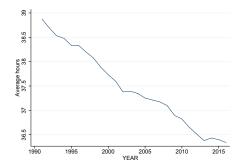
Hours of work polarization?

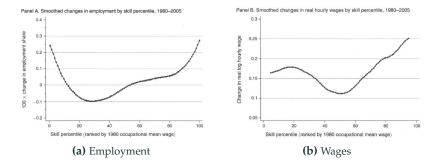

Antonio Dias Da Silva¹, Athene Laws^{1,2}, Filippos Petroulakis¹

ECB/CEPR Labour Market Workshop: 6-7 December 2018

¹DG Economics, European Central Bank, ²Faculty of Economics, University of Cambridge. This presentation reflects the author's personal opinions and does not necessarily reflect the views of the European Central Bank.

Motivation: large decline in hours-per-worker

Figure 1: Trend in hours worked in EU-15 countries, 1992-2016



Source: EU Labour Force Survey, authors' own calculations.

• Long term, widespread trend in EU countries. Primarily driven by shift from full time to part time work. • Shift-share

Motivation: employment and wage polarization

Figure 2: Job polarisation from Autor and Dorn (2013): Smoothed changes in employment share and wages by skill percentile, 1980-2005

Source: Autor and Dorn (2013) for the USA. The same patterns have been found for the EU in Goos

et al. (2014)

- Hours per worker literature:
 - Well documented long-term declining trend with heterogeneity by skill group e.g. Cahuc et al. (2014); Aguiar and Hurst (2007).
 - Various explanations put forward including taxation systems, unionisation, labour laws, technology e.g. Prescott (2004); Alesina et al. (2005); Faggio and Nickell (2007); Bick et al. (2018); Vandenbroucke (2009).
- Polarization literature:
 - Well documented polarization in wages and employment (full-time-equivalent and headcount) e.g. Goos et al. (2009, 2014); Goos and Manning (2007); Autor and Dorn (2013); Acemoglu and Autor (2011).
 - Routine-biased technology change: task content of jobs is key e.g. Autor et al. (2003); Acemoglu and Autor (2011). Framework

This paper: links the intensive margin (hours per worker) to the polarization literature.

Key question:

Are hours per worker trends associated with similar routinisation phenomenon as job polarization?

- Are hours per worker trends a mitigating or exacerbating force for job polarization?
- How does this intensive margin impact the distributional consequences of polarization? Total income $Y = E \times W \times H$
- Implications for labour market earnings, consumption, monetary policy, welfare, political considerations etc.

Approach of the paper

- Construct Acemoglu and Autor (2011)'s five routinisation task indices + sixth for the service sector using O*NET task data.
- Find a large relative reduction in hours-per-worker in highly routine manual jobs, increasing relative hours in high skilled cognitive jobs, and heterogeneity by tasks in low skilled jobs.
- Hours-per-worker patterns are occupational: do not appear to be driven by demographic shifts, industrial composition changes or offshoreability.
- Widespread across EU-15 countries, but the reverse for the USA. A sign of reliance on intensive margin employment adjustment.

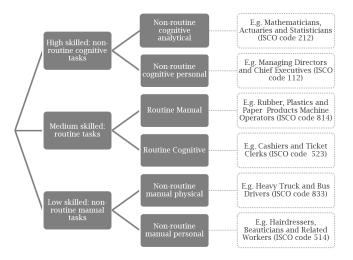
- 1. Introduction
- 2. Data and O*NET task indices
- 3. Baseline analysis
- 4. Potential contributing factors
- 5. Country comparisons
- 6. Conclusion

Data and O*NET task indices

Data sources

Main data source: European Union Labour Force Survey (EU-LFS)

- Harmonised microdataset (individual level) across European countries
- Labour information (employment status, hours of work etc) and demographic information (age, sex).
- 3 digit occupation and 1 digit industry.
- Our core sample is EU-15 countries from 1992-2016.


Wage analysis: EU Statistics of Income and Living Conditions (EU-SILC).

Key variable of interest: intensive margin hours

Two hours measures in EU-LFS: usual hours worked and actual hours work.

- Occupational task content explain increasingly more about employment patterns, vs education, occupation titles etc (Acemoglu and Autor (2011)).
- Each occupation involves a mix of tasks, and O*NET scores the degree to which each occupation uses each task.
- Interested in types of routine tasks.
- Increasing evidence that gradation needs to be finer (Acemoglu and Autor (2011)): separate tasks into physical and non-physical too. Separates routine tasks for accountancy from production line workers, service workers from truck drivers.
- We use Autor and Acemoglu's (2011) five task measures plus a sixth to capture in-person service tasks.

