
PRIORS FOR THE LONG RUN

DOMENICO GIANNONE, MICHELE LENZA, AND GIORGIO E. PRIMICERI

Abstract. We propose a class of prior distributions that discipline the long-run behavior

of Vector Autoregressions (VARs). These priors can be naturally elicited using economic

theory, which provides guidance on the joint dynamics of macroeconomic time series in the

long run. Our priors for the long run are conjugate, and can thus be easily implemented

using dummy observations and combined with other popular priors. In VARs with stan-

dard macroeconomic variables, a prior based on the long-run predictions of a wide class

of dynamic stochastic general equilibrium models yields substantial improvements in the

forecasting performance.

1. Introduction

In this paper we propose a class of prior distributions that disciplines the long-run behav-

ior of economic time series in Vector Autoregressions (VARs). Bayesian inference with infor-

mative priors has a long tradition for VARs, given that these models typically include many

free parameters to accommodate general forms of autocorrelations and cross-correlations

among variables. Therefore, with flat priors, such flexibility is likely to lead to in-sample

overfitting and poor out-of-sample forecasting accuracy.

Our prior is motivated by a specific form of overfitting of flat-prior VARs, which is their

tendency to attribute an implausibly large share of the variation in observed time series

to a deterministic—and thus entirely predictable—component (Sims, 1996, 2000). In these

models, inference is conducted by taking the initial observations of the variables as non-

random. Therefore, the likelihood does not penalize parameter values implying that the

variables’ steady state (for stationary series, their trend for nonstationary ones) is distant

from their initial observations. Complex transient dynamics from these initial conditions to

the steady state are thus implicitly regarded as reasonable. As a consequence, they end up
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explaining an implausibly large share of the low frequency variation of the data, yielding

inaccurate out-of-sample forecasts.

Modifying inference to explicitly incorporate the density of the initial conditions may

not be the right solution to this problem, since most macroeconomic time series are non-

stationary and it is not obvious how to specify the distribution of their initial observations

(examples of studies trying to address this issue include Phillips, 1991a,b, Kleibergen and

van Dijk, 1994, Uhlig, 1994a,b and, more recently, Mueller and Elliott, 2003, and Jarocinski

and Marcet, 2015, 2011). Following Sims and Zha (1998), an alternative route is to formu-

late a prior that expresses disbelief in an excessive explanatory power of the deterministic

component of the model, by specifying that initial conditions should not be an important

predictor of the subsequent evolution of the series. However, there are a variety of specific

ways to implement this idea, especially in a multivariate setting.

Our main insight is that economic theory should play a central role for the elicitation of

such a prior. Consider, for example, a simple bivariate VAR with the logarithm of GDP

and investment. A wide class of theoretical models in macroeconomics predicts that these

two variables should share a common stochastic trend, while the (log) investment-to-GDP

ratio should be stationary. As a consequence, we might want to formulate a prior according

to which the initial level of the common stochastic trend should explain very little of the

subsequent dynamics of the system, while the initial conditions of the investment-to-GDP

ratio should have a higher predictive power. In fact, if this variable is really mean reverting,

then it is reasonable that initial conditions should shape the low frequency dynamics in the

early part of the sample, while the variable converges back to its equilibrium value.

Our prior for the long run (PLR) is a formalization of this general concept. Its key

ingredient is the choice of two orthogonal vector spaces, corresponding to the set of linear

combinations of the model variables that are a-priori likely to be stationary and nonsta-

tionary. It is exactly for the identification of these two orthogonal spaces that economic

theory plays a crucial role. The PLR essentially consists of shrinking the VAR coefficients

towards values that imply little predictive power of the initial conditions of all these linear

combinations of the variables, but particularly so for those that are likely to be nonstation-

ary.

This idea of imposing priors informed by the long-run predictions of economic theory is

reminiscent of the original insight of cointegration. However, our methodology differs from
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the classic literature on cointegration along two main dimensions. First of all, our fully prob-

abilistic approach does not require to take a definite stance on the cointegration relations,

but only on their plausible existence, thus avoiding the pre-testing and hard restrictions

that typically plague error-correction models. More important, the focus of the cointegra-

tion literature is on identifying nonstationary linear combinations of the model variables,

and dogmatically imposing that they cannot affect the short-run dynamics of the model,

while remaining completely agnostic about the impact of the stationary combinations. On

the contrary, we argue that shrinking the effect of these stationary combinations—albeit

more gently—towards zero is at least as important as disciplining the impact of the common

trends.

While we postpone the detailed description of our proposal to the main body of the

paper, here we stress that our PLR is conjugate, and can thus be easily implemented using

dummy observations and combined with existing popular priors, such as the Minnesota

prior (Litterman, 1979). Moreover, conjugacy allows the closed-form computation of the

marginal likelihood, which can be used to select the tightness of our PLR following an

empirical Bayes approach, or conduct fully Bayesian inference on it based on a hierarchical

interpretation of the model (Giannone et al., 2015).

We apply these ideas to the estimation of three VARs with an increasing number of

standard macroeconomic variables. The first is a small-scale model with real variables such

as output, consumption and investment. The second, medium-scale VAR also includes two

labor market variables, i.e. real wages and hours worked. The third, larger-scale VAR also

contains some nominal variables, such as inflation and the short-term interest rate. In each

case, we set up our PLR based on the robust lessons of a wide class of dynamic stochastic

general equilibrium (DSGE) models. Roughly speaking, these theories typically predict the

existence of a common stochastic trend for the real variables, and possibly another trend for

the nominal variables, while the ratios are likely to be stationary. We show that a PLR set

up in accordance with these theoretical predictions is successful in reducing the explanatory

power of the deterministic component implied by flat-prior VARs. To the extent that such

explanatory power is spurious, this is a desirable feature of the model. In fact, a VAR

with the PLR improves over more traditional BVARs in terms of out-of-sample forecasting

performance, especially at long horizons.
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The rest of the paper is organized as follows. Section 2 explains in what sense flat-prior

VARs attribute too much explanatory power to initial conditions and deterministic trends.

Section 3 illustrates our approach to solve this problem, i.e. our PLR. Section 4 puts our

contribution in the context of a vast related literature, which is easier to do after having

discussed the details of our procedure. Section 5 describes the results of our empirical

application. Section 6 discusses some limitations of our approach and possible extensions

to address them. Section 7 concludes.

2. Initial Conditions and Deterministic Trends

In this section, we show that flat-prior VARs tend to attribute an implausibly large share

of the variation in observed time series to a deterministic—and thus entirely predictable—

component. This problem motivates the specific prior distribution proposed in this paper.

Most of the discussion in this section is based on the work of Sims (1996, 2000), although

our recipe to address this pathology differs from his, as we will see in section 3.

To illustrate the problem, let us begin by considering the simple example of an AR(1)

model,

(2.1) yt = c+ ⇢yt�1 + "t.

Equation (2.1) can be iterated backward to obtain

(2.2) yt = ⇢t�1y1 +
t�2X

j=0

⇢jc

| {z }
DCt

+
t�2X

j=0

⇢j"t�j

| {z }
SCt

,

which shows that the model separates the observed variation of the data into two parts.

The first component of (2.2)—denoted by DCt—represents the counterfactual evolution of

yt in absence of shocks, starting from the initial observation y1. Given that AR and VAR

models are typically estimated treating the initial observation as given and non-random,

DCt corresponds to the deterministic component of yt. The second component of (2.2)—

denoted by SCt—depends instead on the realization of all the shocks between time 2 and

t, and thus corresponds to the unpredictable or stochastic component of yt.
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To analyze the properties of the deterministic component of yt, it is useful to rewrite

DCt as

DCt =

8
><

>:

y1 + (t� 1) c if ⇢ = 1

c
1�⇢ + ⇢t�1

⇣
y1 � c

1�⇢

⌘
if ⇢ 6= 1

.

If ⇢ = 1, the deterministic component is a simple linear trend. If instead ⇢ 6= 1, DCt is an

exponential, and has a potentially more complex shape as a function of time. The problem

is that, when conducting inference, this potentially complex deterministic dynamics arising

from estimates of ⇢ 6= 1 can be exploited to fit the low frequency variation of yt, even when

such variation is mostly stochastic. This peculiar “overfitting” behavior of the deterministic

component is clearly undesirable. According to Sims (2000), it is due to two main reasons.

First, the treatment of initial observations as non-stochastic removes any penalization in

the likelihood for parameter estimates that imply a large distance between y1 and c
1�⇢ (the

unconditional mean of the process in the stationary case) and, as such, magnifies the effect

of the ⇢t�1 term in DCt. Second, the use of a flat prior on (c, ⇢) implies an informative prior

on
⇣

c
1�⇢ , ⇢

⌘
, with little density in the proximity of ⇢ = 1, and thus on an approximately

linear behavior of DCt.

