The Economics of Sovereign Debt, Bailouts and the Eurozone Crisis

Pierre-Olivier Gourinchas¹ Philippe Martin² Todd Messer³

¹UC Berkeley, CEPR and NBER ²SciencesPo (Paris) and CEPR ³UC Berkeley

ECB, November 21 2017

Motivation

- No Bailout clause: art. 125 of Lisbon Treaty:
 - "A Member State shall not be liable for or assume the commitments of central governments, regional, local or other public authorities, ... of another Member State"
- ECB Executive Board member, Jurgen Stark (January 2010): "The markets are deluding themselves when they think at a certain point the other member states will put their hands on their wallets to save Greece."
- German finance minister Peer Steinbrueck (February 2009)
 "The euro-region treaties dont foresee any help for insolvent countries, but in reality the other states would have to rescue those running into difficulty."
- Economics Commissioner Joaquin Almunia (January 2010): "No, Greece will not default. Please. In the euro area, the default does not exist."

Objectives

- We have seen both some default (Greece) and large loans of EFSF/ESM to Cyprus, Greece, Ireland, Portugal and Spain: transfers/bailouts have materialized
- What is the impact of "no bailout clauses" if they are not fully credible?
- What determines the existence and size of bailouts?
- What consequences on risk shifting, debt issuance and yields?
- Is an ironclad no bailout clause desirable?

Main results

- Estimate of implicit NPV transfers from Europeans to crisis countries: lower bound from 0% (Ireland) to more than 40% of GDP (Greece)
- Theoretical two period model of monetary union with collateral damage of default/exit and ex-post efficient bailouts to prevent default/exit
- Bailouts do not improve welfare of crisis country: creditor countries get entire surplus from avoiding default (Southern view)
- Ex-ante, bailouts generate risk-shifting and over-borrowing (Northern view)
- No-bailout commitment reduces risk-shifting but may be not ex-ante optimal for creditor country, if risk of immediate insolvency: "kicking the can down the road" optimal?

Relevant Literature – (just a few)

Sovereign debt crisis: why do countries repay their debt ?

- Eaton and Gersovitz (1981): reputation
- Cohen and Sachs (1986), Bulow and Rogoff (1989): disruption costs
- Collateral damage of sovereign default in EMU (default + potential exit)
 - Bulow and Rogoff (1989)
 - Tirole (2014) and Farhi and Tirole (2016)
- Self-fulfilling expectations driven crisis (Calvo, 1988)
 - role of financial backstop and monetary policy: de Grauwe (2011), Aguiar et al (2015), Corsetti & Dedola (2012)): financial backstop eliminates transfers
 - no multiple equilibria but transfers in equilibrium in our paper

Size of implicit transfers during crisis

- Crisis countries (Ireland, Greece, Cyprus, Portugal, Spain, Italy) received funding from GLF/EFSF/EFSM/ESM and IMF.
- Methodology (Zettelmeyer and Joshi, 2005) to estimate NPV of total transfers Tr^{i,j}_t (borrower i; creditor j at time t)
- ► Assumption for discount rate: risk of default on European institution loans = IMF ⇒ Lower bound estimate of transfer
- ▶ We discount at *irr* of IMF program for same borrower:

$$Tr_{2010}^{i,j} = \sum_{t=2010}^{T} \frac{1}{(1 + irr^{i,IMF})^t} NT_t^{i,j}$$

Series of net transfers:

$$NT_t^{i,j} = D_t^{i,j} - R_t^{i,j} - i_{t-1}^{i,j} (D^o)_{t-1}^{i,j} - \dots - i_{t-\tau}^{i,j} (D^o)_{t-\tau}^{i,j}$$

 $R_t^{i,j}$ =repayments; $D_t^{i,j}$ = disbursements; τ = maturity of each disbursement; D^o = outstanding balance

