivity gap s maps into market structure and flow profits: $\{\pi_s, \pi_{-s}\}_{s=0}^{\infty}$

- assume π_s , $-\pi_{-s}$, and $(\pi_s + \pi_{-s})$ are bounded, weakly increasing, and eventually concave

Microfoundation for the static block

Firm with productivity z has marginal cost of production λ^{-z}

- state variable is defined as the (log-)productivity difference $s \equiv |z_1 - z_2|$

Firms produce imperfect substitutes and face a joint CES demand with unit expenditure:

$$\max_{q_{i1},q_{i2}} \left(q_{i1}^{\frac{\sigma-1}{\sigma}} + q_{i2}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \quad \text{s.t. } p_{i1}q_{i1} + p_{i2}q_{i2} = 1$$

Bertrand competition ⇒ flow profits π_s are functions of the productivity gap s and not levels
 homogeneous of degree zero with respect to productivity

• In the limiting case of perfect substitutes ($\sigma = \infty$),

$$\pi_{-s} = 0, \ \pi_s = 1 - e^{-s}$$

Microfoundation for the static block

Firm with productivity z has marginal cost of production λ^{-z}

- state variable is defined as the (log-)productivity difference $s \equiv |z_1 - z_2|$

Firms produce imperfect substitutes and face a joint CES demand with unit expenditure:

$$\max_{q_{i1},q_{i2}} \left(q_{i1}^{\frac{\sigma-1}{\sigma}} + q_{i2}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \quad \text{s.t. } p_{i1}q_{i1} + p_{i2}q_{i2} = 1$$

Bertrand competition ⇒ flow profits π_s are functions of the productivity gap s and not levels
 homogeneous of degree zero with respect to productivity

• In the limiting case of perfect substitutes ($\sigma = \infty$),

$$\pi_{-s} = 0, \ \ \pi_s = 1 - e^{-s}$$

Macro version: within-period consumer utility function $U(t) = \ln Y(t) - L(t)$;

$$\ln Y(t) = \int_0^1 \ln y(t;\nu) d\nu, \quad y(t;\nu) = \left(q_{i1}(t;\nu)^{\frac{\sigma-1}{\sigma}} + q_{i2}(t;\nu)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}};$$

normalize prices so that the value of total output is one P(t) Y(t) = 1.

Model – dynamic block

Firms invest in order to enhance market position

- binary decision: incur cost c for Poisson rate η to gain productivity
- Given investments $\eta_s, \eta_{-s} \in \{0, \eta\}$, the state *s* evolves to

 $egin{cases} s+1 & ext{with rate } \eta_s \ s-1 & ext{with rate } (\eta_{-s}+\kappa) \end{cases}$

• $\kappa < \eta$ is the exogenous rate of catching up

Catch up is gradual: no leapfrogging

Firms are forward-looking and maximize present-discounted-value v_s:

$$rv_{s} = \pi_{s} + (\eta_{-s} + \kappa)(v_{s-1} - v_{s}) + \max{\{\eta(v_{s+1} - v_{s}) - c, 0\}}$$

Symmetric MPE: collection of $\{\eta_s, v_s\}_{s=-\infty}^{\infty}$

Symmetric MPE: collection of $\{\eta_s, v_s\}_{s=-\infty}^{\infty}$

Symmetric MPE: collection of $\{\eta_s, v_s\}_{s=-\infty}^{\infty}$

• Equilibrium induces steady-state distribution $\{\mu_s\}_{s=0}^{\infty}$ of market structure

 $\eta_{s}\mu_{s} = \left(\eta_{-(s+1)} + \kappa\right)\mu_{s+1}$

Aggregate productivity growth: the average growth rate across market structures

$$g\equiv\sum_{s=0}^{\infty}\mu_{s}\mathbb{E}\left[g_{s}
ight]$$

Equilibrium structure: leader dominance

Lemma. Leader invests (weakly) more than the follower does.

Equilibrium structure: leader dominance

Leader cannot stop investing first-proof by contradiction

 \blacktriangleright transient monopoly power \implies follower incentive has to be low

Show value functions

Steady-state, two regions, and growth

Steady-state, two regions, and growth

Lemma. In a steady state, productivity growth rate and aggregate investment are **increasing** in the fraction of markets in the competitive region and **decreasing** in the fraction of markets in the monopolistic region:

$$\frac{g}{\ln \lambda} = \underbrace{\left(\sum_{s=1}^{k} \mu_{s}\right)}_{\text{fraction of markets in the competitive region}} \times (\eta + \kappa) + \underbrace{\left(\sum_{s=k+1}^{n+1} \mu_{s}\right)}_{\text{fraction of markets in the monopolistic region}} \times \kappa.$$

As $r \rightarrow 0$, both regions expand indefinitely

Traditional expansionary effect: low interest rate raises investments in all states

As $r \rightarrow 0$, the monopolistic region dominates

Proposition. As $r \rightarrow 0$:

- 1. The monopolistic region becomes **absorbing**: $\sum_{s=k+1}^{n+1} \mu_s \to 1$;
- 2. Monopoly power becomes permanently persistent;
- 3. Productivity gap between leaders and followers **diverges**: $\lim_{r\to 0} \sum_{s=0}^{\infty} \mu_s s = \infty$;
- 4. Aggregate investment drops and productivity growth **slows down**: $\lim_{r\to 0} g = \kappa \cdot \ln \lambda$.

