
Multi-Product Pricing: Theory and Evidence From Large Retailers

in Israel*

Marco Bonomo�

Carlos Carvalho�

Oleksiy Kryvtsov§

Sigal Ribon¶

Rodolfo Rigato�

September 2019

Abstract

Standard theories of price adjustment are based on a problem of single-product firm pricing,

and therefore they may not be well-suited for studying a more realistic case of firms setting

prices for thousands of products. To guide new theory, we study evidence for large multi-

product food retailers in Israel. We find that retail stores undertake a majority of their regular

price changes during occasional “peak” days, roughly once or twice a month; and on a peak day,

stores reprice around 10% of their products. We develop a general equilibrium model of price-

setting firms with a continuum of products to assess implications of this evidence for inflation

dynamics. In the model, the economies of scope in price adjustment give rise to an endogenous

trade-off between adjustment of many prices at a time (“synchronization”) and adjustment of

misaligned prices (“selection”). By limiting the scope for selection, synchronization of price

changes can reduce inflation response to monetary disturbances. The calibrated model, despite

matching partial synchronization of price changes in the data, generates only a weak monetary

non-neutrality, similar in magnitude to non-neutrality in standard menu cost models. Hence,

partial synchronization of price adjustments does not materially deter multi-product firms from

responding to monetary disturbances.
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1 Introduction

The literature about the relation between micro price behaviour and macroeconomic effects has

evolved recently due to both the availability of new data sources (e.g., micro data underlying CPIs,

scanner data, scrapped online prices) and new analytical models. This literature, however, is short

on both empirical studies and macroeconomic theories of behaviours of multiple product firms.1

Available data do not provide comprehensive information on both the frequency and scope of store-

level price changes in national retail industry. Furthermore, standard theories of price adjustment

are based on a problem of single-product firm pricing, and therefore they may be ill-suited for

studying a more realistic case of firms setting prices for thousands of products. In this paper, we

address both of these challenges.

We study new evidence on prices set by large retailers in Israel, and propose a general equilibrium

model of multi-product price-setting to account for this evidence. The pattern that emerges in the

data is that prices of multi-product firms are partially synchronized due to occasional peaks in firms’

repricing activity. To generate this pattern, we propose a theory of multi-product monopolistic firms

who adjust prices subject to a price-adjustment technology with endogenous degree of economies

of scope in price-setting. In the model, the firm incurs the fixed cost c per price change, and a

common cost K for any number of price changes. This technology nests two extreme cases, closely

related to models studied in the literature. The case with no economies of scope (K = 0), the firm

sets the price of each product independently, paying a menu cost c for each price change. This case

is equivalent to a continuum of single product firms, each one subject to a menu cost, as in Golosov

and Lucas (2007). The case with maximal economies of scope in price adjustment (c = 0), the firm

pays the fixed cost K, which allows it to adjust the price of any number of products. This case

is similar to models with maximal economies of scope in Midrigan (2011) and Alvarez and Lippi

(2014), although in those models firms must adjust all prices upon paying the cost K. We calibrate

the model to match the key price-setting statistics from the micro data and derive implications for

monetary non-neutrality, comparing it with the two extreme nested models.

In our model, synchronization of price adjustments is closely related to the selection effect

explored in Golosov and Lucas (2007).2 If there is a large degree of synchronization, i.e., many

prices are adjusted at the same time, firms may bunch adjustments of prices that are away from the

adjustment margin, weakening the selection effect. In our data, firms show a considerable degree

of price synchronization. The magnitude of synchronization, however, is not sufficient to generate

persistent effects of monetary shocks. As a result, aggregate real responses to nominal disturbances

in our setting are similar to those in single product models.

Our empirical findings are based on price data from large multi-product food retailers in Israel.

1Bhattarai and Schoenle (2014) study pricing behaviour of U.S. producers using US PPI data. They document that
that 98.55% of price observations are from multi-product firms. Midrigan (2011), Alvarez and Lippi (2014) develop
macroeconomic models of multi-product price setting.

2Golosov and Lucas (2007) study selection effects in the recent generation of applied general equilibrium menu cost
models. Earlier theoretical contributions include Caplin and Spulber (1987), Danziger (1999), Caballero and Engel
(2007), among others. Carvalho and Kryvtsov (2018) propose a simple, model-free way to measure price selection
and its impact on inflation.
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Thanks to a law enacted in 2014, large retailers are required to publish on their Internet sites daily

information for all products sold. To manage computational constraints, the data used in this paper

contains information for top 5% of stores (by the number of observations) for each retailer from

May 22, 2015 until September 1, 2019. For 71 stores in this sample, we have information about the

“base” or regular prices for all individual products on a daily basis. Final prices are based on price

discounts (“sales”), which are defined independently and differently by each retailer. Information

about price discounts is entered by retailers as a code indicating, for example, a buy-one-get-one-free

discounts, a third-product-free discount, or two products for 10 NIS (Israeli New Shekel). Based on

the available regular price and the discount code, the Bank of Israel constructed the final price for

10 stores owned by Shufersal, the largest food retailer in Israel, with 350 stores servicing about 35

percent of the food retail-chain market.

During the sample period, Israeli headline inflation and food price inflation are approximately

zero, and price increases are as likely as price decreases. Regular price changes are large in magni-

tude, approximately 20%, and the implied duration of price spells is 3.5 months, when calculated

from daily observations. Each store in our sample sells a large number of products each day, 7,217

on average. We doubt that the model of a single product firm (or even of firms with a small number

of products) is useful for studying price setting of large retailers. Theory of a price-setting firm with

an infinite number of products seems more promising.

We exploit comprehensive product coverage in our data to study the synchronization of price

adjustments across products in a store. Figure 1 depicts the daily fraction of price adjustments

across all stores in the sample, and for four selected stores from different chains. It is apparent that

there are recurrent peaks in the fraction of price changes, with values lower than one. These peaks

in price adjustments are not due to calendar events. Thus, the data shows a pattern that does not

coincide with either the more staggering pattern that one would expect from a single product menu

cost economy or with the perfect synchronization generated by Alvarez and Lippi (2014) model,

where the payment of a single menu cost entitles the firm to adjust all of its products.

We characterize the degree of synchronization in the data through two indices: the one proposed

by Fisher and Konieczny (2000) and another akin to Gini inequality index. The Fisher-Konieczny

index is based on the variation of the fraction of adjustment around its average over time. It ranges

from 0, corresponding to the absence of synchronization, to 1, representing full synchronization. On

average, the Fisher-Konieczny index is 0.236 for daily data at a store level. The second synchro-

nization measure, which we will refer to as Gini synchronization index, is based on the Lorenz curve

relating the percentile of days to the fraction of price changes accounted by those days, arranged

according to the fraction in ascending order. Again, this index should be zero, in the case of no

synchronization and 1 in the case of perfect synchronization. The average Gini synchronization

index among stores is 0.747.

2



0
.1

.2
.3

M
ea

n 
fr

ac
tio

n 
of

 p
ric

e 
ch

an
ge

s,
 d

ai
ly

 fr
eq

ue
nc

y

Jul-2015 Jul-2016 Jul-2017 Jul-2018 Jul-2019

All stores

0
.1

.2
.3

.4
M

ea
n 

fr
ac

tio
n 

of
 p

ric
e 

ch
an

ge
s,

 d
ai

ly
 fr

eq
ue

nc
y

Jul-2015 Jul-2016 Jul-2017 Jul-2018 Jul-2019

Store=1

0
.0

5
.1

.1
5

.2
.2

5
M

ea
n 

fr
ac

tio
n 

of
 p

ric
e 

ch
an

ge
s,

 d
ai

ly
 fr

eq
ue

nc
y

Jul-2015 Jul-2016 Jul-2017 Jul-2018 Jul-2019

Store=6

0
.0

2
.0

4
.0

6
.0

8
.1

M
ea

n 
fr

ac
tio

n 
of

 p
ric

e 
ch

an
ge

s,
 d

ai
ly

 fr
eq

ue
nc

y

Jul-2017 Jan-2018 Jul-2018 Jan-2019 Jul-2019

Store=644

0
.0

5
.1

.1
5

.2
M

ea
n 

fr
ac

tio
n 

of
 p

ric
e 

ch
an

ge
s,

 d
ai

ly
 fr

eq
ue

nc
y

Jan-2017 Jul-2017 Jan-2018 Jul-2018 Jan-2019 Jul-2019

Store=1139

Selected stores

Figure 1: Daily fraction of prices changes.
Note: We compute the fraction of price changes for each store and day. The table provides the fraction for four
selected stores (bottom figure) and the weighted mean across stores in the unbalanced panel (top figure). Weights are
the average number of products in a store per day.

We develop a continuous-time price-setting model of multi-product firms capable of generating

the partial synchronization aspect found in the data. In the model, each firm sells a continuum

of different goods and faces two types of costs when changing price: a fixed cost K incurred when

at least one price adjustment is made, and an additional cost c paid for each individual price

adjustment. For tractability, we assume that the process for the frictionless optimal price of each

product has no drift and is subject to idiosyncratic shocks, which are independent across goods.