Sims (2000) illustrates this pathology by simulating artificial data from a random walk

process, and analyzing the deterministic component implied by the flat-prior parameter

estimates of an AR(1) model. By construction, all the variation in the simulated data is

stochastic. Nevertheless, the estimated model has the tendency to attribute a large fraction

of the low frequency behavior of the series to the deterministic component, i.e. to a path

of convergence from unlikely initial observations to the unconditional mean of the process.

In addition, Sims (2000) argues that the fraction of the sample variation due to the de-

terministic component converges to a non-zero distribution, if the data-generating process

is a random walk without drift. We formally prove this theoretical result in appendix A,

and show that it also holds when the true data-generating process is local-to-unity. Put it

differently, if the true data-generating process exhibits a high degree of autocorrelation, es-

timated AR models will imply a spurious explanatory power of the deterministic component

even in arbitrarily large samples.

The problem is much worse in VARs with more variables and lags, since these models

imply a potentially much more complex behavior of the deterministic trends. For example,

the deterministic component of an n-variable VAR with p lags is a linear combination of n·p
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exponential functions plus a constant term. As a result, it can reproduce rather complicated

low-frequency dynamics of economic time series.

To illustrate the severity of the problem in real applications, consider the popular 7-

variable VAR with log-real GDP, log-real consumption, log-real investment, log-real wages,

log hours worked, inflation and a short-term nominal interest rate (Smets and Wouters,

2007, Del Negro et al., 2007, Justiniano et al., 2010). Suppose that a researcher is estimating

this model at the end of 1994, using forty years of quarterly data and 5 lags. Figure

2.1 plots the deterministic components implied by the flat-prior (OLS) estimates for six

representative time series, along with their actual realization between 1955:I and 1994:IV.

First of all, notice that these deterministic trends are more complex at the beginning of the

sample. For example, the predictable component of the investment-to-GDP ratio fluctuates

substantially between 1955 and 1970, more so than in the rest of the sample.

In addition to exhibiting this marked temporal heterogeneity (Sims, 2000), the deter-

ministic component also seems to explain a large share of the variation of these time series.

Consistent with theory, this feature is most evident for the case of persistent series without

(or with little) drift, such as hours, inflation, the interest rate or the investment-to-GDP ra-

tio. For instance, the estimated model implies that most of the hump-shaped low-frequency

behavior of the federal funds rate was due to deterministic factors, and was thus predictable

since as far as 1955 for a person with the knowledge of the VAR coefficients. And so was

the fact that interest rates would hit the zero lower bound around 2010.

Most economists would be skeptical of this likely spurious explanatory power of determin-

istic trends, and may want to downplay it when conducting inference. In principle, “one way

to accomplish this is to use priors favoring pure unit-root low frequency behavior” (Sims,

2000, pp. 451), according to which implausibly precise long-term forecasts are unlikely.

However, it is not obvious how to formulate such a prior. For example, the undesirable

properties of the deterministic component persist even when using the popular Minnesota

prior with conventional tightness (Litterman, 1979, Sims and Zha, 1998, see appendix C),

as shown in figure 2.1. In the next section we detail our specific proposal regarding how to

address this problem.



PRIORS FOR THE LONG RUN 7

1960 1970 1980 1990 2000 2010

5.5

6

6.5
GDP

1960 1970 1980 1990 2000 2010

4

4.2

4.4

4.6

4.8

5
Investment

1960 1970 1980 1990 2000 2010

-0.65

-0.6

-0.55

-0.5

Hours

1960 1970 1980 1990 2000 2010

-1.7

-1.6

-1.5

-1.4

-1.3

Investment-to-GDP ratio

1960 1970 1980 1990 2000 2010

-0.01

0

0.01

0.02

Inflation

1960 1970 1980 1990 2000 2010

-0.01

0

0.01

0.02

0.03

0.04

Interest rate

Data Flat MN PLR

Figure 2.1. Deterministic component for selected variables implied by various 7-
variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior;
PLR: BVAR with the prior for the long run.

3. Elicitation of a Prior for the Long Run

Consider the VAR model

(3.1) yt = c+B1yt�1 + ..+Bpyt�p + "t

"t ⇠ i.i.d. N (0,⌃) ,

where yt is an n ⇥ 1 vector of endogenous variables, "t is an n ⇥ 1 vector of exogenous

shocks, and c, B1,..., Bp and ⌃ are matrices of suitable dimensions containing the model’s
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unknown parameters. The model can be rewritten in terms of levels and differences

(3.2) �yt = c+⇧yt�1 + �1�yt�1...+ �p�1�yt�p+1 + "t,

where ⇧ = (B1 + . . .+Bp)� In and �j = �(Bj+1 + . . .+Bp), with j = 1, ..., p� 1.

The aim of this paper is to elicit a prior for ⇧. To address the problems described

in the previous section, we consider priors that are centered around zero. As for the prior

covariance matrix on the elements of ⇧, our main insight is that its choice must be guided by

economic theory, and that alternative—automated or “theory-free”—approaches are likely

to lead to a prior specification with undesirable features.

To develop this argument, let H be any invertible n�dimensional matrix, and rewrite

(3.2) as

(3.3) �yt = c+ ⇤ỹt�1 + �1�yt�1...+ �p�1�yt�p+1 + "t,

where ỹt�1 = Hyt�1 is an n⇥1 vector containing n linearly independent combinations of the

variables yt�1, and ⇤ = ⇧H�1 is an n⇥n matrix of coefficients capturing the effect of these

linear combinations on �yt. In this transformed model, the problem of setting up a prior

on ⇧ corresponds to choosing a prior for ⇤, conditional on the selection of a specific matrix

H. What is a reasonable prior for ⇤ will then depend on the choice of H. For example,

consider an H matrix whose i�th row contains the coefficients of a linear combination of

y that is a priori likely to be mean reverting. Then it would surely be unwise to place a

prior on the elements of the i�th column of ⇤ that is excessively tight around zero. In

fact, following the standard logic of cointegration, if the elements of the i�th column of ⇤

were all zero, there would not be any “error-correction” mechanism at play to preserve the

stationarity of this linear combination of y. A similar logic would suggest that, if a raw of

H contains the coefficients of an a-priori likely nonstationary linear combination of y, one

can afford more shrinkage on the elements of the corresponding column of ⇤.

This simple argument suggests that it is important to set up different priors on the

loadings associated with linear combinations of y with different degree of stationarity. This

objective can be achieved by formulating a prior on ⇤, conditional on a choice of H that

combines the data in a way that a-priori likely stationary combinations are separated from

the nonstationary ones.
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Interestingly, in many contexts, economic theory can provide useful information for choos-

ing a matrix H with these characteristics. For example, according to the workhorse macroe-

conomic model, output, consumption and investment are likely to share a stochastic trend,

while both the consumption-to-output and the investment-to-output ratios should be sta-

tionary variables. Similarly, standard economic theory would predict that the price of dif-

ferent goods might be trending, while relative prices should be mean reverting (in absence

of differential growth in the production technology of these goods).1 If these statements

were literally true, the corresponding VARs would have an exact error-correction represen-

tation, as in Engle and Granger (1987), with a reduced-rank ⇧ matrix. In practice, it is

difficult to say with absolute confidence whether certain linear combinations of the data

are stationary or integrated. It might therefore be helpful to work with a prior density

that is based on some robust insights of economic theory, while also allowing the posterior

estimates to deviate from them, based on the likelihood information.

We operationalize these ideas by specifying the following prior distribution on the load-

ings ⇤ (as opposed to ⇧), conditional on a specific choice of the matrix H:

(3.4) ⇤·i|Hi·,⌃ ⇠ N
⇣
0, �̃i (Hi·)⌃

⌘
, i = 1, ..., n,

where ⇤·i denotes the i-th column of ⇤, and �̃i (Hi·) is a scalar hyperparameter that is

allowed to depend on Hi·, the i-th row of H. For tractability, we also assume that these

priors are scaled by the variance of the error ⌃, are independent across i’s and Gaussian,

which guarantees conjugacy. Notice, however, that the assumption that the priors on the

columns of ⇤ are independent from each other does not rule out (and will in general imply)

that the priors on the columns of ⇧ are correlated, with a correlation structure that depends

on the choice of H and �̃.

The tightness of the prior in (3.4) is controlled by the hyperparameter �̃i (Hi·). One way

to choose its value is based on subjective considerations. An alternative (empirical Bayes)

strategy is to set �̃i (Hi·) by maximizing the marginal likelihood, which is the likelihood

of the model only as a function of the hyperparameters. Thanks to the conjugacy of the

prior, the marginal likelihood is available in closed form and is thus very easy to compute.

1Economic theory usually identifies the set of nonstationary combinations of the model variables, and the
space spanned by the stationary combinations. To form the H matrix, our baseline PLR requires the
selection of one specific set of linear combinations belonging to this space. In section 6, we also develop an
extension of our methodology that is invariant to rotations within this space.
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A third option, in between these two extremes, is to adopt a hierarchical interpretation of

the model, and set �̃i (Hi·) based on its posterior distribution, which combines the marginal

likelihood with a hyperprior (Giannone et al., 2015). This is the approach that we adopt in

our empirical applications. In the next subsection, we describe a reference parameterization

that facilitates the choice of hyperpriors or subjective values for �̃i (Hi·).