Figure 3: Occupation skill indices, tasks and example occupations

- The six indices are constructed with O*NET task data. Each occupation involves some task content of each, so receives a score for each.
- The indices are matched to the ISCO88 and ISCO08 occupation classifications in the EU-LFS.
- For ease of interpretation, the indices are discretised: an occupation is classified as having a 'high index X score' if it is above the 66th percentile for index X in a given year.

Six occupation skill indices and hours

Table 1: The six indices predict employment polarization

	– NR Cognitive –		Rout	ine ——	— NR Manual —	
	analytical	personal	cognitive	manual	physical	personal
	Share of	total employ	ment in jobs	with high	content of e	ach task
1992	31.5	33.0	30.6	32.6	33.6	30.4
1998	34.9	37.1	30.2	31.1	32.4	32.9
2007	39.2	41.2	28.7	27.8	29.3	33.9
2016	38.7	43.0	30.2	23.1	24.6	38.3
2010-1992	8.9	10.2	-2.7	-6.9	-6.1	5.1
2016-1992	7.2	10.0	-0.4	-9.5	-9.0	8.0

Key idea

These six job task indexes predict employment (and wage) polarization. Do they also predict hours per worker changes?

Baseline analysis

Do these indices predict hours per worker trends?

Baseline regression equation

 $H_{ikct} = \alpha_0 + \alpha_1 I_i + \alpha_2 t + \alpha_3 I_i * t + \beta X_{ict} + c_c + c_k + \epsilon_{ikct}$

- Individual, industry k, country c, time t.
- Errors clustered at the industry-country level.
- *I_i* the index for individual i's occupation. We use a dummy variable that equals one if the individual's occupation has a high task content for that index (above the 66th percentile in each year).
- Baseline controls: gender, age, educational attainment, marital status, interview type, firm size, industry.

Non-routine cognitive occupations

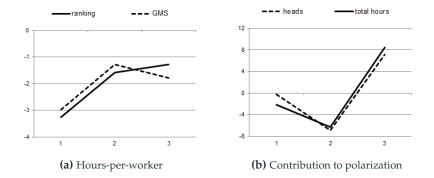
	(1)	(2)	(3)	(4)	(5)	(6)	
		Hours per worker					
		- Analytical ·			— Personal -		
High Index	2.5290***	1.6728*	2.8131***	2.2450***	1.760**	3.2863***	
	(0.8698)	(0.9325)	(0.7629)	(0.8324)	(0.8496)	(0.6071)	
t	-0.1182***	-0.0945***	-0.0793***	-0.1006**	-0.0833***	-0.0758***	
	(0.0154)	(0.0139)	(0.0137)	(0.0159)	(0.0120)	(0.0118)	
High Index*t	0.0500*	0.0884**	0.0430	-0.0089	0.0360	0.0141	
	(0.0272)	(0.0363)	(0.0289)	(0.0275)	(0.0315)	(0.0269)	
Constant	37.92***	39.60***	41.74***	38.05***	39.08***	41.15***	
	(0.5777)	(1.2558)	(0.5725)	(0.57)	(1.2748)	(0.842)	
Observations	2156515	16754427	16754427	2156515	16754427	16754427	
R-squared	0.0193	0.1574	0.2086	0.0103	0.1529	0.2085	
Controls	No	Yes	Yes	No	Yes	Yes	
Country FEs	No	Yes	No	No	Yes	No	
County-Sector FEs	No	No	Yes	No	No	Yes	

All regression weighted with EU-LFS weights, and standard errors clustered at country-sector level. Demographic controls: age, educational level, sex, size of firm, proxy interview, marital status. Industry controls are 1 digit NACE. High Index is a dummy that takes value 1 if the occupation is above the 66th percentile for the index in that year. Sample is individuals working non-zero hours in EU-15 countries from 1992-2016, hours variable is 'usual' hours of work.