Due to the presence of the common cost K, there are intervals of time where no product has its
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price adjusted. Additionally, given the large number of products, the individual menu cost c implies

that not all prices will be adjusted simultaneously. So, the multi-product firm in our model adjusts

prices only infrequently and, when it does, it adjusts the prices of a substantial number of products

at the same time, but never all of them. It thus generates the partial synchronization pattern we

observe in the data.

We characterize the price-setting policy of the multi-product firm by deterministic dates {Tk}∞k=1

when adjustments are made, and thresholds for each adjustment date {x̄k}∞k=1. At each time Tk

the firm adjusts the prices of all products for which the price differs from its frictionless optimal

price by a magnitude greater than x̄k. In steady-state, the adjustment rule can be characterized by

a constant threshold x̄∗ and the length of the time interval between consecutive adjustment dates

τ∗ = Tk+1 − Tk.
We calibrate our model to match three price-setting statistics generated from the Israeli database:

the daily fraction of regular price changes, the average absolute size of regular price changes, and

Fisher-Konieczny synchronization index (FK). Our model is able to reproduce them perfectly with

the appropriate choices of the variance of the idiosyncratic shock, the common cost K and individ-

ual adjustment cost c. We also calibrate the restricted versions corresponding to no economies of

scope (K = 0) and maximal economies of scope (c = 0) in price adjustment to match the frequency

and the size of price adjustments. Those models do not have the flexibility to match the degree

of synchronization in the data (FK=0.236), since the simple menu cost model displays no synchro-

nization (FK=0) and the Alvarez-Lippi-Midrigan model generates full synchronization (FK=1). We

compute the distribution of price changes for all the three models. Our model features a two-mode

price-change distribution, with larger variance than that generated by the simple menu cost model.

However, it does not generate the small price adjustments present in the Alvarez-Lippi-Midrigan

model.

We evaluate the effect of a monetary policy shock in an economy populated by multi-product

firms with price-setting technology calibrated according to the price-setting statistics of the Israeli

data. We compare the result to those generated by the single-product menu cost model and the full

synchronization model. The magnitude of the real effect of the monetary shock of the Golosov-Lucas

model is significantly smaller than that in the Alvarez-Lippi-Midrigan model due to the presence

of price selection effect. In response to the shock, firms in the Golosov-Lucas model choose to

change first the prices of products that are further away from the optimal, triggering adjustments

that are relatively larger and amplifying the response of the aggregate price. By contrast, in the

Alvarez-Lippi-Midrigan model there is no price selection since each firm changes all its prices at the

same time.

We develop analytical and numerical results that help us answer two questions about how the

aggregate price level and real output respond to aggregate demand shocks in a world with multi-

product firms. First, how does selection interact with within-store synchronization of price changes?

Our analytical results consist of a first order characterization of the response of real output and

price level to a demand shock. They allow us to decompose the initial responses of these variables
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to a shock into an extensive margin component, associated with the frequency of price changes,

and an intensive margin component, which we attribute to price selection. We then show how the

Alvarez-Lippi-Midrigan model corresponds to the extreme case when the selection component goes

to zero, while the Golosov-Lucas model can be seen as the limiting situation in which selection goes

to infinity.

Second, how far do we need to move away from the Alvarez-Lippi-Midrigan world in order

to have substantially smaller monetary non-neutrality? Our numerical results indicate that small

deviations from this case can significantly reduce the persistence of real effects of demand shocks.

For the degree of synchronization observed in the data, our model generates responses very close to

Golosov-Lucas. Although firms in the partial synchronization model do not change all prices at the

same time, they choose to change those prices that are further from the optimal, triggering larger

adjustments shortly after the shock. Therefore, the selection effect plays a key role in the partial

synchronization model, engineering a faster increase in the aggregate price level and attenuating

the monetary policy effect.

Our results also hold for the case in which the fixed cost K is a friction of informational nature.

In this alternative specification, the profit-maximizing price of a given product is unobservable, and

economies of scope in price adjustments come from the information acquisition technology. There

is a fixed cost K whose payment is required in order to observe the profit-maximizing price of all

products simultaneously. This informational friction model does not necessarily generate the same

responses of output to a monetary shock as the baseline case in which Kis interpreted as a common

menu cost. The reason for this is that in the menu cost case, firms know when the shock happens,

and may therefore change their policies instantaneously in response it. On the other hand, in the

informational friction world firms would only learn about the aggregate shock after payment of the

fixed cost. We prove, however, that changes in policies that arise from an aggregate shock that

hits an economy in steady state do not affect aggregates up to the first order. Consequently, both

models have the same implications for small shocks. Our analysis therefore can also be seen as a

multi-product generalization of Alvarez, Lippi, and Paciello (2011) and Malta et al. (2015), in the

limiting case as the number of products go to infinity.

This paper is more broadly related to the extensive recent literature in monetary economics that

tries to reconcile stylized facts about price-setting in the micro price data with the macroeconomic

evidence about inflation and output effects. The micro evidence of relatively high frequency of

price adjustments and high volatility of transient idiosyncratic shocks is difficult to reconcile with

an inflation process that is stable, persistent and has low sensitivity to monetary shocks, leading to

persistent monetary non-neutrality. The literature has looked for solutions in theory by introducing

features such as heterogeneity (Carvalho, 2006, Nakamura and Steinsson, 2010), imperfect informa-

tion (Mankiw and Reis, 2002, Reis, 2006, Woodford, 2009), and strategic complementarities (Basu,

1995, Nakamura and Steinsson, 2010). As shown by Midrigan (2011), Alvarez and Lippi (2014),

multi-product pricing with economies of scope in price adjustment, attenuates the selection effect
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and reduces the response of the aggregate price level to shocks.3

Midrigan (2011) extends Golosov and Lucas (2007) setting by having a two-product firm with

maximal economies of scope in price adjustment subject to fat-tailed distribution of cost shocks.

As a result, the model not only fits the micro data4 well but is also capable of generating real

effects of monetary policy that are much greater than in Golosov and Lucas (2007). Alvarez and

Lippi (2014) extend Midrigan (2011) maximal economies of scope in price-adjustment model by

allowing an arbitrary number of products. They derive analytical expressions for the frequency of

adjustment, the hazard rate of price adjustments, and the size distribution of price changes in terms

of the structural parameters of the model. They also show analytically that the size of the output

response and its duration both increase with the number of products, converging to the response of

Taylor’s staggered price model when the number of products gets large.

The issue of synchronization versus staggering of price-setting have been discussed in the context

of multi-product firms since Lach and Tsiddon (1996). They use a sub-sample of multi-product

stores selling wine and meat during the high inflation period in Israel. They found that price

adjustments across stores tend to be predominantly staggered, but those within firms tend to

be highly synchronized. The synchronization of within firm prices is corroborated by a study of

Canadian newspapers by Fisher and Konieczny (2000).

More recently, Bhattarai and Schoenle (2014) use micro data for US producer prices to compute

price-setting statistics of multi-product firms. Almost all firms in the sample (98.6%) were multi-

product, with a median of 4 products per firm. They found that as the number of products per firm

rises the frequency of price adjustments increases, the average size of price adjustments decreases

and the dispersion of price changes gets larger. They also document that price changes within firms

tend to have the same sign, an effect that increases with the number of products.

Stella (2014) uses weekly data on prices, costs and units sold by a supermarket chain to estimate

the costs of changing prices of a multi-product firm. Stella allows for both types of cost included

in our model. The total cost from changing prices is estimated to be between 0.22% and 0.59%

of revenues, with the common part of the cost accounting for up to 85% of the total menu costs

expense. Finally, it is important to emphasize that we model regular price changes only, despite

the recent development of theories that account for both regular and temporary price changes and

its effects on monetary non-neutrality, such as Alvarez and Lippi (2019).

The remaining sections of the paper are organized as follows. Section 2 provides new evidence

on prices set by large retailers in Israel. We present our model in section 3. The following section

discusses the calibration of the three models and presents their predicted monetary effects. The

3However, it also reduces the response to idiosyncratic shocks. Thus, it requires a very large variance of idiosyncratic
shocks to match the frequency and size of individual price adjustments in the data (Bils, Klenow, and Malin, 2012).
Pasten and Schoenle (2016) show that under rational inattention the effect of economies of scope in price adjustment
may be reversed as attention to monetary and firm-specific shocks tend to increase with the number of products due
to economies of scope in information processing.

4The assumption that paying once the cost of price adjustment allows the firm to adjust all prices makes the
model capable of generating small price adjustments. Lach and Tsiddon (2007) had showed evidence that small price
adjustments are more likely when the average size of all simultaneous price change are large—a feature consistent
with this price adjustment technology.
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last section concludes.

2 Evidence from the retail stores in Israel

2.1 The Israeli retail data

Following the “Social Protest” in Israel5 and the recommendations of the public committee that

was formed in response to this social movement, a “Promotion of Competition in the Food Industry

Law” was passed by the Israeli Parliament in 2014. In accordance with this law, large food retailers6

operating in Israel are required to publish on their Internet sites daily price information for all

products sold, in all points of sale, both brick-and-mortar stores and their Internet site.