3.1. Reference value for �̃i. A crucial element of the density specified in (3.4) is the fact

that �̃i can be a function of Hi·, which is consistent with the intuition that the tightness

of the prior on the loadings ⇤·i should depend on whether these loadings multiply a likely

stationary or nonstationary linear combination of y from an a-priori perspective. To capture

this important insight, we propose a reference parameterization of �̃i as follows:

(3.5) �̃i(Hi.) =
�2
i

(Hi·ȳ0)
2 ,

where �i is a scalar hyperparameter (controlling the standard deviation of the prior on

the elements of ⇤·i), and ȳ0 is a column vector containing the average of the initial p

observations of each variable of the model (these are the observations taken as given in the

computation of the likelihood function). Therefore, the denominator of (3.5) corresponds

to the square of the initial value of the linear combination at hand.

There are a few reasons why this reference formulation is appealing. First of all, sub-

stituting (3.5) into (3.4) makes it clear that the prior variance of ⇤·i has a scaling that

is similar to that of the likelihood, with the variance of the error at the numerator, and

the (sum of) squared regressor(s) at the denominator (recall for instance the form of the

variance of the OLS estimator). Second, expression (3.5) captures the insight that tighter

priors are more desirable for the loadings of nonstationary linear combinations of y, which

are likely to have larger initial values (assuming that the data generating process has been

in place for a long enough period of time before the observed sample).2 Third, scaling the

prior variance by 1/ (Hi·ȳ0)
2 is more attractive than any alternative scale meant to capture

the same idea, because in this way the prior setup does not rely on any information that

is also used to construct the likelihood function, avoiding any type of “double counting” of

the data.
2More specifically, suppose that the true data-generating process of Hi·yt has been in place for a number
of periods T0, where T0 is proportional to the observed sample size T . In the stationary case, (Hi·ȳ0)

2 is
bounded in probability. It is instead of order T in the integrated or local-to-unity case, where  is equal
to 1 or 3/2 depending on the presence of the drift.
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In the reference parameterization (3.5), the prior tightness is controlled by the hyperpa-

rameter �i, which is just a monotone transformation of �̃i. Therefore, from a theoretical

point of view, the problem of choosing �i is identical to selecting �̃i, and can also be based on

subjective considerations, the maximization of the marginal likelihood, or a combination of

the two.3 In practice, however, the choice of a specific subjective value—or a hyperprior—is

easier for �i than for �̃i, because it has a more direct connection with the problem of the

initial conditions and deterministic trends that we have highlighted in section 2. We clarify

this point in the next subsection, where we explain how to implement this prior using simple

dummy observations, and provide some additional insights into its interpretation.

3.2. Implementation with dummy observations. The prior in (3.4) can be rewritten

in a more compact form as

(3.6) vec (⇤) |H,⌃ ⇠ N
⇣
0, �̃H ⌦ ⌃

⌘
,

with �̃H = diag
⇣h

�̃1 (H1·) , ..., �̃n (Hn·)
i⌘

, where vec (·) is the vectorization operator, and

diag (x) denotes a diagonal matrix with the vector x on the main diagonal. Since ⇧ = ⇤H,

the implied prior on the columns of ⇧ is given by

(3.7) vec (⇧) |H,⌃ ⇠ N
⇣
0, H 0�̃HH ⌦ ⌃

⌘
.

Being conjugate, this prior can be easily implemented using Theil mixed estimation, i.e.

by adding a set of n artificial (or dummy) observations to the original sample. Each of

these n dummy observations consists of a value of the variables on the left- and right-hand

side of (3.1), at an artificial time t⇤i . In particular, the implementation of the prior in (3.7),

with the parameterization of �̃i in (3.5), requires the following set of artificial observations:

(3.8) yt⇤i = yt⇤i�1 = ... = yt⇤i�p =
Hi·ȳ0
�i

⇥
H�1

⇤
·i , i = 1, ..., n,

3For example, given the invariance property of maximum likelihood, an Empirical Bayes approach based
on the maximization of the marginal likelihood would lead to identical inference regardless of whether one
uses this specific parameterization or not.
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where the corresponding observation multiplying the constant term is set to zero, and
⇥
H�1

⇤
·i denotes the i-th column of H�1. We prove this result in appendix B, where we

also derive the posterior distribution of the model’s unknown coefficients.

To provide yet another interpretation of our prior, it is useful to substitute the dummy

observations (3.8) into the level-difference representation of the model (3.2), obtaining

(3.9) 0 = ⇧
⇥
H�1

⇤
·i| {z }

⇤·i

(Hi·ȳ0) + �i"t⇤i , i = 1, ..., n.

This expression suggests that the prior is effectively limiting the extent to which the linear

combinations Hi·y help forecasting �y at the beginning of the sample. This feature reduces

the importance of the error correction mechanisms of the model, which are responsible for

the complex dynamics and excessive explanatory power of the deterministic component

that we have analyzed in section 2. However, given that the value of Hi·ȳ0 is typically lower

(in absolute value) for mean-reverting combinations of y, our prior reduces more gently the

mechanisms that correct the deviations from equilibrium of likely stationary combinations

of the variables, consistent with the idea of cointegration.

The representation of the prior in terms of dummy observations also provides some useful

insights for the elicitation of a hyperprior. The value of �i = 1 corresponds to using a single

artificial observation in which the linear combination of variables on the right- and left-hand

side is equal to its initial condition, with an error variance of this observation similar to

that in the actual sample. Therefore, 1 seems a sensible reference value for �i, and we use

it to center its hyperprior (we also choose 1 as a standard deviation for this hyperprior, see

appendix C for details).

3.3. Simple bivariate example. Before turning to a more comprehensive comparison

with some of the existing literature, it is useful to contrast our prior for the long run to

the more standard sum-of-coefficients (SOC) prior, first proposed by Doan et al. (1984),

and routinely used for the estimation of BVARs (Sims and Zha, 1998). The SOC prior also

disciplines the sum of coefficients on the lags of each equation of the VAR, but corresponds

to mechanically setting H equal to the identity matrix, even when there might be some

linear combinations of the variables in the system that should be stationary.
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For the sake of concreteness, consider the simple example of a bivariate VAR(1) with

log-output (xt) and log-investment (it). The SOC prior corresponds to

vec (⇧) |⌃ ⇠ N

0

@0,

2

4
µ2

x2
0

0

0 µ2

i20

3

5⌦ ⌃

1

A ,

where µ is an hyperparameter controlling its overall tightness. Economic theory, however,

does suggest that output and investment are likely to share a common trend (xt+ ii), while

the log-investment-to-output ratio (it � xt) is expected to be stationary. Based on this

insight, we can form the matrix H, whose rows correspond to the coefficients of these two

different linear combinations of the variables:

(3.10) H =

2

4 1 1

�1 1

3

5 .

One can now ask what is the prior implied by SOC on the coefficients capturing the effect

of these two linear combinations on �xt and �it (i.e. on the error correction coefficients,

using the cointegration terminology). To answer this question, recall that ⇤ = ⇧H�1,

which implies that vec (⇤) =
⇣�

H�1
�0 ⌦ In

⌘
vec (⇧), and thus

vec (⇤) |H,⌃ ⇠ N

0

@0,
1

4

2

4
µ2

x2
0
+ µ2

i20

µ2

i20
� µ2

x2
0

µ2

i20
� µ2

x2
0

µ2

x2
0
+ µ2

i20

3

5⌦ ⌃

1

A .

Notice that the prior on the loadings of the common trend is as tight as that on the loadings

of the investment ratio, which is in contrast with the predictions of most theoretical models

and with the main insights of cointegration.

On the contrary, our prior for the long run with the choice of H in (3.10) corresponds to

the following prior density on the error correction coefficients:

vec (⇤) |H,⌃ ⇠ N

0

@0,

2

4
�2
1

(x0+i0)
2 0

0
�2
2

(i0�x0)
2

3

5⌦ ⌃

1

A .

Clearly, even if �1 ⇡ �2, and given that (i0 � x0)
2 is a much smaller number than (x0 + i0)

2,

this prior performs much less shrinkage on the coefficients that correct the deviations of the

investment ratio from its equilibrium value.
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4. Relationship with the Literature

Before turning to the empirical application, it is useful to relate our approach more

precisely to the literature on cointegration (Engle and Granger, 1987) and error-correction

models (for a comprehensive review, see Watson, 1986). For the purpose of making this

comparison as concrete as possible, suppose that the specific model at hand entails a natural

choice of H with the following two blocks of rows:

(4.1) H =

2

664

�0
?