	(1)	(2)	(3)	(4)	(5)	(6)		
		Hours per worker						
		- Cognitive -			— Manual —			
High Index	-2.2284***	-0.3114	-0.9555***	4.9924***	2.6676***	0.9829***		
	(0.4875)	(0.4790)	(0.2678)	(0.7305)	(0.4886)	(0.3143)		
t	-0.1254***	-0.0834***	-0.0836***	-0.0328**	-0.0172	-0.0309**		
	(0.0144)	(0.0158)	(0.0129)	(0.0137)	(0.0136)	(0.0118)		
High Index*t	0.0769***	0.0226	0.0203	-0.2083***	-0.1828***	-0.1282***		
	(0.0176)	(0.0172)	(0.0131)	(0.0390)	(0.0265)	(0.0194)		
Constant	39.47***	39.22***	41.10***	37.11***	38.34***	41.20***		
	(0.5409)	(1.1470)	(0.5656)	(0.4864)	(1.1674)	(0.5616)		
Observations	2156515	16754427	16754427	2156515	16754427	16754427		
R-squared	0.0061	0.1457	0.1944	0.0139	0.1483	0.1960		
Controls	No	Yes	Yes	No	Yes	Yes		
Country FEs	No	Yes	No	No	Yes	No		
County-Sector FEs	No	No	Yes	No	No	Yes		

All regression weighted with EU-LFS weights, and standard errors clustered at country-sector level. Demographic controls: age, educational level, sex, size of firm, proxy interview, marital status. Industry controls are 1 digit NACE. High Index is a dummy that takes value 1 if the occupation is above the 66th percentile for the index in that year. Sample is individuals working non-zero hours in EU-15 countries from 1992-2016, hours variable is 'usual' hours of work.

Non-routine manual occupations


	(1)	(2)	(3)	(4)	(5)	(6)		
	Hours per worker							
		— Personal –			— Physical —			
High Index	-1.3067**	-0.1414	1.6622***	4.1315***	1.7090***	0.5487		
	(0.6306)	(0.6699)	(0.4563)	(0.6982)	(0.4912)	(0.3416)		
t	-0.1137***	-0.0931***	-0.0858***	-0.0763***	-0.0562***	-0.0608***		
	(0.0149)	(0.0110)	(0.0106)	(0.0139)	(0.0150)	(0.0126)		
High Index*t	0.0398*	0.0572**	0.0482***	-0.0679**	-0.0684***	-0.0479***		
	(0.0219)	(0.0225)	(0.0191)	(0.0287)	(0.0236)	(0.0178)		
Constant	39.19***	39.22***	40.93***	37.32***	38.38***	41.11***		
	(0.4068)	(1.2286)	(0.5182)	(0.4992)	(1.1837)	(0.6086)		
Observations	2156515	16754427	16754427	2156515	16754427	16754427		
R-squared	0.0045	0.1467	0.2006	0.0197	0.1467	0.1939		
Controls	No	Yes	Yes	No	Yes	Yes		
Country	No	Yes	No	No	Yes	No		
County-Sector FEs	No	No	Yes	No	No	Yes		

All regression weighted with EU-LFS weights, and standard errors clustered at country-sector level. Demographic controls: age, educational level, sex, size of firm, proxy interview, marital status. Industry controls are 1 digit NACE. High Index is a dummy that takes value 1 if the occupation is above the 66th percentile for the index in that year. Sample is individuals working non-zero hours in EU-15 countries from 1992-2016, hours variable is 'usual' hours of work.

- A large and very significant reduction in hours per worker in highly routine manual occupations (e.g. factory production workers).
- A decrease in hours in non-routine manual physical occupations.
- An increase in hours per worker in highly non-routine cognitive occupations.
- Results robust to a variety of different specifications e.g. measure of hours, including zero hours, various fixed effects, time trend specifications.

Robustness

Figure 4: Hours-per-worker and headcount polarization by wage category, 1992-2016

Potential contributing factors

Contributing factors: Offshoreability

Increasing offshoreability and international supply chains?

Much of the employment polarization literature investigates whether globalisation is hollowing out routine jobs. Consensus seems to be that it is a small, second order contributer. Is the case the same for hours per worker?

Approach:

- use Acemoglu and Autor (2011)'s measure of offshoreability, also created with ONET task data.
- Repeat the same core regressions: does offshoreability predict trend in hours per worker.
- Short answer: yes, but second order. Highly offshoreable occupations have decreased hours per worker.