Borrower i	Lender j	irr ^{i,j}	irr ^{i,IMF}	$\Delta irr^{i,j}$	$\sum D^{i,j}$	Tr ^{i,j} /GDP ⁱ
Cyprus	ESM	0.89	1.75	0.86	6.30	3.59%
Cyprus	IMF	1.75	1.75		0.95	
Greece	GLF	0.56	3.31	2.76	52.90	8.59%
Greece	EFSF	0.84	3.31	2.47	141.90	28.18%
Greece	ESM	0.59	3.31	2.73	31.70	6.55%
Greece	IMF	3.31	3.31		31.99	
Ireland	EFSF	2.28	2.63	0.35	17.70	0.55%
Ireland	EFSM	3.25	2.63	-0.62	22.50	-0.79%
Ireland	IMF	2.63	2.63		22.61	
Portugal	EFSF	2.08	3.41	1.33	26.02	2.67%
Portugal	EFSM	3.04	3.41	0.37	24.30	0.54%
Portugal	IMF	3.41	3.41		26.39	
Spain	ESM	1.05	2.78	1.73	41.33	0.59%

Theory

- Start with a version of Calvo (1988) model
- ▶ 2 periods: t = 0, 1
- > 3 countries: *i*, *g* (inside monetary union) and *u* (rest of the world)
- ▶ g fiscally sound (safe bonds as u), i fiscally fragile
- i's output is uncertain: y₁ = ȳⁱ₁ϵ₁ with E[ϵ₁] = 1, cdf G(ϵ₁), with bounded support [ϵ_{min}, ϵ_{max}]
- Preferences of country j:

$$U^j = c_0^j + \beta E[c_1^i] + \omega^j \lambda^s \ln b_1^{s,j} + \omega^j \lambda^{i,j} \ln b_1^{i,j}$$

- Risk neutral over consumption
- ► Bonds provide liquidity services (ECB collateral policy): $\lambda^{i,i} > \lambda^{i,g} \ge \lambda^{i,u}$
- ω^j: country size

Debt portfolios

Pins down portfolio shares, regardless of yields, $\alpha^{i,j}$: share of *i*'s debt held by country *j*:

$$\alpha^{i,j} = \frac{b_1^{i,j}}{b_1^i} = \omega^j \frac{\lambda^{i,j}}{\bar{\lambda}^i}$$

with $\bar{\lambda}^i = \sum_k \omega^k \lambda^{i,k}$

Portfolio shares proportional to relative liquidity benefits of *i* debt across each class of investors, and size, independent from yields.

Default & Bailout at t = 1

- i can strategically default (pari passu)
- ▶ g can unilaterally offer a bailout $au_1 \ge 0$ to avoid default
- Cost of default to $i : \Phi y_1^i + \tau_1$
 - Φy₁ⁱ: disruption cost of default/exit
 - No bailout

• Benefit to
$$i$$
 : $(b_1^{i,i} - \rho y_1^i)(1 - \alpha^{i,i})$

- $0 \le \rho \le 1$: recovery rate
- $1 \alpha^{i,i}$: debt held externally.
- Cost to g: $(b_1^i \rho y_1^i) \alpha^{i,g} + \kappa y_1^g$
 - direct portfolio exposure: $(b_1^i \rho y_1^i) \alpha^{i,g}$;
 - collateral damage
 *κy*₁^g (monetary union)
- Benefit to g: saves bailout \(\tau_1\)

Default & Bailout at t = 1

i decision: repay if cost of default ≥ benefit of default, given τ₁, minimum transfer/bailout to avoid default:

$$\tau_1 \geq b_1^i(1-\alpha^{i,i}) - y_1^i\left[\Phi + \rho(1-\alpha^{i,i})\right] \equiv \underline{\tau}_1$$

► Threshold for no default without bailout (τ₁ = 0):

$$ar{\epsilon} \equiv rac{(1-lpha^{i,i})b_1^i/ar{y}_1^i}{\Phi+
ho(1-lpha^{i,i})} \leq \epsilon_1^i$$

• if $\epsilon_1^i < \overline{\epsilon}$, g prefers bailout if:

$$\Phi y_1^i + \kappa y_1^g \ge \alpha_1^{i,u} (b_1^i - \rho y_1^i)$$

Threshold for bailout:

$$\underline{\epsilon} \equiv \frac{\alpha^{i,u} b_1^i / \bar{y}_1^i - \kappa y_1^g / \bar{y}_1^i}{\Phi + \rho \alpha^{i,u}} \leq \epsilon_1^i < \overline{\epsilon}$$

• If $\epsilon_1^i < \underline{\epsilon}$, g lets i default.