Value functions and intuition

Value functions and intuition

Steady-state implication 1: slowdown in productivity growth

- Secular stagnation literature: level vs growth; demand vs supply;
- Cette, Fernald, Mojon (2015)
- Gutierrez and Philippon (2016, 2017), Lee, Stulz, and Shin (2017): sharp decline of investment relative to operating surplus; investment gap is especially pronounced in concentrated industries

Steady-state implication 2: rise in profits and concentration

De Loecker and Eeckhout (2017), Barkai (2017), Autor et al. (2017), Gutierrez and Philippon (2016, 2017), Grullon, Larkin, Michaely (2017)

Steady-state implication 3: widening productivity gap

Labour productivity: value added per worker (2001-2013)

Andrews, Criscuolo, Gal (2016):

- productivity gap is widening over time for OECD countries
- slow down in productivity convergence

Steady-state implication 4: decline in business dynamism

Davis and Haltiwanger (2014), Decker et al. (2014), Haltiwanger (2015), Hathaway and Litan (2015), Andrews, Criscuolo, and Gal (2016)

Summary: low interest rates are consistent with many stylized facts

Empirical test based on valuation effects

- Outcome variables such as market concentration and productivity growth are slow moving, examining valuation effects provide statistically powerful test of the theory
- Key object of analysis: $\frac{\Delta V^{L}}{\Delta r}$ and $\frac{\Delta V^{F}}{\Delta r}$, which are the on impact valuation effects of the leader and follower from a change in the interest rate

Proposition. Consider a decline in the interest rate $-\Delta r$. On impact, as a first-order approximation around $r \approx 0$,

$$-rac{\Delta V^L}{\Delta r} = rac{1}{r}$$
 and $-rac{\Delta V^F}{\Delta r} = -rac{1}{r\ln r}$

On-impact asymmetric valuation effect: state-by-state

On-impact asymmetric valuation effect: in aggregate

Testing asymmetric effects: panel specification

 $R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \times \Delta i_t + \beta_2 D_{i,j,t-1} \times i_{t-1} + \beta_3 D_{i,j,t-1} \times \Delta i_t \times i_{t-1} + \epsilon_{i,j,t}$

	Stock Return						
	(1)	(2)	(3)	(4)			
Top 5 Percent= $1 \times \Delta i$	-1.187***	-3.881**	-4.415***	-4.182***			
	(0.260)	(1.113)	(0.893)	(0.529)			
Top 5 Percent=1 × Δi × Lagged i		0.293**	0.346***	0.301***			
		(0.095)	(0.079)	(0.045)			
Firm $\beta \times \Delta i$				14.10***			
,				(0.795)			
Firm $\beta \times \Delta i \times Lagged i$				-1.260***			
				(0.082)			
Sample	All	All	All	All			
Controls	Ν	N	Y				
Industry-Date FE	Y	Y	Y	Y			
N	61,313,604	61,313,604	44,104,181	61,299,54			
R-sq	0.403	0.403	0.415	0.409			

Empirical test: long-short portfolio, full specification

 $R_t = \alpha + \beta_0 i_{t-1} + \beta_1 \Delta i_t + \beta_2 \Delta i_t \times i_{t-1} + \epsilon_t$

	Portfolio Return							
	(1)	(2)	(3)	(4)	(5)			
Δi_t	-1.150***	-3.819***	-2.268***	-3.657***	-3.001***			
	(0.309)	(0.641)	(0.602)	(0.949)	(0.720)			
i_{t-1}		0.0842	0.0336	0.160*	0.167^{*}			
		(0.050)	(0.044)	(0.071)	(0.069)			
$\Delta i_t imes i_{t-1}$		0.294***	0.117*	0.328***	0.239*			
		(0.059)	(0.056)	(0.081)	(0.096)			
Excess Market Return			-0.168***					
			(0.023)					
High Minus Low			0.0371					
			(0.044)					
$(\Delta i_t > 0){=}1 imes \Delta i_t$				0.341				
				(1.717)				
$(\Delta i_t > 0) {=} 1 imes \Delta i_t imes i_{t-1}$				-0.102				
				(0.170)				
PE Portfolio Return					-0.207***			
					(0.059)			
N	9,016	9,016	9,016	9,016	7,402			
R-sq	0.044	0.089	0.228	0.092	0.196			

Conclusion

Low interest rates raise market concentration and reduce creative destruction

- through strategic and dynamic incentives
- as r
 ightarrow 0, aggregate investment and growth slows down

- g(r) has the shape of an inverted-U

- empirical tests confirm predictions
- A long-run, supply-side perspective of secular stagnation
 - sidestepping short-run, demand-side Keynesian forces

Developed techniques to analyze asymptotic equilibria of strategic patent races