The law requires retailers to keep data only for the past three months. The Bank of Israel scrapes,

cleans and consolidates this information on a daily basis. The historical data include information

for all products sold by large retailers—a total of 25 retail chains and around 1700 stores, which

account for most of the volume of food retail sales in the local market. To manage computational

constraints, the data used in this paper contains information for top 5% of stores (by the number of

observations) for each retailer from May 22, 2015 until September 1, 2019. Some stores have missing

data early in the sample, and smaller chains tend to have scarce or poor quality data. Therefore,

for sample selection, for each retail chain we sorted stores by the number of days for which data

were available, then we chose the top 5% of stores for each retailer, conditional on acceptable data

quality. We excluded store-specific products that do not have a general 13-digit barcode (e.g., fruits,

vegetables, bakery goods). We also excluded pharmacy retailers and 6 stores that uploaded only

from the dataset. The remaining dataset contains 451.7 million daily observations for 71 stores and

21 retail chains.

For each store, have information about the “base” or regular prices for individual products on

a daily basis. Final prices are based on price discounts (“sales”), which are defined independently

and differently by each retailer. Information about price discounts is entered by retailers as a

code indicating, for example, a buy-one-get-one-free discounts, a third-product-free discount, or

two products for 10 NIS (Israeli New Shekel). Based on the available regular price and the discount

code, the Bank of Israel constructed the final price for 10 stores owned by Shufersal, the largest food

retailer in Israel, with 350 of its stores servicing about 35 percent of the food retail-chain market.

We report most empirical results for regular prices, and in Section 2.5 review the results for

discounted prices.

2.2 Price adjustment behavior

Two features are unique to this dataset and are particularly useful for documenting pricing behavior

of large retailers: extensive coverage of products in each store and high frequency of product-specific

price observations over time. We highlight these features in our empirical analysis.

5See also Chapter 1 in Bank of Israel (2012).
6A retailer with annual sales exceeding NIS 250 million (about USD 70 million).
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Panel A in Figure 2 shows the distribution of the average number of products per day in a store.

The number of products sold in a given store is large: on average 7,217 products are sold on a given

day, 1,311 (31,847) products in the smallest (largest) store in the dataset. Due to the relatively

short time span of the data, a large proportion of products, around 40%, do not register a regular

price change in our sample. Nonetheless, there is substantial variation in the average frequency of

price changes across stores (Panel B).

Table 1 provides statistics for the frequency and size of price adjustments across retailers. At a

monthly frequency, price behavior of Israeli retailers resembles the behavior previously documented

in other surveys (Klenow and Malin, 2010). During the sample period, inflation in Israel fluctuated

roughly around zero. In a given month, around one tenth of prices would change across stores, with

about an even split between price increases and decreases. Each change is quite large, around 20%

in absolute magnitude.

Monthly frequency of observations, however, filters out high frequency movement in product

prices. The duration of price spells implied by the frequencies of price changes in Table 1 would

be 8.3 months for monthly observations, 5 months (22 weeks) for weekly observations, and 3.5

months (105 days) for daily observations. Measuring duration directly from observed spells leads

to a similar conclusions.
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Figure 2: Store-level number of products, frequency and synchronization of price changes.

Note: Panel A provides histograms for the average number of price observations per store per day (all products and
products with at least one price change over the sample period). Panel B shows the histogram of the frequencies of
price changes across stores. Panel C gives the histogram of Fisher-Konieczny synchronization index across stores, and
Panel D provides the histogram of Gini index values across stores.
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Fisher‐Konieczny Gini

(1) (2) (3) (4) (5)

A.  By store daily 7,217 0.87% 20.8% 0.236 0.747

weekly 8,170 4.30% 20.3% 0.225 0.534

monthly 9,605 11.46% 20.1% 0.187 0.315

Same product category* daily 6,989 0.89% 20.8% 0.289 0.770

Flexible price goods daily 2,092 2.25% 21.2% 0.376 0.747

Larger stores daily 10,267 0.89% 21.0% 0.253 0.752

B.  By chain daily 23,664 0.89% 20.8% 0.220 0.728

C.  All observations daily 301,496 0.99% 20.6% 0.142 0.573

Number of 

products per day

Mean fraction of 

price changes

Synchronization statisticMean abs size of 

price changesSample
Frequency of 

observations

Table 1: Summary statistics for daily price adjustments.

Note: We compute each statistic (in columns) for each store. The table provides weighted means across stores (Panel
A), chains (Panel B), or unweighted means (Panel C). Weights are the average number of products in a store per
day. “Same product category”: daily statistics computed for subsets of products belonging to the same product category
(* Shufersal stores only). “Flexible price goods”: statistics computed for subsets of products with the daily frequency
of price changes in the top quartile in the store. “Larger stores”: daily statistics computed for subsets of products in
stores larger than the median store (by the number of products per day).

The most striking pattern of daily price changes is evident in Figure 1 which plots daily fraction

of price changes in the dataset, weighted mean across all stores (top panel), and for four selected

from different chains (bottom panel). It shows that occasionally stores reprice a bulk of their

products. To be concrete, we define the “peaks” in price adjustment activity for a given store as the

set of days with the highest number of price changes that together account for half of price changes

in all days for that store. Table 2 (Panel A) shows the breakdown of frequencies of price changes

for peaks and the remaining days (“off-peaks”). Only 5.3% of all days are peaks, i.e., one peak in

every 19 days on average. On a peak day a store reprices about 9.8% of all products, twenty times

the number of price adjustments on an average off-peak day. To emphasize unequal distribution of

re-pricing activity, the table also shows the results for the subset of peaks that together account

for 25% of all price changes in a store. Only 1.6% of all days are such peaks (one peak in two

months), but on such a day a store reprices about 15.3% of all products, twenty three times the

average number of price adjustments on other days.
Peaks are present in all stores in the sample, although there is substantial variation in the timing

of peaks across stores. There are apparent chain effects in price adjustment: peak days are highly
synchronized across stores belonging to the same chain, than across chains. Panel B in Table 2
shows that once we pool observations across stores, synchronization of price changes reduces only
marginally.

Peaks in price adjustments are not due to calendar events. We document the fraction of days

when a peak overlaps with a holiday in Israel, see Appendix A. Only 6.5% of peak days are holidays,

and in turn, only 4.1% of holidays are peaks. Hence, re-pricing peaks are not related to holidays.

We also looked at the prevalence of peaks by day of the month and by day of the week. Across all

stores and days, price changes are more frequent at the turn of the month and early in the week.
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Peaks exhibit a similar but smoother pattern, suggesting that there are no seasonal effects that are

specific to peaks.

weighted unweighted

A.  By store

Peak days (50%) 80 9.83% 9.49%

Off‐peak days (50%) 1418 0.48% 0.44%

Peak days (25%) 24 15.27% 14.50%

Off‐peak days (75%) 1474 0.67% 0.62%

All days 1498 0.87% 0.81%

B.  By chain

Peak days (50%) 91 9.04% 7.57%

Off‐peak days (50%) 1407 0.48% 0.39%

Peak days (25%) 30 13.39% 11.50%

Off‐peak days (75%) 1468 0.68% 0.54%

All days 1498 0.89% 0.71%

Sample
Number of 

days

Frequency of price changes

Table 2: Frequency of price changes for peak and off-peak days.

Note: Table shows the frequency of price changes for peaks and off-peaks by store (Panel A) and chain (Panel B). For
each store compute the number of price changes in each day. Order days by this number in ascending order. Divide
days into two groups, where “peaks” are the days with the highest number of price changes that together account for
50% (or 25%) of all price changes in the store, and “off-peaks” are the remaining days. For each group compute the
weighted and unweighted mean fraction of price changes across stores. Weights are the average number of products
in a store per day. For computations by chain (Panel B), we pool observations across stores within the same retail
chain.

2.3 Synchronization of price changes

To quantify the degree of synchronization of price changes in the data, we are going to use two

alternative statistics: Fisher-Konieczny index and a Gini index.

The first index is constructed in the spirit of Fisher and Konieczny (2000) as follows:

FKs ≡

√√√√ 1
Ns

∑
t

(
Frs,t − Frs

)2
Frs ·

(
1− Frs

) ,

where FKs is the index for store s, Frs,t is the fraction of price changes in store s period t, Frs is

its mean over t, Nsis the number of price changes in store s. By construction, FKs = 0 when price

changes are perfectly staggered, and FKs = 1 when when they are perfectly synchronized.7 Table

1 (column 4) provides the weighted mean of the index for the stores in the dataset. At the daily

frequency, the index is 0.236 on average, and it varies considerably across stores as shown in Panel

C in Figure 2.

7See also Dias et al. (2005) for the properties of this index and a statistical test for staggering of price-setting
based on it.
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The second synchronization index is akin to Gini inequality index. It is based on the Lorenz

curve that depicts the distribution of repricing activity by plotting the percentile of days by the

number of price changes on the horizontal axis and cumulative fraction of price changes on the

vertical axis, see Figure 3 for the distribution of price changes pooled across all stores. The Figure

shows that re-pricing activity is very unequal across days, with around 6% of days accounting for

half of all price changes. The Gini statistic is the size of the area between the Lorenz curve and

the 45° line divided by a half. Table 1 (column 5) shows high degree of synchronization (i.e., high

inequality of repricing across days), 0.747 on average, and varying substantially across stores (Panel

D, Figure 2).