Optimal Ex-Post Bailout Policy

Political uncertainty/commitment: probability π that bailout cannot be implemented.

Probability of default:

$$\pi_d = G(\underline{\epsilon}) + \pi(G(\overline{\epsilon}) - G(\underline{\epsilon}))$$

Ex-post efficiency gains

if $\epsilon_1^i < \overline{\epsilon}$, g prefers bailout if :

$$\Phi y_1^i + \kappa y_1^g \ge \alpha_1^{i,u} (b_1^i - \rho y_1^i)$$

overall loss of default \geq overall gain of default

- Bailout is ex-post efficient for i and g jointly
- ▶ g makes minimum bailout & captures all the surplus: Southern view
- If bailout conditional on reforms that improve i output: again, all surplus captured by g

Debt rollover problem at t = 0

Fiscal revenues $D(b_1^i) = b_1^i/R^i$ raised by the government of country *i* in period t = 0:

$$D(b_{1}^{i}) = \beta b_{1}^{i} \left(1 - \pi_{d}\right) + \beta \rho \bar{y}_{1}^{i} \left(\int_{\epsilon_{\min}}^{\underline{\epsilon}} \epsilon dG\left(\epsilon\right) + \pi \int_{\underline{\epsilon}}^{\overline{\epsilon}} \epsilon dG\left(\epsilon\right)\right) + \overline{\lambda}^{i}$$

- D(b) defines a debt-Laffer curve
- ex-post bailout likelihood affects the shape of the debt-Laffer curve
- under some regularity assumptions, debt-Laffer curve is well behaved (convex over the relevant range) although not continuously differentiable.

The Debt-Laffer Curve: D(b)

D(b) for $\pi = 0$ (max bailout), $\pi = 0.5$ and $\pi = 1$ (no bailout). [Uniform distribution with $\rho = 0.6$, $\Phi = 0.2$, $\kappa = 0.05$, $\epsilon_{\min} = 0.5$, $\beta = 0.95$, $\bar{y}_1^i = 1$, $y_1^g = 2$, $\alpha^{i,i} = 0.4$, $\alpha^{i,g} = \alpha^{i,u} = 0.3$. $\underline{b} = 0.47$, $\overline{b} = 0.97$ and $\hat{b} = 1.4$]

Yields: a Deauville effect (October 2010)?

Yields for $\pi = 0$ (expected bailout), $\pi = 1$ (no expected bailout) and $\pi = 0.2$

[Uniform distribution with $\rho = 0.6$, $\Phi = 0.2$, $\kappa = 0.05$, $\epsilon_{\min} = 0.5$, $\beta = 0.95$, $\bar{y}_1^i = 1$, $y_1^g = 2$, $\alpha^{i,i} = 0.4$, $\alpha^{i,g} = \alpha^{i,u} = 0.3$. $\underline{b} = 0.47$ and $\overline{b} = 0.97$]

Optimal Debt

First-order condition for *i* (bondless limit, near zero liquidity services):

```
D'(b_1^i) = \beta(1 - G(\overline{\epsilon}))
```

Interpretation: marginal gain of issuing debt equals discounted probability of repayment.

- ► Without bailouts, no incentive to issue excessive debt (unconstrained): 0 ≤ bⁱ₁ ≤ <u>b</u>
- With bailouts, *i* trades off increased riskiness of the debt (higher yields) against the likelihood of a bailout (risk shifting): 0 ≤ b₁ⁱ ≤ <u>b</u> or b₁ⁱ = b_{opt} > <u>b</u> (Northern view)
- Characterize the extent of risk shifting

Optimal Debt

Rewrite first-order condition:

 $(G(\bar{\epsilon}) - G(\underline{\epsilon}))(1 - \pi) = (b_1^i - \rho \bar{y}_1^i \underline{\epsilon})(1 - \pi)g(\underline{\epsilon})\frac{d\underline{\epsilon}}{db} + (b_1^i - \rho \bar{y}_1^i \bar{\epsilon})\pi g(\bar{\epsilon})\frac{d\bar{\epsilon}}{db}$