(n�r)⇥n

�0
r⇥n

3

775 ,

where the columns of �? are (n� r) linear combinations of y that are likely to exhibit a

stochastic trend, while the columns of � are r linear combinations of y that are more likely

to represent stationary deviations from long-run equilibria, i.e. that are likely to correspond

to cointegrating vectors. Using this notation, we can rewrite (3.3) as

(4.2) �yt = c+ ⇤1
�
�0
?yt�1

�
+ ⇤2

�
�0yt�1

�
+ �1�yt�1...+ �p�1�yt�p+1 + "t,

where ⇤1 are the first n� r columns of ⇤, and ⇤2 are the remaining r columns.

As described in the previous section, our approach consists of placing priors on the

columns of ⇤1 and ⇤2. These priors are centered around zero, and are tighter for the

elements of ⇤1 than for those of ⇤2. The error-correction representation corresponds to

an extreme case of our general model, obtained by enforcing a dogmatic prior belief that

⇤1 = 0. As a result, ⇧ would equal ⇤2�0, and would be rank deficient. If, in addition, the

prior belief that ⇤2 = 0 is also dogmatically imposed, the VAR admits a representation in

first differences.

For what concerns the cointegrating vectors �, the literature has proceeded by either

fixing or estimating them. The approach that is closer to ours selects the cointegrating

vectors � a priori, mostly based on economic theory. This strategy is appealing since the

theoretical cointegrating relations are typically quite simple and robust across a wide class of

economic models. Conditional on a specific choice of �, one popular approach is to include

all the theoretical cointegrating vectors in the error-correction representation, and conduct

likelihood-based inference (i.e. OLS), as in King et al. (1991) or Altig et al. (2011). In our

model, this is equivalent to placing a flat prior on ⇤2. An alternative strategy, however, has
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been to conduct some pre-testing and to include in the error correction only those deviations

from equilibria for which the adjustment coefficients are statistically significantly different

from zero, as in Horvath and Watson (1995). Conditional on the pre-testing results, this

approach is equivalent to setting a dogmatic prior that certain columns of ⇤2 are equal to

zero, and a flat prior on the remaining elements.

The other strand of the literature is more agnostic about both the cointegrating rank (r)

and the cointegrating vectors (�). In these cases, classical inference is typically conducted

using a multi-step methodology. The first step of these procedures requires testing for the

cointegrating rank. Conditional on the results of these tests, the second step consists of the

estimation of the cointegrating vectors, which are then treated as known in step three for the

estimation of the remaining model parameters (Engle and Granger, 1987). Alternatively,

the second and third steps can be combined to jointly estimate � and the other parameters

with likelihood-based methods, as in Johansen (1995).

The Bayesian approach to cointegration is similar in spirit to the likelihood-based in-

ference (for recent surveys, see Koop et al., 2006, Del Negro and Schorfheide, 2011, and

Karlsson, 2013). This literature has also concentrated on conducting inference on the coin-

tegrating rank and the cointegrating space. For example, the number of cointegrating

relationships is typically selected using the marginal likelihood, or related Bayesian model

comparison methods (Chao and Phillips, 1999, Kleibergen and Paap, 2002, Corander and

Villani, 2004, Villani, 2005). In practical applications, this methodology ends up being

similar to pre-testing because the uncertainty on the cointegrating rank is seldom formally

incorporated into the analysis, despite the fact that the Bayesian approach would allow it

(for an exception, see Villani, 2001).

Conditional on the rank, the early Bayesian cointegration literature was concerned with

formulating priors on the cointegrating vectors, and with deriving and simulating their

posterior (Bauwens and Lubrano, 1996, Geweke, 1996). Standard priors, however, have

been shown to be problematic, in light of the pervasive local and global identification issues

of error-correction models (Kleibergen and van Dijk, 1994, Strachan and van Dijk, 2005).

To avoid these problems, a better strategy is to place a prior on the cointegrating space,

which is the only object the data are informative about (Villani, 2000). Such priors are

studied in Strachan and Inder (2004) and Villani (2005), who also develop methods for

inference and posterior simulations. In particular, Villani (2005) proposes a diffuse prior
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on the cointegrating space, trying to provide a Bayesian interpretation to some popular

likelihood-based procedures. In general, little attention has been given to the elicitation of

informative priors on the adjustment coefficients, which is instead the main focus of our

paper.

It is well known that maximum-likelihood (or flat-prior) inference in the context of error-

correction models can be tricky (Stock, 2010). This is not only because of the practice to

condition on initial conditions, as we have stressed earlier, but also because inference is

extremely sensitive to the value of non-estimable nuisance parameters characterizing small

deviations from non-stationarity of some variables (Elliott, 1998, Mueller and Watson,

2008). Pretesting is clearly plagued by the same problems. The selection of models based on

pre-testing or Bayesian model comparison can be thought as limiting cases of our approach,

in which the support of the distributions of the hyperparameters controlling the tightness

of the prior on specific adjustment coefficients can only take values equal to zero or infinity.

One advantage of our flexible modeling approach, instead, is that it removes such an extreme

sparsity of the model space, as generally recommended by Gelman et al. (2004) and Sims

(2003).

Finally, our paper is also related to the methodology of Del Negro and Schorfheide (2004)

and Del Negro et al. (2007), who also use a theoretical DSGE model to set up a prior for

the VAR coefficients. Their work, however, differs from ours in two important ways. First

of all, the prior of Del Negro et al. (2007) is centered on the error-correction representation

of the VAR, given that such a prior pushes towards a DSGE model featuring a balanced

growth path. On the contrary, for the reasons highlighted in section 2, our PLR shrinks

the VAR towards the representation in first differences, albeit it does so more gently for

the linear combinations of the variables that are supposed to be stationary according to

theory. In addition, the approach of Del Negro and Schorfheide (2004) requires the complete

specification of a DSGE model, including its short-run dynamics. Instead, we use only the

long-run predictions of a wide class of theoretical models to guide the setup of our PLR.

Among other things, this strategy allows us to work with a conjugate prior and simplify

inference.
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5. Empirical Results

In this section we use our prior to conduct inference in VARs with standard macroeco-

nomic variables, whose joint long-run dynamics is sharply pinned down by economic theory.

In particular, we perform two related, but distinct exercises. We begin by re-estimating the

7-variable VAR of section 2, to show that our PLR serves the purpose of reducing the exces-

sive explanatory power of the deterministic components implied by the model with flat or

Minnesota priors. Second, we evaluate the forecasting performance of 3-, 5- and 7-variable

VARs, and demonstrate that our prior yields substantial gains over more standard BVARs,

especially when forecasting at long horizons. Before turning to the detailed illustration of

these results, we begin by describing more precisely the 3-, 5- and 7-variable VARs and the

priors that we adopt.

The 3-variable VAR includes data on log-real output (Yt), log-real consumption (Ct) and

log-real investment (It) for the US economy, and is similar to the VAR estimated by King

et al. (1991) in their influential analysis of the sources of business cycles.4 This model is

appealing because of its simplicity and because, in this context, a prior for the long run can

be easily elicited based on standard economic theory, which has robust implications about

the long-run behavior of these three time series. Specifically, a wide class of macroeconomic

models predicts the existence of a balanced growth path, along which output, consump-

tion and investment share a common trend, while the great ratios (the consumption- and

investment-to-output ratios) should be stationary.

The 5- and 7-variable VARs augment the small-scale model with labor-market variables—

log-real wages (Wt) and log-hours worked (Ht)—and nominal variables—inflation (⇡t) and

the federal funds rate (Rt). These are the same time series used to estimate the DSGE model

of Smets and Wouters (2007), which builds on the Real Business Cycle (RBC) literature

by adding a number of real and nominal frictions. This DSGE is representative of modern

medium-to-large-scale macroeconomic models, and can thus be used as a guide to set up our

prior in this context. Similar to the RBC framework, this class of models typically predicts

that real output, consumption, investment, and real wages share a common stochastic

trend, while the great ratios (the labor share, and the consumption- and investment-to-

output ratios) and hours worked should be stationary.

4The data used in the empirical applications are described in detail in appendix D.
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In addition, some New-Keynesian models (e.g. Ireland, 2007) also include a stochastic

nominal trend, common to the interest and inflation rates. While the existence of such

a stochastic nominal trend is not a robust feature of this class of models, most of them

do imply that the low-frequency behavior of inflation and interest rates are tightly related.

This is exactly the type of situation in which it might be beneficial to formulate a prior that

is centered on the existence of a common nominal trend, without imposing it dogmatically.

A compact way of summarizing the variables included in each model and the linear

combinations used to set up our PLR is to illustrate the details of the choice of ỹt and H

for the larger, 7-variable model:

ỹt =

2

6666666666666664

1 1 1 1 0 0 0

�1 1 0 0 0 0 0

�1 0 1 0 0 0 0

�1 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 �1 1

3

7777777777777775

| {z }
H

0

BBBBBBBBBBBBBBB@

Yt

Ct

It

Wt

Ht

⇡t

Rt

1

CCCCCCCCCCCCCCCA

| {z }
yt

! real trend

! consumption-to-GDP ratio

! investment-to-GDP ratio

! labor share

! hours

! nominal trend

! real interest rate.