2.4 Synchronization across stores

To highlight variation of price-change synchronization across stores we study how it depends on

similarities across goods, price flexibility, store size, and chain effects.
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Figure 3: Lorenz curve for inequality of re-pricing activity across days, selected stores.

Note: Figure shows the Lorenz curve (cumulative distribution of price changes across days) for four selection stores.

First, we ask whether prices are more synchronized for products within the same broad category

than across categories.The Bank of Israel classified 50 broad product categories for Shufersal stores.

Panel A in Figure 4 compares the distribution of FK synchronization index across stores computed

for all products to the distribution conditional on products belonging to the same category. Price

changes are more synchronized within, rather than across categories. On average, FK index is 0.289

for products in the same category, versus 0.236 for all products (Table 1).
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Figure 4: Fisher-Konieczny synchronization across stores.

Note: Panels A and B provide histograms for the Fisher-Konieczny (FK) index across stores. Panel A: all products
and those within the same product category (Shufersal stores only), Panel B: all products and those for the products
with mean frequency of price changes in the top quartile for that store. Panel C: scatter plot of store size (number of
products per day) versus corresponding store FK index values, with fitted OLS line. Panel D: scatter plot of FK index
values for the store (x-axis) and its chain (y-axis), with 45°-line and fitted OLS line.

Similarly, Panel B compares distributions for all products and only flexible price products, de-

fined as those in the top quartile of the frequency of price changes in the store. Flexible price changes

are more synchronized, with FK index of 0.356. Interestingly, the Gini index is unchanged between

all and flexible price goods. This highlights the difference between FK and Gini synchronization:

the former increases with the average frequency of price changes, the latter does not.

Panel C shows that larger stores tend to have more synchronized price changes, the (unweighted)

fitted line is sloped upward. The FK index for the subset of stores above the median is 0.253,

versus 0.236 for all stores. Finally, we compare FK synchronization value computed for each store

with values for the chain to which that store belongs. The scatter plot in Panel D shows that

synchronization across products of the entire chain is somewhat lower than at a store level. The

weighted mean FK index goes down to 0.220. This suggests that retailers actively synchronize price

changes across their stores. This is reminiscent of the recent findings by DellaVigna and Gentzkow

(2019) for the U.S. retailers.
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2.5 Price discounts

Do these patterns in adjustment of regular prices also apply to final prices, which incorporate various

types of price discounts? To compare the results for final and regular prices, we use the dataset

for 10 stores of the largest retail chain in Israel, Shufersal, from January 2016 until mid–2019. The

Bank of Israel constructed the final price based on the available regular price and the discount

code, indicating, for example, a buy-one-get-one-free discounts, a third-product-free discount, or

two products for 10 NIS (Israeli New Shekel). Corresponding tables and figures are in Appendix A.

Price discounts, “sales,” are common in the data, accounting for 26% of all price observations.

A typical price discount is a large and temporary reduction in price (Klenow and Kryvtsov, 2008,

Nakamura and Steinsson, 2008). A sale is associated with a discounted price that is on average

24% lower than the corresponding regular price, and it lasts around 49 days. Since final prices

incorporate discounts, they change more frequently and by a larger magnitude than regular prices.

The mean fraction of final price changes is 25.7% per month (10.0% for regular price changes), and

the mean absolute size of those changes is 23.2% (19.2% for regular price changes).

We find that our measures of synchronization yield similar results for final and regular prices.

Only 4.8% (1.9%) of days in the Shufersal sample account for 50% (25%) of all final price changes,

which is close to 3.3% and 1.1% of days for regular price changes. The mean Fisher-Konieczny and

Gini index values for all stores are also similar: 0.355 and 0.708 for final prices, versus 0.262 and

0.797 for regular prices. These results suggest that retailer’s decisions to post price discounts are

largely independent from decisions to change regular prices. In particular, there are no clear peak

days for changing price discounts in the store like we observe for regular prices. The Gini index

for the fraction of discounts is 0.174, indicating a much more even distribution of discounts across

days than the distribution of the fraction of regular or final price changes, with corresponding Gini

index values of 0.708 and 0.797.

3 A model with multi-product firms and partial synchronization

3.1 An overview

We develop a continuous time model of price setting in which each firm sells a continuum of dif-

ferentiated goods, with total mass normalized to 1. We also refer to these goods as varieties or

products. Given the large number of products that stores in our data sample sell, the assumption

that firms in our model sell a continuum of products is suitable for our purposes. Each variety is

indexed by i ∈ [0, 1] and has a frictionless optimal price p∗i,t, where t indexes time. All prices are in

log units. The frictionless optimal price p∗i,t is the profit-maximizing price for good i. Consequently,

absent frictions of any nature, a firm always charges the frictionless optimal price. We employ a

commonly used second order approximation for the profit from selling good i around the frictionless

optimal price. Therefore, by denoting good i’s price at instant t by pi,t, the firm minimizes a loss

term Lt of the following form:
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Lt =

ˆ 1

0
(pi,t − p∗i,t)2 di (1)

Intuitively, this expression is the sum over all products of opportunity costs of charging sub-optimal

prices. Firms discount future costs at a rate ρ. We assume that each product i’s frictionless optimal

price is a follows a Brownian motion:

dp∗i,t = −σdWi,t

In the above, Wi,t is a variety-specific standard Brownian motion assumed to be independent

across goods, and σ is a parameter that captures the volatility of this process, which is common

across varieties. It is simpler, however, to express the firm’s problem in terms of price discrepancies,

or price gaps, which are defined as xi,t = pi,t − p∗i,t. The above law of motion for p∗i,t implies that

price discrepancies, in the absence of price adjustments, are also Brownian motions of the form:

dxi,t = σdWi,t

It is convenient to state the loss function in terms of the distribution of these price discrepancies.

Let gt(x) be the probability density function (p.d.f) that describes the distribution of price gaps8.

We can express the loss term (1) as

Lt =

+∞ˆ

−∞

x2gt(x) dx (2)

This is essentially a change of variables in equation (1). Instead of summing the losses associated

with each product, we now sum the loss x2 associated with each price gap x = p − p∗, multiplied

by the number of times (or density, more specifically) that such gap occurs gt(x). The evolution of

gt(x), given an initial distribution g0(x), is given by a Kolmogorov forward equation (KFE):

∂gt
∂t

(x) =
σ2

2

∂2gt
∂x2

(x) (3)

The last building block we need to fully characterize the firms’ problem are the pricing frictions

firms face. We assume that firms face menu costs of two different kinds. First, there is a fixed

cost K that firms are required to pay in order to make any number of price adjustments. Second,

there is a unit cost c that must be paid for each individual price adjustment. More precisely, since

firms sell a continuum of varieties, c is a cost per measure of adjusted prices. Therefore, a firm that

adjusts the prices of a measure m of its products in a single date must pay K + cm.

The presence of these different sorts of menu costs gives rise to optimal policies that have

two important features. First, a positive fixed cost K generates inaction. This means that price

adjustments occur in dates that are separated by potentially long time intervals, i.e. firms do not

8The distribution of price discrepancies may have atoms following adjustment dates, and would thus not be
expressible as a probability density function. We omit this for simplicity.
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adjust prices continuously over time. Second, when a firm decides to adjust prices, it is never optimal

to adjust prices of all its products. Intuitively, it is never optimal to adjust all prices because there

will always be products with arbitrarily small price discrepancies (in absolute values). If a price

discrepancy is small enough, it is not optimal to pay the unit menu cost c in order to set it to zero.

The last important observation before describing the optimal policy is that, even though the

frictionless optimal price of a single product is stochastic, the relevant object is the entire distribution

of price discrepancies, which evolves in a deterministic way given by the KFE (3). Therefore, given

an initial distribution g0(x), the optimal policy consists of sequences of deterministic adjustment

dates {Tk}∞k=1 and thresholds {x̄k}∞k=1 such that at instant t = Tk firms adjusts all prices that

have price gaps x larger, in absolute terms, than x̄k, that is |x| ≥ x̄k. Since there is no drift

in the discrepancies’ Brownian motions, all reset prices have discrepancies optimally set to zero.9

Consequently, the distribution of discrepancies will feature a Dirac mass at x = 0 at adjustment

dates. These Dirac masses are however instantly dissolved by the diffusive nature of the Brownian

motion.

To see the intuition why the optimal policy takes the form of thresholds {x̄k}∞k=1 just described,

imagine the analogous problem for a firm that sells a finite number of products. If, for example, the

firm has just paid the fixed cost and has decided to reset the price of a single product, this product

must optimally be the one that has the largest price gap. This is the case because adjusting the

price of a given good does not affect other goods’ price gaps and the expected flow of future costs

that arise from them. Therefore, when deciding which goods will have their prices reset, the firm

would rank its products according to the size of price discrepancies and, starting from the good

with the largest gap, move down the list adjusting prices until the marginal benefit of adjusting the

next price is smaller than the unit cost c. Hence it is never optimal to adjust a price until all prices

with larger discrepancies have been adjusted.

Our model nests two other cases previously studied in the price setting literature. Midrigan

(2011) and Alvarez and Lippi (2014) study models in which firms sell a finite number of products

and are required to pay a single menu cost in order to reset all prices at once. In this case, economies

of scope of adjusting prices is maximal and, at any given instant, the share of prices that a certain

firm resets is either zero or one. Therefore, if we set c = 0 our model becomes an infinite product

limit of the Alvarez-Lippi-Midrigan framework.