- ▶ Gain: probability that marginal debt paid by transfer from g
- ▶ Costs of higher yields: increases $\underline{\epsilon}$ and $\overline{\epsilon}$ which makes default more likely
- ▶ If $\pi = 1$ (commitment for no bailout) $g(\bar{\epsilon}) = 0$ no incentive to issue excessive debt

Optimal Debt Issuance: Risk Shifting

Optimal Debt Issuance for $\pi = 0.5$. Uniform distribution with $\rho = 0.6$, $\Phi = 0.2$, $\kappa = 0.05$, $\epsilon_{\min} = 0.5$, $\beta = 0.95$, $\bar{y}_1^i = 1$, $y_1^g = 2$, $\alpha^{i,i} = 0.4$, $\alpha_1^{i,g} = \alpha^{i,u} = 0.3$. $\underline{b} = 0.47$, $\overline{b} = 0.97$ and $\hat{b} = 1.4$

Choose safe debt if π high and if $\alpha^{i,i}$ high

Risk shifting and no bailout clauses

- ▶ Risk shifting increases with probability of bailout 1π : if π very low, $b_{opt} > \bar{b}$
- *i* chooses risky debt: risk shifting is maximal.
- Reconciles the 'Northern' and 'Southern' views: two sides of the same coin.
- ► The possibility of a transfer induces risk shifting by *i* but *g* captures all the surplus from the transfer.

The Effect of No-Bailout Clauses

Plot of the set of unconstrained solutions $0 \le b \le \underline{b}$ and b_{opt} as a function of π . There is a critical value π_c above which risk shifting disappears.

Choosing No-Bailout Clauses Commitment level

- \blacktriangleright Legal institutions, international treaties... may increase π
- ► b_{opt} decreases with π : g can eliminate risk-shifting by choosing $\pi \ge \pi_c$
- Will g always choose high π (strong no bailout clause)?
- Not necessarily: higher π could force i to default in period 0 because it reduces resources available in period 0 if high initial debt in t = 0
- ▶ Option value to wait or "kicking the can down the road" by g: what if εⁱ₁ high?
- Optimal choice of $\pi < \pi_c$ if *i* has high initial level of debt

Default vs. Exit

- Greece defaulted in 2012, received a transfer and did not exit
- Extension: differentiate
 - default:
 - *i*: cost : $\Phi_d y_1^i$
 - g: cost : $\kappa_d y_1^{\overline{g}}$
 - exit :
 - *i*: cost : $\Phi_d y_1^i$ and extra benefit: $\Delta b_1^i (1 \alpha^{ii})$ *g*: cost: $\kappa_d y_1^g$ and extra cost: $\Delta b_1^i \alpha^{ig}$

Possibility of transfer to avoid exit even with default

Figure: Optimal Ex-Post Bailout and Default vs. Exit Decisions: Ireland and Greece

Debt monetization

- Debt monetization \neq transfers
- with $\rho = 0$ and either $\pi = 0$ or 1
- inflation rate z with distortion cost $\delta z y_1^i$ for i and $\delta z y_1^g$ for g
- maximum inflation rate z̄

Pecking order of bailout and debt monetization

Transfers are possible:

- debt monetization allows to reduce the transfer
- ECB debt monetization, if it takes place, reduces the likelihood of default
- ▶ the whole benefit of debt monetization, if it occurs, is captured by g

Overburdened Central Bank

Transfers are not possible

- Debt monetization without transfers (stronger commitment for no bailout)
 - generates distortion costs
 - increases likelihood of default

Conclusion

- Reconcile "Northern" and "Southern" views of crisis: two sides of the same coin
 - Incentive to overborrow by fiscally fragile countries because of imperfect commitment of no bailout clause
 - Efficiency gains of transfers and debt monetization to prevent default entirely captured by creditor country (no solidarity)
 - In our model, very large transfer to Greece (more than 40% of GDP) did not improve Greece welfare
- Current policy discussions
 - Strengthening the no-bailout commitment should be done with prudence:
 - may precipitate immediate insolvency
 - may overburden ECB (debt monetization less efficient than transfers)
 - Lowering the cost of default:
 - orderly restructuring in case of default (lower κ and Φ): increases likelihood of default and increase transfer size but reduces its likelihood
 - lower risk concentration of banks (doom loop): same effect as orderly restructuring