The 5-variable model only includes the first 5 variables of yt and the 5⇥ 5 upper-left block

of H. The 3-variable VAR only includes the first 3 variables of yt and the 3⇥ 3 upper-left

block of H.

We now turn to the description of the specific exercises that we conduct and the empirical

results.

5.1. Deterministic trends. In section 2, we have argued that a serious pathology of flat-

prior VARs is that they imply rather complex dynamics and excessive explanatory power

of the deterministic component of economic time series (Sims, 1996, 2000). In addition, the

use of the standard Minnesota prior (with conventional hyperparameter values) does very

little, if nothing at all, to solve the problem (figure 2.1). In this subsection, we analyze the

extent to which our PLR eliminates or reduces this pathology.

To this end, we re-estimate the 7-variable VAR of section 2 using our prior for the

long run (PLR-BVAR), and compare the deterministic trends implied by this model to
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those of section 2, obtained using a BVAR with flat or Minnesota priors (flat-BVAR and

MN-BVAR respectively).5 In this experiment, for simplicity, we simply set the value of the

hyperparameters {�i}ni=1 equal to one, which provides a good reference value (it corresponds

to adding one dummy observation, see appendix C).

The results of this experiment are depicted in figure 2.1. In the case of GDP, the difference

between the deterministic component of the PLR-BVAR and the flat or MN-BVAR is

limited. For the other variables, notice that the shape of the deterministic component

implied by the PLR-BVAR is simpler, and explains much less of the low frequency variation

of the time series. For example, in the case of investment, the deterministic trend implied

by the PLR-BVAR resembles a straight line, implying that the long-run growth rate of

investment in the next decades is expected to be similar to the past. Similarly, in the case

of inflation and the interest rate, the deterministic trend of the PLR-BVAR does not have

the unpleasant property that somebody with the knowledge of the VAR coefficients would

have perfectly predicted the hump shape of these two variables already in 1955.

So, overall, our PLR is quite successful in correcting the pathology that we have illus-

trated in section 2. In the next section, we will demonstrate that this is not simply a

theoretical curiosity, but that it is extremely important for the forecasting performance of

the model.

5.2. Forecasting performance. In this subsection, we compare the forecasting perfor-

mance of our BVAR to a number of benchmark BVARs. More specifically, we consider the

following models:

• MN-BVAR: BVAR with the Minnesota prior

• SZ-BVAR: BVAR with the Minnesota prior and the sum-of-coefficients (also known

as no-cointegration) prior, as in the work of Doan et al. (1984) and Sims and Zha

(1998). The latter corresponds to our prior for the long run with a mechanic choice

of H equal to the identity matrix, and the same hyperparameter for each dummy

observation. It has the effect of pushing the VAR parameter estimates towards the

existence of a separate stochastic trend for each variable.

• Naive: BVAR with an infinitely tight Minnesota prior, which results in all the

variables following independent random walks with drifts.

5We conduct this experiment with the 7-variable VAR, as opposed to the 3- or 5-variable VARs, because
the problem is more severe in this case.
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• PLR-BVAR: BVAR with the Minnesota prior and our prior for the long run.

This comparison of forecasting accuracy is interesting because the first three models are con-

sidered valid benchmarks in the literature. For example, it is well known that MN-BVARs

yield substantial forecasting improvements over classical or flat-prior VARs (Litterman,

1979) and that further improvements can be achieved by adding the sum-of-coefficients

prior of Doan et al. (1984). In fact, Giannone et al. (2015) show that the predictive ability

of the model of Sims and Zha (1998) is comparable to that of factor models. Finally, a

number of papers have demonstrated that the naive random walk model forecasts quite

well, especially after the overall decline in predictability of macroeconomic time series in

1985 (Atkeson and Ohanian., 2001, Stock and Watson, 2007, D’Agostino et al., 2007, Rossi

and Sekhposyan, 2010).

In what follows, our measure of forecasting accuracy is the out-of-sample mean squared

forecast error (MSFE). In particular, for each of the four models, we produce the 1- to 40-

quarters-ahead forecasts, starting with the estimation sample that ranges from 1955Q1 to

1974Q4. We then iterate the same procedure updating the estimation sample, one quarter

at a time, until the end of the sample in 2013Q1. At each iteration, we select the tightness of

the priors by maximizing the posterior of the models’ hyperparameters, using the procedure

proposed by Giannone et al. (2015) and summarized in appendix C. Conditional on a specific

value of these hyperparameters, we then produce the out-of-sample forecasts by setting the

VAR coefficients to their posterior mode. All BVARs are estimated using 5 lags. For all

the forecast horizons, the evaluation sample for the computation of the MSFEs ranges from

1985Q1 to 2013Q1.

5.2.1. 3-variable VARs. We start by focusing on the small-scale model with three variables.

The upper panel in figure 5.1 reports the MSFEs of the level of each variable at horizons

ranging from one to 40 quarters ahead. Christoffersen and Diebold (1998) point out that, in

presence of long-run relationships across the variables, accuracy measures should adequately

value the ability of the different models to preserve such long-run relationships. Hence, to

assess the different models under analysis also on such grounds, in the lower panel of

figure 5.1 we report the out-of-sample accuracy measures for the common trend and, more

importantly, for the so-called great ratios.
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Figure 5.1. Mean squared forecast errors in models with three variables. MN: BVAR
with the Minnesota prior; SZ: BVAR with the Minnesota and sum-of-coefficient priors;
Naive: random walk with drift for each variable; PLR: BVAR with the Minnesota prior
and the prior for the long run.

Notice that the PLR-BVAR improves uniformly over the MN-BVAR, especially at long

horizons, reflecting the fact that the Minnesota prior alone is not enough to reduce the spuri-

ous explanatory power of the deterministic component typical of flat-prior VARs. According

to the existing literature, one way to reduce this pathology is to augment the MN-BVAR

with a sum-of-coefficients prior. The resulting SZ-BVAR does outperform the MN-BVAR,

but is still substantially less accurate than the PLR-BVAR for predicting investment and

the investment-to-GDP ratio. Finally, observe that the forecasting performance of the naive

model is very similar to that of the SZ-BVAR, which suggests that the sum-of-coefficients

prior strongly shrinks the VAR coefficients toward values consistent with the existence of

independent random walks for all three variables.

The key question for us is understanding why the PLR-BVAR outperforms the SZ-BVAR

and the naive model. We address this question in figure 5.2, which plots the realized value of

the consumption- and investment-to-GDP ratios, and the 5-year-ahead forecasts obtained
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Figure 5.2. Forecasts of the great ratios 5-years ahead in models with three variables.
Naive: random walk with drift for each variable; PLR: BVAR with the Minnesota prior
and the prior for the long run.

with the PLR-BVAR and the naive model (the SZ-BVAR forecasts are very close to those

of the naive model, so we do not report them to avoid clogging the figure). Since all the

variables follow separate random walks in the naive model, the difference between log-

consumption and log-output, and the difference between log-investment and log-output are

also random walks. As the first panel of figure 5.2 makes clear, a random walk is a pretty

good predictor of the consumption-to-GDP ratio because this variable displays a (close to)

nonstationary behavior in the data. The no-change forecasts of a random walk, however,

are poor predictors of the investment-to-GDP ratio at long horizons, because this series

looks mean reverting (second panel of figure 5.2).

The strength of the PLR-BVAR is the ability to push the common trend towards a unit

root approximately as intensely as the SZ-BVAR or the naive model, while performing

substantially less shrinkage on the consumption- and investment-to-GDP ratios. Therefore,
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this more sophisticated prior does not outweigh the likelihood information about the mean

reversion of the investment ratio, while being consistent with the trending behavior of the

consumption ratio. Finally, notice that the PLR-BVAR would also outperform the theory-

based predictions of constant ratios, which is particularly at odds with the observed pattern

of consumption relative to GDP.

Before turning to the VAR with five variables, we wish to briefly mention another popular

prior—the so called dummy-initial-observation (or single-unit-root) prior—used in the exist-

ing literature. This elegant prior was designed to remove the bias of the sum-of-coefficients

prior against cointegration, while still addressing the issue regarding overfitting of the de-

terministic component (Sims and Zha, 1998). For completeness, we have experimented

with this prior as well, but its marginal impact on the posterior relative to the Minnesota

and sum-of-coefficients priors is negligible, as we show in appendix E. Therefore, to save

space, we have decided to exclude the dummy-initial-observation prior from the forecasts

comparison in the main text.

5.2.2. 5-variable VARs. We now move to the VARs with five variables. Figures 5.3 and 5.4

plot the MSFEs for various forecasting horizons for the level of all the variables included

in the VAR and for the linear combinations of the variables obtained by multiplying the

matrix H by the vector y (i.e. the common real trend, the great ratios and hours). No-

tice that the prediction accuracy of the SZ-BVAR deteriorates for GDP, consumption and

investment, relative to the 3-variable case. The PLR-BVAR, instead, continues to forecast

well, outperforming the MN-BVAR, SZ-BVAR and the naive model uniformly over variables

and horizons. The only exceptions are consumption and the labor share, for which the fore-

casting accuracy of the PLR-BVAR is comparable to the naive model and the MN-BVAR,

respectively.