The competing extreme is K = 0. In this case, there are no economies of scope of adjusting

prices and we can imagine each firm in our model as a continuum of independent firms subject to

idiosyncratic shocks, each one responsible for adjusting the price of a single good, as in Golosov

and Lucas (2007). In this extreme, firms continuously reset prices that reach certain adjustment

thresholds and the law of large numbers thus guarantees that in any given time interval, e.g. a

9In the presence of a nonzero drift, the optimal sequence of thresholds has to be split into sequences of upper
thresholds {xk}∞k=1, lower thresholds {xk}

∞
k=1 and targets {x∗k}∞k=1 such that a price is adjusted at date Tk only if the

corresponding discrepancy x satisfies either x ≥ xk or x ≤ xk. The discrepancy is set to x∗k, which is not necessarily
zero. In other words, a positive (negative) inflation rate causes price gaps to be expected to fall (rise). In this case,
adjusting firms will optimally reset prices to a level above (below) their frictionless optima, even though costs are not
being instantaneously minimized by this decision.
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day, the share of products of a given firm that had theirs prices adjusted is constant. Our model

therefore flexibly captures pricing behaviors ranging from within-firm perfect synchronization in

price adjustments to variety-specific price adjustments.

3.2 Recursive formulation

The main difficulty in solving the partial synchronization model is that the relevant state variable

in the dynamic optimization problem is the entire distribution of price discrepancies. Alvarez and

Lippi (2014) show that, in the perfect synchronization case (c = 0), there is no need to keep track of

the whole distribution. In their model, all the relevant information for the firm can be summarized

by a one-dimensional object, namely the loss term (1). This does not apply in our framework, and

we must state our Bellman equation for a value function that takes as input an infinite dimensional

object. Before proceeding to the recursive formulation, however, it is convenient to go through two

simple mathematical results.

Lemma 1. Let φ(·) denote the p.d.f. of a standard normal distribution. Given an initial condition

g0(x), the solution of the KFE (3) is:

gt(x) =

+∞ˆ

−∞

1√
σ2t

φ

(
x− y√
σ2t

)
g0(y) dy (4)

Proof. See appendix.

Lemma 2. In the absence of price adjustments, the loss term (2) evolves linearly according to:

Lt = L0 + σ2t (5)

Proof. See appendix.

Now let V (g) denote the value function of a firm, which takes as input the distribution g of

price gaps. We shall state the problem recursively for the case in which g is the distribution of price

discrepancies immediately after the payment of the fixed cost K, but before any price adjustments

take place. Such a choice for the state variable is convenient for the numerical procedure we adopt,

which involves using a simple, yet very precise, approximation for this distribution, as explained in

Appendix B. The function V then satisfies:

V (g) = min
x̄,τ

cm(x̄, g) +

τˆ

0

e−ρt(L0 + σ2t) dt+ e−ρτ [K + V (gτ )] (6)

In the above, the choice variable x̄ is the threshold such that prices with gaps larger than x̄ are

reset, and τ is the amount of time the firm decides to wait until the next price adjustment date.
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The function m(x̄, g) is the mass of reset prices, defined as:

m(x̄, g) =

ˆ

|x|≥x̄

g(x) dx

L0 is the instantaneous loss associated with the intermediate distribution g0(x), which is the distri-

bution of price discrepancies after adjustments are made, given by:

g0(x) = g(x)1(|x| < x̄) +m(x̄, g)δ0(x)

In the expression above, 1(·) is an indicator function and δ0(x) is the Dirac function centered at

the point x = 0. Since prices with discrepancies larger than x̄ are reset, the distribution g0(x) is

simply g(x) with the tails removed and their mass sent to the origin, as adjusted prices have zero

discrepancies. Finally, gτ (x) is the solution of the KFE (3) at the next adjustment date τ , given

the initial condition g0(x) and computed using (4).

The meaning of (6) is the following. After paying the fixed cost K, the firm adjusts prices that

correspond to the tails of the distribution of price gaps (|x| > x̄), which amount to a mass m(x̄, g)

of products, and consequently pays cm(x̄, g) in unit costs. After resetting prices, the firm is left

with a new distribution of price discrepancies g0(x) that generates instantaneous loss L0. Since the

evolution of g0(x) is deterministic, given by (3), the firm then chooses how long to wait (τ units of

time) until the next price adjustment date, when it pays the fixed cost K and obtains continuation

value V (gτ ). In the meantime, the firm incurs costs that grow linearly over time, as given by (5).

Finally, solving the Bellman equation above gives us optimal policies x̄(g) and τ(g). We then

define a steady-state distribution g∗ as a p.d.f., with corresponding optimal policies τ∗ = τ(g∗)

and x̄∗ = x̄(g∗), which remains unchanged after the process of resetting prices according to the

discrepancy threshold x̄∗ and waiting τ∗ time periods until the next adjustment date. Therefore,

when the system starts from the distribution g∗, the trajectory of the state distribution repeats

itself every τ∗ periods. Formally, we have:

Definition 1. A steady-state distribution is a p.d.f. g∗, together with an intermediate distribution

g∗0 and optimal policies τ∗ = τ(g∗) and x̄∗ = x̄(g∗), which satisfies the fixed-point problem:

g∗0(x) = g∗(x)1(|x| < x̄∗) +m(x̄, g∗)δ0(x) (7)

g∗(x) =

+∞ˆ

−∞

1√
σ2τ∗

φ

(
x− y√
σ2τ∗

)
g∗0(y) dy (8)

Above, g∗0 is the distribution that arises after prices are reset according to the threshold x̄∗.

The relationship between g∗ and g∗0 expressed in (8) is a direct application of Lemma (4). It is

easier to see why we call the set of equations above a fixed-point problem by substituting the first

equation into the second. Nevertheless, the system is easily solvable by creating a discrete grid for

the possible values of x, since (7) expresses g∗0 as a linear function of g∗, while (8) writes g∗ as a
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linear transformation of g∗0. If we represent both distributions by vectors of the values they attain

in the x grid, the problem boils down to finding an eigenvector of a large matrix. Figure 5 shows

the steady-state distribution of price gaps, before and after price adjustments, and price changes

for illustrative parameter values. The spike at x = 0 is the finite grid analog of a Dirac mass, and

the price change distribution corresponds to the tails of the stationary distribution g∗.

Finally, Figure 6 shows the share of reset prices on a daily basis for two different parameteriza-

tions. We can see that, similar to the data, our model generates a spiky pattern for this statistic over

time. It is also interesting to notice how the combination of fixed and unit costs alters this pattern.

A high fixed K cost combined with a low unit cost c is associated with higher but infrequent spikes,

as expected. On the other extreme, a low K, high c parameterization generates frequent but small

peaks.
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Figure 5: Steady-state and price change distributions for parameter values ρ = 0.04, σ = 0.25,
K = 0.0001, c = 0.001.

3.3 Calibration

In order to compare predictions of different models, we calibrate not only the partial synchronization

model, but also the Golosov-Lucas (GL) and Alvarez-Lippi-Midrigan (ALM) cases. Since we fix

the time discount rate at ρ = 0.04, there are three parameters left to be calibrated in the partial

synchronization model: the volatility σ, the fixed cost K and the unit cost c. We need therefore

three moments from the data. As usual in the price-setting literature, we use the frequency of price

adjustments and the average size of price changes. More specifically, our measure of frequency of

adjustments is the average daily share of prices that a firms adjusts. The last moment we pick is

the Fisher-Konieczny (FK) index of synchronization.

The GL and ALM models have two parameters each, since each of these settings lacks one kind

of menu costs. We therefore drop the FK index when calibrating these models. This is natural since

the GL model cannot generate any value for the FK statistic other than zero, while the ALM model
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Figure 6: Daily fraction of prices changes for different combinations of menu costs. Other parameter
values: ρ = 0.04, σ = 0.25.

can only generate 1. Table 3 shows moments for models and data, and Table 4 shows calibrated

parameter values. The optimal policy for the partial synchronization model in our calibration

consists of adjusting every 7.5 days the prices with corresponding gaps larger than 17.8%.

Moment Data GL ALM Partial sync.

Daily fraction of price changes 0.0089 0.0089 0.0089 0.0084

Avg. abs size of price changes 0.209 0.209 0.209 0.216

Fisher-Konieczny index 0.236 0.000 1.000 0.236

Table 3: Moments from data and calibrated models.

Note: Values in the Data are weighted means across stores in the data, provided n Table 1, first row, column (2)–(4).

Parameter GL ALM Partial sync.

σi 0.3774 0.4730 0.3834

K - 0.0106 3.24e-05

c 0.0022 - 0.0020

Table 4: Calibrated parameter values.

Figure 7 compares price change distributions for all three models and data. Since in the GL setting

firms continuously adjust prices that reach certain thresholds, the price change distribution consists

simply of two mass points placed on these limits. On the other hand, in the ALM model firms need

only pay the fixed cost K to adjust all prices, even those that are close to their profit-maximizing
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levels. Thus the price change distribution features many small price adjustments. The partial

synchronization model features more variability in the size of price changes than the GL case and,

contrary to the ALM setting, no small price adjustments. Only the partial synchronization model

can match the two modes placed approximately in a symmetrical manner around the origin in the

empirical price change distribution.