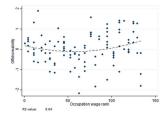


Fig: Offshore index versus wage

Contributing factors: Offshoreability

	(1)	(2)	(3)
	Н	ours per wor	ker
High Offshoreability	-0.5940	1.2772**	0.6140*
	(0.4917)	(0.4658)	(0.3360)
t	-0.0966***	-0.0563***	-0.0630***
	(0.0132)	(0.0144)	(0.0111)
High Offshoreability*t	-0.0119	-0.0533***	-0.0410***
	(0.0230)	(0.0208)	(0.0142)
Constant	38.9422***	38.81***	40.8686***
	(0.5107)	(1.1294)	(0.5348)
Observations	21561515	16754427	16754427
R-squared	0.0044	0.1463	0.1938
Controls	No	Yes	Yes
Country FE	No	Yes	No
Country-Sector FE	No	No	Yes

All regression weighted with EU-LFS weights, and standard errors clustered at countrysector level. Demographic controls: age, educational level, sex, size of firm, proxy interview, marital status. Inducstry controls are 1 digit NACE. High Offshorability is a dummy that takes value 1 if the occupation is above the 66th percentile for the offshorability index in that year. Sample is individuals working non-zero hours in EU-15 countries from 1992-2016, hours variable is 'usual' hours of work.

Contributing factors: changing gender patterns in workforce

Increased female labour force participation driving the results?

More women entered the labour market over the period, often working part time.

Approach:

- Segment the sample by gender and find both men and women experiencing hours polarization. (Within group)
- Investigate whether the gender composition of different occupations is changing overtime. (Reallocation across groups)
- Formally undertook a shift share comparison: within effect dominates.
- Country specific: polarization patterns widespread, not just in countries with large increases in female participation.

In short: while increase female participation important for aggregate hours trends, it does not appear to be driving hours-per-worker patterns along routinisation lines.

▶ Gender results ↓ ▶ Gender shift-share

Contributing factors: Ageing workforce

An ageing workforce driving the results?

As individuals age, and work fewer hours, does this drive the hours polarization? Existing work has found shrinking industries have higher average ages.

Approach:

- Segment the sample along age lines all age groups experiencing similar hours polarization. (Within group)
- Segment sample along cohort/date of birth lines, and find younger and older cohorts experiencing similar hours polarization. (Within group)
- Check whether age groups reallocated across different occupations. (Reallocation across groups). Routine manual jobs have an increasing relative age of workers (reverse for non-routine cognitive jobs)

In short: routinisation hours trends affects all age groups and cohorts, but shrinking routinized occupations have an increasing share of older workers.

Increased educational attainment driving the results?

Educational attainment has risen over the timeframe perhaps – as per a classic Tinbergen education-technology race – this has driven part of the routine hours patterns.

Approach:

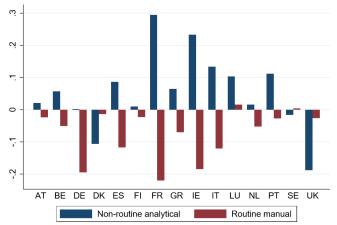
• Same as before: segmented sample along education lines. Slightly more heterogeneity, but overall the pattern is still pretty consistent within groups.

In short: the hours patterns go beyond simple demographic trends, by affecting all groups approximately equally.
Education results

Industrial change driving the results?

Common argument: a changing economy shifts employment to industries with lower hours, reducing aggregate average hours.

Approach:


- Shift-share analysis to break down the reduction of aggregate hours into within (fall in hours within industries) versus between (shift of employment to low average hours industries) factors.
- Preliminary evidence: at least 75% of the aggregate reduction comes from the within effect. This suggests that the occupational/task effect was stronger.

In short: Industrial restructuring only appears to be a small fraction of the effect.

Country comparisons

Individual EU-15 results

The full set of results were calculated for each EU-15 country, and were broadly the same. Graph shows the country coefficients (on the time interaction term) for non-routine analytical – almost always positive – and routine manual – almost always negative.