5.2.3. 7-variable VARs. Turning to the 7-variable case, figures 5.5 and 5.6 plot the MSFEs

for the level of the variables in the VAR and for the linear combinations obtained by

multiplying the matrix H by the vector y (i.e. the common trends, the great ratios and the

real rate). Although there are cases in which all the BVARs perform similarly, the PLR-

BVAR generally improves over the MN-BVAR and SZ-BVAR. The most substantial gains

are evident for the nominal block and consumption (and the linear combinations involving

these variables).
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Figure 5.3. Mean squared forecast errors in models with five variables. MN: BVAR
with the Minnesota prior; SZ: BVAR with the Minnesota and sum-of-coefficients priors;
Naive: random walk with drift for each variable; PLR: BVAR with the Minnesota prior
and the prior for the long run.

The forecasting accuracy of the PLR-BVAR is also generally good relative to the naive

model. What is interesting about the 7-variable case, however, is that the performance

of all the BVARs deteriorates relative to the naive model for output, consumption and

wages. Closer inspection reveals that this deterioration is entirely due to the inaccuracy

of the BVARs’ long-term forecasts produced in the late 1970s. Given the record-high level

of inflation, and the historical negative correlation between inflation and real activity, all

the VARs estimated in the late 1970s tend to predict a very severe and long-lasting drop

in output. In reality, instead, the recession of the early 1980s ended relatively quickly,

suggesting the presence of stronger long-term “nominal neutrality” than predicted by the

models.6

6Observe that we have been able to uncover this interesting misbehavior of VARs estimated with nominal
variables in the 1970s because of our focus on long-term predictions, which are instead typically neglected
by the literature on forecast evaluation.
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Figure 5.4. Mean squared forecast errors in models with five variables (linear com-
binations). MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota and
sum-of-coefficients priors; Naive: random walk with drift for each variable; PLR: BVAR
with the Minnesota prior and the prior for the long run.

To confirm this view, the dotted lines in figures 5.5 and 5.6 represent the MSFEs produced

by a PLR-BVAR with a long-term nominal neutrality restriction. Such a model corresponds

to dogmatically setting to zero the hyperparameter �i controlling the variance of the prior on

the column of ⇤ that captures the effects of the nominal trend. Relative to its unrestricted

version, this model generates better MSFEs for the real variables, getting close to MSFEs of

the naive model. However, the figures also show a worsening of the forecasting performance

for inflation and the nominal trend. The reason of this deterioration is the symmetry of our

prior, which does not allow different degrees of shrinkage on different elements of a column of

⇤.7 Therefore, imposing a long-term nominal neutrality restriction on the system comes at

the cost of also impairing any effect of the nominal trend on inflation. Our findings suggest

7This is a feature of all conjugate priors with a Kronecker structure, including the Minnesota or sum-of-
coefficients priors.
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Figure 5.5. Mean squared forecast errors in models with seven variables. MN: BVAR
with the Minnesota prior; SZ: BVAR with the Minnesota and sum-of-coefficients priors;
Naive: random walk with drift for each variable; PLR: BVAR with the Minnesota prior
and the prior for the long run; PLR tight: BVAR with the Minnesota prior and the prior
for the long run with maximum tightness on the dynamic effect of the common nominal
trend.

that breaking this symmetry would be beneficial, although we leave the development of this

more involved type of priors for future research.

6. Invariance to Rotations and Other Challenges

In the previous sections, we have discussed the motivation for our PLR, its most attractive

features and success in applications. We now also want to highlight the potential limitations

of our methodology, and consider extensions that might address some of them.

6.1. Invariance to rotations. In this subsection, we discuss the fact that our prior re-

quires the selection of a specific matrix H. We have argued that the rows of H should be
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Figure 5.6. Mean squared forecast errors in models with seven variables (linear com-
binations). MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota and
sum-of-coefficients priors; Naive: random walk with drift for each variable; PLR: BVAR
with the Minnesota prior and the prior for the long run; PLR tight: BVAR with the
Minnesota prior and the prior for the long run with maximum tightness on the dynamic
effect of the common nominal trend.

chosen to represent linear combinations of y that are likely to exhibit a stochastic trend—

denote the coefficients of these combinations by �0
?—and stationary deviations from long-

run equilibria—call them �0. Notice that economic theory is useful, but not sufficient to

uniquely pin down a specific H. The reason is that macroeconomic models are typically

informative about �? and the space spanned by � (the cointegrating space), but not about

� itself.

For example, in the case of our three variable VAR, theory suggests that GDP, consump-

tion and investment should share a common trend, and that all the linear combinations

orthogonal to this trend should be stationary. We have implemented our prior selecting the

consumption- and the investment-to-GDP ratios as possibly stationary linear combinations.

While this choice might seem natural, it would have been equally valid to pick for instance
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the consumption-to-investment instead of the investment-to-GDP ratio. The baseline PLR

presented in section 3 is not invariant to these rotations of � that, according to theory, are

equally likely to generate stationary linear combinations of the variables.

From a theoretical perspective, this lack of invariance might seem unappealing, but it

should not be considered as a serious concern, in practice. In fact, most of the gains of

our prior derive from separating the common trends from the space of likely stationary

combinations, and hence from shrinking more gently the strength of the error-correction

mechanisms of the latter. Within this “stationary space,” the specific combinations that

one selects to implement the prior matter much less. Nevertheless, to fully tackle the issue

of invariance, in this section we develop a version of our prior that only depends on the

space of stationary combinations implied by economic theory.

Without loss of generality, suppose that the first n�r rows of H represent the coefficients

of the linear combinations of y that are likely to be nonstationary, while the remaining r

rows generate likely stationary combinations of the variables. A modified version of our

baseline prior can be implemented using n � r + 1 dummy observations. The first n � r

dummies—the ones used to discipline the dynamic impact of the initial level of the trending

combinations of y—are identical to those used to implement our baseline prior:

yt⇤i = yt⇤i�1 = ... = yt⇤i�p =
Hi·ȳ0
�i

⇥
H�1

⇤
·i , i = 1, ..., n� r.

The last artificial observation takes instead the form

(6.1) yt⇤i = yt⇤i�1 = ... = yt⇤i�p =
⇥
H�1

⇤
·(n�r+1:n)

H(n�r+1:n)·ȳ0
�i

, i = n� r + 1,

where H(n�r+1:n)· denotes the last r rows of H, and
⇥
H�1

⇤
·(n�r+1:n)

are the last r columns

of H�1. In appendix F, we prove that the prior implemented through this set of dummy

observations is invariant to rotations of the last r rows of H.

The easiest way to appreciate the differences between the invariant and the baseline prior

is to substitute the dummy observation (6.1) into the level-difference representation of the

model (3.2), obtaining

0 = ⇧
⇥
H�1

⇤
·(n�r+1:n)| {z }

⇤·(n�r+1:n)

H(n�r+1:n)·ȳ0 + �n�r+1"t⇤n�r+1
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or, equivalently,

(6.2) 0 =
nX

j=n�r+1

⇤·jHj·ȳ0 + �n�r+1"t⇤n�r+1
.

This expression makes clear that the prior is effectively limiting the extent to which the sum

of the linear combinations Hj·y helps forecasting �y at the beginning of the sample. This is

different from the baseline PLR, which disciplines the impact of these linear combinations

one-at-a-time—see equation (3.9).

In addition to implying a prior that is invariant to certain rotations, the dummy ob-

servation in (6.1) can also be combined with a non-zero artificial observation for the VAR

exogenous variable. This variable is what implicitly multiplies the constant term in (3.1),

although we have omitted it for simplicity so far, since it is equal to 1. If we denote this

exogenous variable by zt, its value for the artificial time period t⇤n�r+1 can be set to

(6.3) zt⇤n�r+1
=

1

�n�r+1
,

in which case the implied prior becomes more elegant because it also disciplines the constant.

In fact, by using (6.3) instead of zt⇤n�r+1
= 0, the constant term would appear additively on

the right-hand side of (6.2). Therefore, loosely speaking, one can think of the implied prior

as shrinking the VAR parameters in one of these two directions: either (i) towards a limited

strength of the error correction mechanisms and a small constant term, or (ii) towards

stronger error correction mechanisms, but unconditional means of the likely stationary

linear combinations of the variables not too distant from their initial observations. Notice

that shrinking in either one of these directions should reduce the excessive explanatory

power of the deterministic component, as explained in section 2.