Figure 8 shows the daily fraction of adjustments for all models over time. As expected, it is

constant for the GL case and assumes only the values zero and one for the ALM case. The partial

synchronization model is therefore the one that comes closer to replicating the frequent and short

peaks seen in the data (Figure 1).
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Figure 7: Price change distributions for all models and data.
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4 Real effects of demand shocks

4.1 Some analytics for the partial synchronization model

In our model, a frictionless optimal price is the sum of a product-specific shock that follow Brownian

motions and an aggregate demand component Mt that has so far been held constant. Now we

consider responses of the price level and real output to a one-time, unpredictable shock to Mt. Let

Pt denote the aggregate price level, in logs, which is simply the average price across all different

firms and products in the model economy. Real output Yt, also in logs, is then given by:

Yt = Mt − Pt

We study an economy with a continuum of identical firms, which is hit by an unanticipated

aggregate shock of size ε at t = 0. This shock shifts aggregate demand Mt to Mt + ε and, as a

consequence, the price gap distribution of all firms is also shifted: gt(x) becomes gt(x + ε). Prior

to the occurrence of the aggregate shock, we naturally consider the situation in which all firms are

in steady-state, adjusting prices every τ∗ periods. Moreover, we start with a situation in which

firms are uniformly distributed according to the time elapsed since the last adjustment date, that

is, a constant flow of firms adjusts prices over time before time t = 0. In order to understand how

aggregates respond to such a shock, we must first understand what optimal policy following the

shock looks like.

Consider a firm that had its last adjustment date at instant t = −s, for a given 0 < s < τ∗.

Recall that the firm’s problem is deterministic, since the evolution of the relevant state variable,

namely the distribution of price gaps, is perfectly predictable and can be computed using the KFE

(3). Therefore, after the unanticipated shock of size ε is realized at t = 0, the optimal policy

can be represented by a new deterministic sequence of adjustment dates {Tk(ε)}∞k=1 and thresholds

{x̄k(ε)}∞k=1 that depend only on ε and (implicitly) on s. Also, define ∆k as the change in the firm’s

average price in the k-th adjustment episode following the shock, which is a function of the shock

size ε and the optimal policy, although we omit this dependence for simplicity. In the absence of

any changes to aggregate demand, which can be obtained by setting ε = 0, the firm would resume

its steady-state policy, characterized by:

T1(0) = τ∗ − s

Tk+1(0) = Tk(0) + τ∗

x̄k(0) = x̄∗

∆k = 0

To obtain analytical results about the responses of aggregate price level and output to demand

shocks, we focus on the limit as ε→ 0. As ε decreases, the adjustment dates converge to the ones

that would arise in steady-state, as long as these dates vary continuously with ε. Consequently, the
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firm average price will take discrete steps at dates of the form kτ∗− s. Figure 9 illustrates how this

response would look like.
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Figure 9: Approximate response of the average price of a single firm following a small aggregate
shock of size ε.

Since we assume that firms are uniformly distributed according to s—the time elapsed since the

last adjustment before the shock—it follows that at each instant there is a flow 1/τ∗of adjusting

firms. Moreover, for t ∈ (kτ∗, (k+1)τ∗), adjusting firms’ average prices change by an amount ∆k, so

the aggregate price level changes at a rate ∆k/τ
∗. More precisely, define Pε(t) to be the aggregate

price level at instant t following a shock of size ε and let

δk = lim
ε→0

∆k

ε

We have the following result.

Proposition 1. The normalized aggregate price response Pε(t)/ε converges to a piecewise linear

function with kinks at positive multiples of τ∗ as ε→ 0. Moreover, the slope of the k-th line segment

is δk/τ
∗.

Proof. See appendix.

Figure 10 shows the limiting response of the aggregate price level to a small aggregate shock.

Our next result characterizes the slope of the first line segment of the impulse response function.

This slope is quantitatively important since, as we shall see, more than half of the rise of the price

level following an aggregate shock happens in this first segment for our calibration. But first, a

couple more definitions. Let F be the steady-state instantaneous frequency of price adjustments,

defined as

F = lim
∆t→0

Fraction of prices that change in (t, t+ ∆t)

∆t
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Figure 10: Normalized price level response to a small aggregate shock.

Note that F can take any positive value, including values greater than one. Also, define f(x) as the

density of the distribution of absolute size of price changes, which is simply the part of the curves

shown in Figure (7) associated with x ≥ 0, and scaled to integrate to 1. In order to characterize

the slope of the first line segment, we make use of the following lemma, whose proof and necessary

definitions are presented in the appendix.

Lemma 3. Changes in policies in response to an aggregate shock do not have first order effects on

∆k around steady state. More precisely, for any positive integers j and k we have:

∂∆k

∂Tj
=
∂∆k

∂x̄j
= 0 (9)

Proof. See appendix.

As a consequence of the lemma above, we have the following result.

Proposition 2. The slope of the first line segment in the impulse response function is:

δ1

τ∗
= F × [1 + x̄∗f(x̄∗)] (10)

Proof. See appendix.

The intuition for this result is the following: the immediate response of the price level is the

product of an extensive margin component F and an intensive margin, or selection component,

1 + x̄∗f(x̄∗), which depends on the size of the marginal adjustment x̄∗ multiplied by its density

f(x̄∗). Caballero and Engel (2007) prove a similar result for a single-product model.
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4.2 Some comments about a model with informational frictions

Suppose we have an economy in which profit-maximizing prices are unobservable and economies of

scope come not from the price adjustment technology, but from the information acquiring process.

More precisely, imagine that K now is a cost whose payment is required in order to observe fric-

tionless optimal prices for all products simultaneously, while c remains a standard, product-specific

menu cost. One could ask how this economy would differ from the one we have studied so far.

First, observe that, since the profit-maximizing price of a given product is a martingale, i.e. it

satisfies Etp∗i,t+h = p∗i,t for h > 0, no adjustments will be made without new information. Intuitively,

a firm would not adjust the price of a product if the frictionless optimal price does not change in

expectation. Adjustments are only made when the fixed cost for acquiring information is paid,

as in Alvarez, Lippi and Paciello (2011). However, since the firm sells a continuum of products,

the distribution of price gaps is perfectly predictable and given by the KFE (3), as long as there

are no aggregate shocks. In other words, the law of large numbers makes the distribution of price

gaps perfectly predictable, even though each individual price gap in unobserved. Therefore, the

steady state optimal policy and stationary distributions are the same as in our baseline menu cost

framework.

The menu cost and the informational friction economies would differ, however, in response to

an aggregate shock. In the menu cost economy, when the shock hits at t = 0 firms are allowed

to instantaneously recalculate the optimal policy, whereas in the costly information economy firms

would only learn about the shock after collecting information. Nonetheless, we could follow the

same steps for proving 9 and 10 to obtain exactly analogous results to this case.

As a consequence, even though the two economies could respond differently to an aggregate

shock, there is no difference up to the first order. Impulse responses of aggregate output and price

level would be the same in both cases for small enough shocks. This is a consequence of two facts.

First, the steady state optimal policy is the same for both economies. Second, changes in optimal

policies do not affect aggregate outcomes to a first order, which is the consequence of 9 that allows

us to prove 10.

4.3 Synchronization and real effects of demand shocks

Building on the analytical results we have presented, we now turn to comparing how different models

predict output to respond to demand shocks. Figure 11 shows the impulse response functions for

calibrated parameter values shown in 4. The most salient feature of this figure is that the partial

synchronization model, when calibrated to match our data, is very close to GL, generating much less

monetary non-neutrality than ALM. We divide our explanation of this phenomenon in two parts.

First, we analyze why more synchronization is associated with more persistent real effects of demand

shocks. Second, we quantitatively explore how fast the introduction of partial synchronization

reduces monetary non-neutrality. In other words, how far do we need to move away from the ALM

perfect synchronization case in order to have significantly less persistent output responses? The

answer is: not very far.
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Figure 11: Normalized real output response to a small aggregate shock.

Why is partial synchronization associated with smaller non-neutrality? First, note that more

than half of the decay of output following the shock happens in the first round of adjustments, i.e.,

the first line segment of the impulse response function. We can gain some intuition by looking at

expression (10). Since all models are calibrated to match the same frequency of adjustment, the

difference must come from the selection component10. We can see the ALM model as the limit when

x̄∗ → 0. Therefore, for a fixed frequency, the ALM model delivers the slowest initial response. In

fact, since the effect of the monetary shock is fully reverted in the ALM model after the first round

of adjustments, the first segment corresponds to the whole positive part of the impulse response

function.

Since x̄∗ is the smallest possible adjustment size, we have x̄∗ ≤ E|∆p|. We can thus see the GL

model as the limit case in which x̄∗ → E|∆p| and f(x) approaches a Dirac mass at x̄∗. Therefore, for

fixed frequency and mean adjustment size, the GL model can be seen as the limit in which the speed

of the initial price level response blows up. The relation between synchronization and persistence of

real effects of nominal shocks emerges thus as a form of selection, as explored by Golosov and Lucas

(2007). If a firm adjusts a large fraction of its prices on an adjustment date, there is not much room

for selecting those prices, and monetary shocks have more persistent real effects as a consequence.