Note: all results statistially significant, with exception of DE and FI for non-routine and LU for routine

USA baseline results

	(1)	(2)	(3)	(4)	(5)	(6)
	Non-routine cognitive					
		- Analytical			- Personal	
High Index*t	-0.0296**	-0.0241**	-0.0430***	-0.0230	-0.0186	-0.0287**
	(0.0141)	(0.0104)	(0.0090)	(0.0170)	(0.0141)	(0.0127)
			Routi	ne		
		- Cognitive -			– Manual -	
High Index*t	0.0723***	0.0606***	0.0387***	0.0115	0.0181	0.0390***
	(0.0101)	(0.0101)	(0.0083)	(0.0167)	(0.0132)	(0.0114)
			Non-routine	e manual		
		– Personal –			- Physical ·	
High Index*t	-0.1323***	-0.0676***	-0.0357***	-0.0264**	-0.0177*	-0.0130
	(0.0114)	(0.0100)	(0.0097)	(0.0128)	(0.0103)	(0.0088)
Controls	No	Yes	Yes	No	Yes	Yes
State FEs	No	Yes	Yes	No	Yes	Yes
Sector FEs	No	No	Yes	No	No	Yes

All regression weighted with CPS weights, and standard errors clustered at state-sector level. Demographic controls: age, educational level, sex, size of firm, marital status. High Index is a dummy that takes value 1 if the occupation is above the 66th percentile for the index in that year. Sample is individuals working non-zero hours in the CPS sample from 1995-2016.

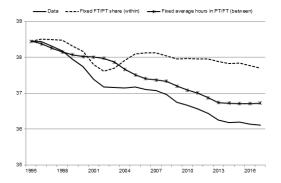
Conclusion

Concluding remarks

- Large decreases in hours of work for routine manual jobs. Increased hours of work for non-routine cognitive analytical jobs (high skilled) and non-routine manual personal (lower skilled).
- The intensive margin exacerbates high skill employment-wage polarization, and mitigates the growth for low skill occupations.
- The patterns appear to impact a broad range of demographics, and only 1/4 can be explained by industrial restructuring.
- Intensive margin (hours) another adjustment margin for labour particularly in EU versus US. Hypothesis: tighter labour laws in EU.
- Going forward: further investigate divergence in EU vs USA trends. Idea: an Autor-Dorn model with firing costs to explain this.

Concluding remarks

- Large decreases in hours of work for routine manual jobs. Increased hours of work for non-routine cognitive analytical jobs (high skilled) and non-routine manual personal (lower skilled).
- The intensive margin exacerbates high skill employment-wage polarization, and mitigates the growth for low skill occupations.
- The patterns appear to impact a broad range of demographics, and only 1/4 can be explained by industrial restructuring.
- Intensive margin (hours) another adjustment margin for labour particularly in EU versus US. Hypothesis: tighter labour laws in EU.
- Going forward: further investigate divergence in EU vs USA trends. Idea: an Autor-Dorn model with firing costs to explain this.


References

- Acemoglu, D. and Autor, D. (2011). Skills, tasks and technologies: Implications for employment and earnings. In *Handbook of labor economics*, volume 4, pages 1043–1171. Elsevier.
- Aguiar, M. and Hurst, E. (2007). Measuring trends in leisure: the allocation of time over five decades. *The Quarterly Journal of Economics*, 122(3):969–1006.
- Alesina, A., Glaeser, E., and Sacerdote, B. (2005). Work and leisure in the united states and europe: why so different? *NBER macroeconomics annual*, 20:1–64.
- Autor, D. and Dorn, D. (2013). The growth of low-skill service jobs and the polarization of the us labor market. *American Economic Review*, 103(5):1553–97.

- Autor, D. H., Levy, F., and Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. *The Quarterly journal of economics*, 118(4):1279–1333.
- Bick, A., Fuchs-Schündeln, N., and Lagakos, D. (2018). How do hours worked vary with income? cross-country evidence and implications. *American Economic Review*, 108(1):170–99.
- Cahuc, P., Carcillo, S., and Zylberberg, A. (2014). *Labor economics*. MIT press.
- Faggio, G. and Nickell, S. (2007). Patterns of work across the oecd. *The Economic Journal*, 117(521):F416–F440.
- Goos, M. and Manning, A. (2007). Lousy and lovely jobs: The rising polarization of work in britain. *The review of economics and statistics*, 89(1):118–133.
- Goos, M., Manning, A., and Salomons, A. (2009). Job polarization in europe. *American economic review*, 99(2):58–63.

- Goos, M., Manning, A., and Salomons, A. (2014). Explaining job polarization: Routine-biased technological change and offshoring. *American Economic Review*, 104(8):2509–26.
- Prescott, E. C. (2004). Why do americans work so much more than europeans? Technical report, National Bureau of Economic Research.
- Vandenbroucke, G. (2009). Trends in hours: The us from 1900 to 1950. *Journal of Economic Dynamics and Control*, 33(1):237–249.