Observe that the use of a non-zero dummy value for the exogenous variable relates

our invariant PLR to the so-called dummy-initial-observation (or single-unit-root) prior of

Sims and Zha (1998). The latter, however, “mixes” a-priori trending and stationary linear

combinations of the variables, and ends up having a small effect on the estimates when its

tightness is selected based on the marginal likelihood, as we show in appendix E. Similarly,

notice that it would not be prudent to use this non-zero value of the VAR exogenous variable
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for the n dummy observations needed to implement the baseline version of the PLR, as they

would convey conflicting views about the value of the constant term.8

Figures 6.1, 6.2 and 6.3 present the MSFE results produced by the 3-, 5- and 7-variable

VARs estimated using this invariant version of the PLR. Compared to the baseline (solid

line), the forecasting performance generally worsens when the prior is set up to be invariant

with respect to all rotations orthogonal to the common real trend (dotted line). However,

this deterioration is entirely due to the treatment of the consumption-to-GDP ratio, which is

predicted to be stationary by conventional macroeconomic models, but is clearly trending

in the data after 1980 (see figure 5.2). Therefore, the results are negatively affected by

the requirement that the prior is invariant to rotations spanned also by this variable. To

confirm this view, the dashed lines in figures 6.1, 6.2 and 6.3 present the MSFE when the

consumption-to-GDP ratio is excluded from the invariant part of the prior, and treated as a

trending variable instead. Observe that, in this case, the MSFEs improve over the baseline

uniformly, across models, variables and horizons.

To sum up, the invariant version of the PLR is a joint prior on the autoregressive coeffi-

cients and the constant term. It has the potential to deliver substantial gains in forecasting

accuracy, but only when the theoretical separation between the trending and stationary

spaces of linear combinations is roughly in line with the empirical evidence. Making sure

that this is indeed the case might require some “preliminary look at the data,” which in

practice makes the methodology more akin to an empirical Bayes procedure.

6.2. (In)variance to the level of the variables. A second issue to discuss is the fact

that our prior may not be invariant to the level of the variables entering the VAR, because

its tightness depends on Hȳ0. Consider, for instance, the row of H capturing the common

trend shared by the real variables of the system. The prior variance implied by this linear

combination of ȳ0 will depend, for example, on whether GDP and the other real variables

are expressed in millions or billions of dollars, or in 2005 or 2009 dollars.

This being said, there are at least two reasons why this problem should have no major

practical consequence. First of all, Hȳ0 is used to provide only an approximate scaling of

the prior tightness, with the hyperparameters �i’s in (3.5) offering additional flexibility. In

8An alternative approach to place a prior jointly on the autoregressive coefficients and the constant term
is proposed by Villani (2009) or Jarocinski and Marcet (2013), although these methods do not preserve
conjugacy and require stationarity or an error-correction representation.
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Figure 6.1. Mean squared forecast errors in models with three variables. PLR base-
line: BVAR with the Minnesota prior and the baseline prior for the long run; PLR
invariant: BVAR with the Minnesota prior and the invariant version of the prior for the
long run; PLR invariant (except C-Y): BVAR with the Minnesota prior and the invariant
version of the prior for the long run, with the consumption-to-GDP ratio treated as a
trending variable.

fact, if we followed an empirical-Bayes methodology to set these hyperparameters without

constraints, the lack of invariance problem would entirely disappear. Our fully Bayesian

approach, however, involves the use of hyperpriors. While reasonably disperse, these hy-

perpriors might in practice constrain the allowed range of variation of the hyperparameters.

Second, the lack of invariance problem is not present when variables are expressed in

dimensionless units—such as rates—or when a linear combination Hi·ȳ0 represents the

logarithm of a ratio between variables expressed in the same unit—such as the labor share

or the consumption- and investment-to-GDP ratios. This is the case for most of the linear

combinations that we consider to set up the PLR in our macroeconomic applications. This

last point constitutes a substantial advantage relative to the sum-of-coefficients prior, in

which the level of the variables always affects the prior variance due to the mechanical

choice of H equal to the identity matrix.
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Figure 6.2. Mean squared forecast errors in models with five variables. PLR baseline:
BVAR with the Minnesota prior and the baseline prior for the long run; PLR invariant:
BVAR with the Minnesota prior and the invariant version of the prior for the long run;
PLR invariant (except C-Y): BVAR with the Minnesota prior and the invariant version
of the prior for the long run, with the consumption-to-GDP ratio treated as a trending
variable.

6.3. Truly predictable trends. A final issue we wish to mention concerns the possible

presence of true deterministic trends in the data. As we have discussed at length, the main

purpose of our prior is to reduce the importance of the spurious deterministic components

implied by VARs estimated with flat priors. Clearly, if these low-frequency, deterministic

trends are a true feature of the data-generating process, a BVAR with our PLR will have

a tendency to attribute them to the stochastic component of the model, at least in part.
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Figure 6.3. Mean squared forecast errors in models with seven variables. PLR base-
line: BVAR with the Minnesota prior and the baseline prior for the long run; PLR
invariant: BVAR with the Minnesota prior and the invariant version of the prior for the
long run; PLR invariant (except C-Y): BVAR with the Minnesota prior and the invariant
version of the prior for the long run, with the consumption-to-GDP ratio treated as a
trending variable. To save space, the figure presents the MSFEs for only a subset of the
variables and linear combinations.

Even in this case, however, a flat-prior VAR does not necessarily constitute a valid

alternative. In fact, a flat prior would allow more flexibility in the choice of parameter

values, to possibly fit smooth, predictable trends using the model-implied deterministic

component. However, the attempt to do so would distort the stochastic properties of the

system.
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7. Concluding Remarks

In this paper, we have introduced a new class of prior distributions for VARs that (i)

impose discipline on the long-run behavior of the model; (ii) are based on robust lessons of

theoretical macroeconomic models; (iii) can be thought of as a full probabilistic approach

to cointegration, and include the error-correction representation of a VAR as a special case;

and (iv) perform well in forecasting, especially at long horizons.

While our priors for the long run present a number of appealing features, one potential

challenge is that the procedure to set them up is not automated. It requires thinking

about the economics behind the determination of the variables included in the model,

even if such a model is a reduced-form one that normally does not entail any economic

theory. As a consequence, setting up a PLR in large-scale models with dozens of variables

may prove difficult. To deal with these situation, it would be interesting to extend the

applicability of our priors to cases in which the econometrician is a-priori confident about the

trending/stationarity properties of only a subset of the system, or only some combinations

of the variables, while remaining agnostic about the rest.

Appendix A. Asymptotic Behavior of the Deterministic Component

In this appendix, we study the case in which the true data-generating process (DGP)

is a driftless random walk, and prove that (i) the deterministic component implied by an

estimated autoregressive process explains a random fraction of the sample variation of the

data, even if the estimation sample is infinitely large; (ii) the long-term forecasts implied by

an estimated autoregressive process diverge from the optimal forecast at rate
p
T , inducing

an erratic behavior of forecast accuracy measures. We also argue that similar results hold

in the case in which the true DGP is a local-to-unity process.

Suppose that the data are generated by the following random walk,

(A.1) yt = yt�1 + "t,

where "t is a martingale difference sequence with variance �2 and bounded fourth moment.

The deterministic component implied by an AR(1) process estimated using data from time

1 to T is given by

d̂t,T ⌘ ĉT
1� ⇢̂T

+ ⇢̂t�1
T

✓
y1 �

ĉT
1� ⇢̂T

◆
,



PRIORS FOR THE LONG RUN 35

where ĉT and ⇢̂T denote the OLS estimates of the constant and autocorrelation coeffi-

cient of the AR(1), which depend on the sample size. Observe that this expression of the

deterministic component requires ⇢̂T 6= 1, which holds with probability one.

We are interested in characterizing the asymptotic behavior of

(A.2) F̂T =

PT
t=1

⇣
d̂t,T � y1

⌘2

PT
t=1 (yt � y1)

2
,

which represents the fraction of the total sample variation of y attributed to the estimated

deterministic component. Notice that FT is 0 under the true parameter values, since the

deterministic component associated to the true DGP (A.1) is flat and equal to y1. In what

follows, instead, we will show that F̂T converges to a random variable and not to 0.

Consider first the numerator of (A.2), which can be written as

TX

t=1

⇣
d̂t,T � y1

⌘2
=

TX

t=1

✓
ĉT

1� ⇢̂T
� y1

◆�
1� ⇢̂t�1

T

��2

=

✓
ĉT

1� ⇢̂T
� y1

◆2 TX

t=1

⇣
1� 2⇢̂t�1

T + ⇢̂2(t�1)
T

⌘

=

✓
ĉT

1� ⇢̂T
� y1

◆2
 
T � 2

�
1� ⇢̂TT

�

(1� ⇢̂T )
+

�
1� ⇢̂2TT

�
�
1� ⇢̂2T

�
!
.

Substitute now the last expression back into (A.2), and divide numerator and denominator

by T 2, obtaining

F̂T =

⇣ p
T ĉT

T (1�⇢̂T ) �
y1p
T

⌘2✓
1� 2

(1�⇢̂TT )
T (1�⇢̂T ) +

(1�⇢̂2TT )
T(1�⇢̂2T )

◆

1
T 2

PT
t=1 (yt � y1)

2
.