It is also important to emphasize that, since we study the limit case in which the shock size goes

to zero, the aggregate response does not come from anticipation of adjustment episodes.

Now we aim to understand how fast this selection effect operates. Figure 12 shows impulse

response functions of several models calibrated to match the same frequency of price adjustments

and average size of price changes, but different values of the FK synchronization measure. As

expected from the previous discussion, output decays faster as synchronization fades. Looking only

at the selection term 1 + x̄∗f(x̄∗) may not be sufficient to understand this relationship as it is

10Even though the instantaneous frequency F is not the same as the daily adjustment frequency we use in our
calibration, there is a one-to-one mapping between both, given by F = 365× daily frequency in steady-state, as long
as the interval between adjustment dates is longer than one day.
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related only to the initial, rather than total, degree of aggregate price flexibility. For this reason,

Figure 13 shows both the selection term and the cumulative output response, measured as the area

under the impulse response function, for varying FK values. The message here is clear: the marginal

effect of synchronization on aggregate price stickiness is increasing in synchronization, in such a way

that small departures from the ALM framework can reduce considerably the degree of monetary

non-neutrality.
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Figure 12: Real output response and synchronization.
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Figure 13: Selection component 1 + x̄∗f(x̄∗) and cumulative response for various values of the FK
synchronization measure. Cumulative response of the GL model is normalized to 1.
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5 Conclusions

In this paper we bring new evidence on prices set by large retailers in Israel, and propose a general

equilibrium model of multi-product price-setting to account for this evidence. Each price retailer in

our sample prices on average 7000 products. The pattern that emerges in the data is that prices of

multi-product firms are partially synchronized due to occasional peaks in firms’ repricing activity,

where a large share of the prices are simultaneously adjusted. To generate this pattern, we propose

a theory of multi-product pricing that incorporates a price-adjustment technology with endogenous

degree of the economies of scope. We calibrate the model based on a synchronization index and

other key price-setting statistics from the micro data and derive implications for monetary non-

neutrality, comparing it with two extreme nested models. In the case with no economies of scope,

the firm sets the price of each product independently, paying a separate menu cost for each price

change. This case is equivalent to a single product pricing model, as in Golosov and Lucas (2007).

In the case with maximal economies of scope, the firm pays the fixed cost to adjust a bulk of its

prices, as in Midrigan (2011) and Alvarez and Lippi (2014). We show that the calibrated model,

despite displaying considerable synchronization of price changes, generates monetary effects that

are relatively small, close to those generated by an economy populated by single-product firms. The

selection effect in the partial synchronization model—with the monetary shock triggering initially

adjustments from the group of products with infra-marginal prices—is similar in magnitude to the

selection effect in standard menu cost models.
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A Data Appendix

Figure 14: Food inflation in Israel.

Note: We compute the average price changes for each store at monthly frequency. The figure provides the weighted
mean fraction across stores and compares it to inflation for official CPI for food products (excluding fruits and
vegetables). Weights are the average number of products in a store per day.
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Figure 15: Weekly and monthly fraction of regular prices changes, pooled across stores.

Note: We compute the fraction of price changes for each store at weekly and monthly frequency. The figures provide
the weighted mean fraction across stores for weekly frequency (top panel) and monthly frequency (bottom panel.
Weights are the average number of products in a store per day.
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Table 5: Peaks and holidays.

Note: Peaks are the days with the highest fraction of regular price changes that jointly account for half of all price

changes in the store. For each store we compute the fraction of days that are peaks (not peaks) and fall (do not fall) on

a holiday. Entries are weighted means of these fractions across stores (first row), chains (second row), or unweighted

means (last row). Weights are the average number of products in a store per day.

Not‐Peak / Not‐

Holiday

Peak /       

Not‐Holiday

Not‐Peak / 

Holiday

Peak / 

Holiday

By store 85.07% 5.52% 9.02% 0.38%

By chain 85.92% 4.78% 8.98% 0.32%

All observations 85.89% 4.88% 8.94% 0.28%

Store

Fraction of daily observations

Figure 16: Distribution of daily price changes and their frequency, by day of the month.

Note: (Weighted) Distribution of the daily price changes and their frequency by day of the month, for all days and
only peak days. Weights are the average number of products in a store per day. Peaks are the days with the highest
fraction of regular price changes that jointly account for half of all price changes in the store. Shaded (empty) bars
correspond to changes for all days (for the subset of peak days).
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Figure 17: Fraction of daily price changes and their frequency, by day of the week.

Note: (Weighted) Distribution of the daily price changes and their frequency by day of the week, for all days and
only peak days. Weights are the average number of products in a store per day. Peaks are the days with the highest
fraction of regular price changes that jointly account for half of all price changes in the store. Shaded (empty) bars
correspond to changes for all days (for the subset of peak days).
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Table 6: Final versus regular price changes for Shufersal.

Note: Entries include the number of observations, mean and standard deviation for time series at daily frequencies.

The data covers 10 Shufersal retail stores from January 2016 until mid–2019. For each day, we compute the statistic

for each column by pooling price change observations across stores. We then take means and standard deviations

across days. Panel A (B) provides statistics for regular (final) price changes.

Inflation,    

%

Fraction of 

price 

changes

Fraction of 

price 

increases

Fraction of 

price 

decreases

Absolute size 

of price 

changes, %

Size of price 

increases, %

Absolute size 

of price 

decreases, %

A.  Regular prices
N 978 978 978 978 920 896 890

mean 0.001 0.007 0.004 0.003 18.9 18.2 19.8

p50 0.000 0.002 0.001 0.001 19.3 18.4 20.3

sd 0.158 0.023 0.012 0.012 6.5 7.5 6.0

iqr 0.014 0.003 0.001 0.002 7.5 8.9 8.0

B.  Final prices
N 978 978 978 978 976 975 964

mean ‐0.003 0.024 0.012 0.012 23.9 22.8 24.7

p50 ‐0.022 0.009 0.003 0.005 23.8 22.9 24.1

sd 0.638 0.052 0.030 0.027 4.4 5.3 5.7

iqr 0.123 0.011 0.004 0.007 4.2 5.8 5.1
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Table 7: Price discounts at Shufersal.

Note: The data covers 10 Shufersal retail stores from January 2016 until mid–2019. Shaded areas outline different

store types.

complete spells all spells

6  Premium stores  0.288 26.4 56 59

23  Premium stores  0.289 26.3 50 60

39  Premium stores  0.243 26.3 51 60

168  Premium stores  0.295 26.4 53 62

55 Discount stores 0.302 22.4 41 47

113 Discount stores 0.305 22.2 46 55

188 Discount stores 0.316 22.4 46 52

217 Express (convenience)  0.166 26.4 49 48

296 Express (convenience)  0.158 26.2 49 49

606 Ultra‐discount stores 0.218 22.0 56 61

mean (stores) 0.258 24.7 50 55

mean (pooled) 0.259 24.4 49 56

Duration of discounts, days
Store Sub‐chain

Fraction of 

discounts

Mean abs size of 

discounts, %

Table 8: Synchronization of regular and final price changes for Shufersal.

Note: The data covers 10 Shufersal retail stores from January 2016 until mid–2019. Column entries compare syn-

chronization statistics (Fisher-Konieczny and Gini) for daily final and regular price changes. Shaded areas outline

different store types.

regular prices final prices regular prices final prices

6  Premium stores  0.298 0.380 0.810 0.717

23  Premium stores  0.282 0.365 0.798 0.687

39  Premium stores  0.304 0.364 0.838 0.757

168  Premium stores  0.319 0.380 0.826 0.720

55 Discount stores 0.319 0.380 0.827 0.706

113 Discount stores 0.276 0.369 0.814 0.698

188 Discount stores 0.305 0.368 0.827 0.688

217 Express (convenience)  0.177 0.290 0.694 0.630

296 Express (convenience)  0.212 0.298 0.790 0.698

606 Ultra‐discount stores 0.124 0.353 0.751 0.778

mean (stores) 0.262 0.355 0.797 0.708

mean (pooled) 0.274 0.363 0.798 0.709

Store Sub‐chain
Fisher‐Konieczny index Gini index
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Table 9: Re-pricing peaks for final and regular prices for Shufersal.

Note: The data covers 10 Shufersal retail stores from January 2016 until mid–2019. Column entries compare mean

frequency of daily final and regular price changes for peak and off-peak days. Peaks are the days with the highest

fraction of price changes that jointly account for half of all price changes in the store. Shaded areas outline different

store types.