Figure 5: Aggregate hours full-time part-time shift share decomposition

Hours trend

ONET tasks used to construct indices

Non-routine cognitive: Analytical

- 4.A.2.a.4 Analyzing data/information
- 4.A.2.b.2 Thinking creatively
- 4.A.4.a.1 Interpreting information for others

Routine cognitive

- 4.C.3.b.7 Importance of repeating the same tasks
- 4.C.3.b.4 Importance of being exact or accurate
- 4.A.4.b.5 4.C.3.b.8 Structured v. Unstructured work (reverse)

Non-routine cognitive: Interpersonal

- 4.A.4.a.4 Establishing and maintaining personal relationships
- 4.A.4.b.4 Guiding, directing and motivating subordinates
- 4.A.4.b.5 Coaching/developing others

Routine manual

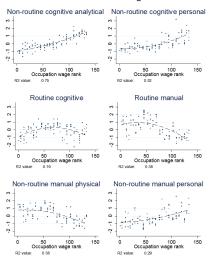
- 4.C.3.d.3 Pace determined by speed of equipment
- 4.A.3.a.3 Controlling machines and processes
- 4.C.2.d.1.i Spend time making repetitive motions

Task groupings

ONET tasks used to construct indices

Non-routine manual physical

- 4.A.3.a.4 Operating vehicles, mechanized devices, or equipment
- 4.C.2.d.1.g Spend time using hands to handle, control or feel objects, tools or controls
- 1.A.2.a.2 Manual dexterity
- 1.A.1.f.1 Spatial orientation


Non-routine manual interpersonal

- 2.B.1.a Social Perceptiveness
- 4.C.1.a.2.1 Face to face discussions (Added by current authors)
- 4.A.4.a.5 Assisting and Caring for Others (Added by current authors)

Offshorability

- 4.A.4.a.8 Performing for or Working Directly with the Public (reverse)
- 4.A.4.a.5 Assisting and Caring for Others (reverse)
- 4.C.1.a.2.1 Face to face discussions (reverse)
- 4.A.1.b.2 Inspecting Equipment, Structures, or Material (reverse)
- 4.A.3.a.2 Handling and Moving Objects (reverse)
- 4.A.3.b.4 0.5*Repairing and Maintaining Mechanical Equipment (reverse)
- 4.A.3.b.5 0.5*Repairing and Maintaining Electronic Equipment (reverse)

Six occupation skill indices versus wages

Indices versus wages

Key mechanism: technological progress displaces routine labour with capital

• Goods (g) are produced using abstract labour (*L*_{*a*}), routine labour (*L*_{*r*}) and capital (*K*). K is a relative complement to *L*_{*a*} and a relative substitute for *L*_{*r*}.

$$Y_g = L_a^{1-\beta} [(\alpha_r L_r)^{\mu} + (\alpha_k K)^{\mu}]^{\beta/\mu}$$

• The price of capital falls overtime, increasing demand for La and substituting *L*_r with K.

$$p_k(t) = \theta e^{-\delta t}$$

◀ Return

• Services are produced only with manual labour, *L_m*. There is no productivity impact of capital.

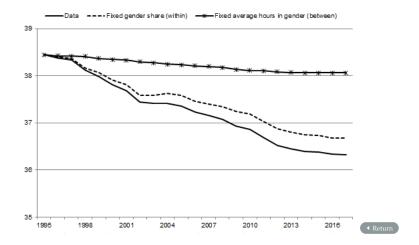
$$Y_s = \alpha_s L_m$$

• Consumers like to consume both goods and services, e.g. standard CES preferences

$$u = (c_s^\rho + c_g^\rho)^{1/\rho}$$

◀ Return

A list of some robustness checks:


- Replacing usual hours of work with actual hours (differs due to holiday, sick leave, different shifts, overtime etc)
- Different samples of hours: include zeros, exclude zeros, include only those working >5 hours.
- Different fixed effects: none, country, industry, country-industry interaction.
- A variety of time trend specifications.
- Country level results provide an additional check of validity the results are not driven but certain economies.
- Non-routine manual personal: focussed just on lower half of wage distribution, removed effect of occupations such as veterinary nurses etc.