# days Freq # days Freq # days Freq # days Freq # days Freq

6  Premium stores  22 0.156 898 0.004 42 0.265 878 0.013 920 0.024

23  Premium stores  25 0.135 880 0.004 44 0.250 861 0.013 905 0.024

39  Premium stores  18 0.155 888 0.003 38 0.226 868 0.010 906 0.019

168  Premium stores  19 0.177 897 0.004 42 0.257 874 0.012 916 0.024

55 Discount stores 19 0.179 890 0.004 51 0.271 858 0.016 909 0.030

113 Discount stores 30 0.109 886 0.004 43 0.267 873 0.013 916 0.025

188 Discount stores 22 0.155 900 0.004 50 0.265 872 0.015 922 0.029

217 Express (convenience)  51 0.033 747 0.002 50 0.137 748 0.009 798 0.017

296 Express (convenience)  31 0.070 903 0.002 46 0.168 888 0.009 934 0.016

606 Ultra‐discount stores 67 0.012 894 0.001 31 0.217 930 0.007 961 0.014

mean (stores) 30 0.118 878 0.003 44 0.232 865 0.012 909 0.022

mean (pooled) 0.091 0.003 0.232 0.012 0.022

AllPeaks (Regular) Off‐peaks (Regular) Peaks (Final) Off‐peaks (Final)
Store Sub‐chain

B Numerical method for solving the price-setting problem

The strategy we adopt to solve the recursive problem 6 is to approximate the distribution g by a

member of some parametric family of probability distributions. What motivates our choice is the

following. Given an initial condition g0, equation (4) tells us that the solution to the KFE gt can

be written as the p.d.f. of a sum of two independent random variables: one with p.d.f. g0 and

the other normally distributed as N(0, σ2t). As a consequence, it is possible to show that, after

properly scaling and shifting gt so that it becomes the distribution of a zero-mean, unit-variance

random variable, the resulting function converges to the p.d.f. of a standard normal distribution as

t→∞.

Interestingly, for our numerical purposes the convergence happens fast enough so that gT in

(4) can be well approximated by a normal distribution. The fit is better for higher values of T

and σ, but even for T as low as 0.02, as in our calibration, the approximation is good. We choose

our state variable in the recursive formulation of the problem to be the distribution of prices gaps

immediatelly after the payment of the fixed cost because, at that instant, the time elapsed since the

last adjustment episode is maximal and so the distribution of discrepancies is as close as possible

to a Gaussian curve.

If we approximate our infinite dimensional state variable by a normal distribution, we are left

with a two dimensional problem, since normally distributed variables may be characterized by two

parameters. In fact, since in steady-state the mean of the price gap distribution is zero, our problem

becomes unidimensional. Finally, to show the goodness of fit, Figure 18 compares the steady-state
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distribution that would arise from following the optimal policy for calibrated parameter values,

given by equations (7) and (8), and the corresponding normal approximation. It also shows the

difference between the c.d.f. of the approximating normal Φ(x) and the one obtained numerically

G(x). The right-hand panel of Figure 18 shows that for no interval [a, b] the approximation predicts

a mass of price gaps that is more than 0.0234 away from the true value, which happens for the

interval [−0.0890, 0.0915].
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Figure 18: Steady-state distribution and normal approximation. σ = 0.3834, T ∗ = 0.0207. The
value of σ shown here is the volatility of the Brownian motion, not the standard deviation of the
normal approximation.

C Proofs

C.1 Lemma 1

Substitute (4) into (3) and use the fact that φ′′(x) = −xφ′(x)− φ(x)

C.2 Lemma 2

From (4), it follows that
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+∞ˆ

−∞

x2gt(x) dx =

+∞ˆ

−∞


+∞ˆ

−∞

x2 1√
σt
φ

(
x− y√
σt

)
dx

 g0(y) dy

=

+∞ˆ

−∞

{
y2 + σ2t

}
g0(y) dy

=

+∞ˆ

−∞

y2g0(y) dy + σ2t

The second line follows because we have the p.d.f. of a Normal distribution with mean y and

variance σ2t, and the third line follows from the fact that g0(x) integrates to one.

C.3 Proposition 1

Let p̄sε(t), for t ≥ 0, be the average price changed by a firm whose last price adjustment before the

shock was at date −s, i.e. s periods before the shock hits, for 0 < s < τ∗. Since firms are uniformly

distributed according to the time elapsed between the last adjustment date and t = 0, it follows

that

Pε(t) =

τ∗ˆ

0

1

τ∗
p̄sε(t) ds

Therefore

lim
ε→0

Pε(t)

ε
= lim

ε→0

τ∗ˆ

0

1

τ∗
p̄sε(t)

ε
ds (11)

Let {T sk (ε)}∞k=1 be the optimal adjustment dates for firm s, and ∆s
k be the change in the firm’s

average price after the k-th adjustment episode following the shock. Of course, ∆s
k depends on ε

and on the optimal policy, but we shall omit this dependence for now. ∆s
k will be studied in more

detail in the next proof. We have:

p̄sε(t) =

0 t ∈ [0, T s1 (ε))∑k−1
j=1 ∆s

j t ∈ [T sk−1(ε), T sk (ε)) and k ≥ 2

If adjustment dates are continuous in ε at point ε = 0, we T sk (ε) → T sk (0) = kτ∗ − s as ε → 0.

As a consequence,

p̄sε(t)

ε
→

0 t ∈ (0, τ∗ − s)∑k−1
j=1 δj t ∈ ((k − 1)τ∗ − s, kτ∗ − s) and k ≥ 2

Two observations are important here. First, the limit in points of the form kτ∗−s may be undefined.
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It could be either
∑k−1

j=1 δj if T sk (ε) converges to kτ∗ − s from below,
∑k

j=1 δj if it converges from

above, or otherwise undefined. Nevertheless, this is irrelevant since it is a set of measure zero.

Second, δk does not depend on s. This happens because firms with higher s do exactly the same

as firms with lower s, only with a delay. This could fail for large shocks if, for example, two firms

characterized by different s respond immediately to a large shock, but this does not happen as the

shock size goes to zero and T sk (ε)→ kτ∗ − s.
Moreover, we have p̄sε(t)

ε ∈ [0, 1], i.e. the firm’s average price level does not overshoot the

increase in demand from the aggregate shock11. So the Dominated Convergence Theorem allows us

to exchange the order of integration and limit operators in (11), which gives us:

lim
ε→0

Pε(t)

ε
=

 δ1
τ∗

t
τ∗ t ∈ [0, τ∗)∑k−1
j=1

δj
τ∗ + δk

τ∗

[
t
τ∗ − (k − 1)

]
t ∈ [(k − 1)τ∗, kτ∗) and k ≥ 2

C.4 Lemma 3

For any given sequence of adjustment dates {Tj}∞j=1 and thresholds {x̄j}∞j=1, not necessarily optimal,

let gk(x; ε, {Tj}kj=1, {x̄j}
k−1
j=1) be the distribution of price gaps that emerges immediately before the

k-th adjustment episode. Note that gk is determined by the first k values of the {Tj}∞j=1, but only

by the first k − 1 values of {x̄j}∞j=1, since is it the distribution at date Tk before adjustments take

place. We can then express ∆k as

∆k(ε, {Tj}kj=1, {x̄j}kj=1) = −
ˆ

|x|>x̄k

x gk(x; ε, {Tj}kj=1, {x̄j}k−1
j=1) dx (12)

For a small aggregate shock, we can use the chain rule to obtain the following approximation:

∆k(ε, {Tj(ε)}kj=1, {x̄j(ε)}kj=1) ≈ ∆k(0, {Tj(0)}kj=1, {x̄j(0)}kj=1)+

∂∆k

∂ε
+

k∑
j=1

∂∆k

∂Tj
T ′j(0) +

k∑
j=1

∂∆k

∂x̄j
x̄′j(0)

 ε
In the above, all the partial derivatives are evaluated at point (0, {Tj(0)}kj=1, {x̄j(0)}kj=1), but this

argument is omitted for conciseness. Note, moreover, that in the absence of any innovation (ε = 0)

we are in a steady state with constant price level, so ∆k(0, {Tj(0)}kj=1, {x̄j(0)}kj=1) = 0 and the

approximation becomes

∆k(ε, {Tj(ε)}kj=1, {x̄j(ε)}kj=1) =

∂∆k

∂ε
+

k∑
j=1

∂∆k

∂Tj
T ′j(0) +

k∑
j=1

∂∆k

∂x̄j
x̄′j(0)

 ε (13)

Now observe that, if we set ε = 0, the distribution gk will be symmetric for all k regardless of the

sequences {Tj}∞j=1 and {x̄j}∞j=1. Therefore the integral (12) will always be zero and is consequently

11This can be shown from the fact that adjustments happen symmetrically around zero, i.e. a price with gap x is
adjusted only if a price with gap −x is, and that reset prices are set so as to have zero discrepancy.
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independent of Tj and x̄j for any j, so the partial derivatives with respect to policy variables is zero

and our first order approximation becomes

∆k(ε, {Tj(ε)}kj=1, {x̄j(ε)}kj=1) ≈ ∂∆k

∂ε
ε

C.5 Proposition 2

In steady-state, we have:

∂∆1

∂ε
=

∂

∂ε

− ˆ

|x|>x̄∗

xg∗(x+ ε) dx


= −

ˆ

|x|>x̄∗

xg∗′(x) dx

Integrating by parts, we have:
∂∆1

∂ε
= 2x̄∗g(x̄∗) +m (14)

m =

ˆ

|x|>x̄∗

g∗(x) dx

The result follows from rearranging (14) and using F = m/τ∗ and

f(x) =
2g(x)1(x ≥ x̄∗)

m
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