Contributing factors: changing gender patterns

-	(1)	(2)	(3)	(4)	(5)	(6)
Y variable			Hours pe	r worker		
Gender included:	Female	Male	Female	Male	Female	Male
Index	NR Cog An.	NR Cog An.	NR Cog Per.	NR Cog Per.	R Cog.	R Cog.
High Index*t	0.135*** (0.0397)	0.123*** (0.0299)	0.0789 (0.0496)	0.0780** (0.0389)	-0.00192 (0.0243)	0.0478* (0.0259)
Observations	4,768,634	5,447,758	4,768,634	5,447,758	4,768,634	5,447,758
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes
	(7)	(8)	(9)	(10)	(11)	(12)
Y variable			Hours pe	r worker		
Gender	Female	Male	Female	Male	Female	Male
Index	R man.	R Man.	NR Man Ph.	NR Man Ph.	NR M Pers.	NR M Pers.
High Index*t	-0.363*** (0.0431)	-0.105*** (0.0243)	-0.0409 (0.0358)	-0.0337 (0.0258)	0.130*** (0.0329)	0.0793*** (0.0299)
Observations	4,768,634	5,447,758	4,768,634	5,447,758	4,768,634	5,447,758
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes

◀ Return

Contributing factors: gender shift-share analysis

Contributing factors: Ageing workforce

-	(1)	(2)	(3)	(4)	(5)	(6)
Y variable			Hours pe	r worker		
Age included:	Younger	Older	Younger	Older	Younger	Older
Index	NR Cog An.	NR Cog An.	NR Cog Per.	NR Cog Per.	R Cog.	R Cog.
High Index*t	0.123*** (0.0252)	0.116*** (0.0354)	0.0670* (0.0342)	0.0847** (0.0421)	0.0333 (0.0232)	-0.00262 (0.0223)
Observations	3,571,625	3,560,155	3,571,625	3,560,155	3,571,625	3,560,155
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes
	(7)	(8)	(9)	(10)	(11)	(12)
Y variable			Hours pe	r worker		
Gender	Younger	Older	Younger	Older	Younger	Older
Index	R man.	R Man.	NR Man Ph.	NR Man Ph.	NR M Pers.	NR M Pers.
High Index*t	-0.140*** (0.0276)	-0.185*** (0.0310)	-0.0184 (0.0249)	-0.0354 (0.0248)	0.0726** (0.0300)	0.0889*** (0.0314)
Observations	3,571,625	3,560,155	3,571,625	3,560,155	3,571,625	3,560,155
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes

Contributing factors: Educational attainment

	(1)	(2)	(3)	(4)	(5)	(6)
Y variable			Hours pe			
Education included:	Low	Middle	High	Low	Middle	High
Index	NR Cog An.	NR Cog An.	NR Cog An.	NR Cog Per.	NR Cog Per.	NR Cog Per.
High Index*t	0.140*** (0.0405)	0.0709*** (0.0271)	0.0980*** (0.0347)	-0.0284 (0.0618)	-0.0312 (0.0490)	0.0785** (0.0345)
Observations	2,757,104	4,757,345	2,701,943	2,757,104	4,757,345	2,701,943
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes
	(7)	(8)	(9)	(10)	(11)	(12)
Y variable			Hours pe	r worker	·····	
Education included:	Low	Middle	High	Low	Middle	High
Index	R Cog.	R Cog.	R Cog.	R Man.	R Man.	R Man.
High Index*t	0.124*** (0.0293)	0.0471** (0.0216)	-0.0378 (0.0288)	-0.162*** (0.0350)	-0.100*** (0.0289)	-0.145*** (0.0318)
Observations	2,757,104	4,757,345	2,701,943	2,757,104	4,757,345	2,701,943
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes
	(13)	(14)	(15)	(16)	(17)	(18)
Y variable			Hours pe	r worker		
Education included:	Low	Middle	High	Low	Middle	High
Index	NR Man Ph.	NR Man Ph.	NR Man Ph.	NR M Pers.	NR M Pers.	NR M Pers.
High Index*t	0.0848*** (0.0321)	0.0360 (0.0232)	-0.0574** (0.0289)	0.0644 (0.0403)	0.0458* (0.0254)	0.0853** (0.0350)
Observations	2,757,104	4,757,345	2,701,943	2,757,104	4,757,345	2,701,943
Standard controls	Yes	Yes	Yes	Yes	Yes	Yes
Country & Sector FEs	Yes	Yes	Yes	Yes	Yes	Yes

Return