Notice that

p
T (ĉT � y1 (1� ⇢̂T )) ) V1 = �2W (1)

´ 1
0 W 2 (r) dr � 1

2

⇥
W 2 (1)� 1

⇤ ´ 1
0 W (r) dr

´ 1
0 W 2 (r) dr �

h´ 1
0 W (r) dr

i2

T (1� ⇢̂T ) ) V2 =
1
2

⇥
W 2 (1)� 1

⇤
�W (1)

´ 1
0 W (r) dr

´ 1
0 W 2 (r) dr �

h´ 1
0 W (r) dr

i2

T
�
1� ⇢̂2T

�
) 2V2

⇢̂TT ) e�V2
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⇢̂2TT ) e�2V2

1

T 2

TX

t=1

(yt � y1)
2 ) V3 = �2

ˆ 1

0
W 2 (r) dr,

where the symbol “)” denotes convergence in distribution and W (r) is a Wiener process.

These convergence results are standard and can be found, for example, in Hamilton (1994).9

By the continuous mapping theorem, it follows that

(A.3) F̂T )

⇣
V1
V2

⌘2 ⇣
1� 21�e�V2

V2
+ 1�e�2V2

2V2

⌘

V3
,

which proves that the share of sample variation explained by the deterministic component

does not converge to zero, but to a random quantity. In other words, if the true data-

generating process exhibits a very high degree of autocorrelation, estimated AR and VAR

models imply a spurious and excessive explanatory power of the deterministic component,

even if estimated using an arbitrarily large sample. For example, a Monte Carlo simulation

of (A.3) suggests that Pr
⇣
F̂T > 0.5

⌘
converges to approximately 2

3 as T goes to infinity.

The logic behind this problematic behavior of the deterministic component also helps to

understand the fragility of long-term forecasts in highly persistent processes—an issue also

studied by Stock (1996) and Rossi (2005), among others. These forecasts, in fact, not only

do not converge to the optimal forecast, but actually diverge at rate
p
T , implying an erratic

behavior of long-term forecast accuracy measures. To see this point, suppose once again

that the data are generated by (A.1), and that the researcher estimates an AR(1) process

by OLS, to construct an h-step-ahead out-of-sample forecast. The deviation between such a

forecast, ŷT+h|T , and the optimal forecast obtained using the true data-generating process,

yT , is given by

ŷT+h|T � yT =

✓
ĉT

1� ⇢̂T
� yT

◆⇣
1� ⇢̂hT

⌘
.

As in Stock (1996), define as “long-term” a forecast with an horizon that is a sizable fraction

of the sample size, i.e. h = [�T ], where [·] denotes the the largest smaller integer function.

Observe that the previous expression can be rewritten as

ŷT+h|T � yTp
T

=

 p
T ĉT

T (1� ⇢̂T )
� yTp

T

!⇣
1� ⇢̂[�T ]

T

⌘
.

9Observe that (ĉT � y1 (1� ⇢̂T )) is nothing else but the estimate of the constant term obtained using yt in
deviation from y1.
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Given the convergence results established above, and since ⇢̂[�T ]
T ) e��V2 , it is easy to

show that ŷT+h|T�yTp
T

)
⇣
V1
V2

⌘ �
1� e��V2

�
and thus that ŷT+h|T diverges at rate

p
T from

the optimal forecast yT . This result is in sharp contrast with the stationary case, in which

long-term forecasts converge to optimal forecasts—the unconditional mean of the process—

at rate
p
T .

Finally, since all the rates of convergence above are the same if the DGP is local-to-unity

(with a possibly O
�
T 1/2

�
constant, see Stock and Watson, 1996 or Rossi, 2005), it follows

that F̂T and ŷT+h|T�yTp
T

converge to random quantities also in that case.

Appendix B. Posterior Distributions

In this appendix we describe the posterior distribution of the VAR coefficients under the

various prior densities that we have used in the paper. Except for the derivations related

to the PLR, the other results are standard, and we report them only to make the paper

self-contained.

Consider the VAR model of section 3

yt = c+B1yt�1 + ..+Bpyt�p + "t

"t ⇠ i.i.d. N (0,⌃) ,

and rewrite it as

Y = X� + ✏

✏ ⇠ N (0,⌃⌦ IT�p) ,

where y ⌘ [yp+1, ..., yT ]
0, Y ⌘ vec (y), xt ⌘

⇥
1, y0t�1, ..., y

0
t�p

⇤0, Xt ⌘ In⌦x0t, x ⌘ [xp+1, ..., xT ]
0,

X ⌘ In ⌦ x, " ⌘ ["p+1, ..., "T ]
0, ✏ ⌘ vec ("), B ⌘ [C,B1, ..., Bp]

0 and � ⌘ vec(B). Finally,

define the number of regressors for each equation by k ⌘ np+ 1.

B.1. Flat prior. With a flat prior, the posterior of (�,⌃) belongs to the usual Normal-

Inverse-Wishart family:

⌃|Y ⇠ IW
�
"̂0ols"̂ols, T � p� n� k � 1

�

�|⌃, Y ⇠ N
⇣
�̂ols,⌃⌦

�
x0x
��1
⌘
,

where B̂ols ⌘ (x0x)�1 (x0y), �̂ols ⌘ vec
⇣
B̂ols

⌘
, "̂ols ⌘ y � xB̂ols.
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B.2. Minnesota prior. The so-called Minnesota prior, first introduced in Litterman (1979),

is centered on the assumption that each variable follows a random walk process, possibly

with drift. More precisely, this prior is characterized by the following first and second

moments:

E
h
(Bs)ij |⌃

i
=

8
<

:
1 if i = j and s = 1

0 otherwise

cov
⇣
(Bs)ij , (Br)hm |⌃

⌘
=

8
<

:
�2 1

s2
⌃ih

�̂2
j /(d�n�1)

if m = jand r = s

0 otherwise
,

where the hyperparameter � controls the overall tightness of this prior and, as customary,

the �̂2
j ’s are set equal to the residual variance of an AR(1) estimated using the available

data for variable j. To obtain a proper prior, we also specify a standard Inverse-Wishart

prior on ⌃, as in Kadiyala and Karlsson (1997):

⌃|Y ⇠ IW
�
diag

�⇥
�̂2
1, ..., �̂

2
n

⇤�
, n+ 2

�
.

Through an appropriate choice of  , d, b and ⌦, such a prior can be easily cast into the

Normal-Inverse-Wishart form

⌃ ⇠ IW ( ; d)

�|⌃,⇠ N (b,⌃⌦ ⌦) ,

and leads to the following posterior distribution for the VAR coefficients

⌃|Y ⇠ IW

✓
 + "̂0"̂+

⇣
B̂ � [

⌘0
⌦�1

⇣
B̂ � [

⌘
, T � p+ d

◆

�|⌃, Y,⇠ N
⇣
�̂,⌃⌦

�
x0x+ ⌦�1

��1
⌘
,

where B̂ ⌘
�
x0x+ ⌦�1

��1 �
x0y + ⌦�1[

�
, �̂ ⌘ vec

⇣
B̂
⌘
, "̂ ⌘ y� xB̂, and [ is a k⇥ n matrix

obtained by reshaping the vector b in such a way that each column corresponds to the prior

mean of the coefficients of each equation (i.e. b ⌘ vec ([)).

B.3. Prior for the long run. In the main text, we have stated that the implementation of

the PLR requires the following set of dummy observations for the artificial times t⇤1, ..., t
⇤
n:

(B.1) yt⇤i = yt⇤i�1 = ... = yt⇤i�p =
Hi·ȳ0
�i

⇥
H�1

⇤
·i , i = 1, ..., n.
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The left- and right-hand side of these artificial observations can be collected into the ma-

trices

y+
n⇥n

= diag

✓
H1·ȳ0
�1

, ...,
Hn·ȳ0
�n

�◆ ⇥
H�1

⇤0

x+
n⇥(1+np)

=


0

n⇥1
, y+, ..., y+

�
,

which can then be added on top of the data matrices y and x to conduct inference as if

they were part of the actual sample.

To prove that these dummy observations imply the density in (3.6), substitute the ob-

servations in (B.1) into the level-difference representation of the VAR (3.2), obtaining

⇧
Hi·ȳ0
�i

⇥
H�1

⇤
·i = �"t⇤i , i = 1, ..., n.

Grouping the columns on the left- and right-hand side of this expression for each i, we

obtain 
⇧
H1·ȳ0
�1

⇥
H�1

⇤
·1 , ...,⇧

Hn·ȳ0
�n

⇥
H�1

⇤
·n

�
= �

⇥
"t⇤1 , ..., "t⇤n

⇤
,

which can be rewritten as

⇧H�1diag

✓
H1·ȳ0
�1

, ...,
Hn·ȳ0
�n

�◆
= �

⇥
"t⇤1 , ..., "t⇤n

⇤
.

Post-multiplying both sides by diag
⇣h

�1
H1·ȳ0

, ..., �n
Hn·ȳ0

i⌘
, recalling that ⇤ = ⇧H�1, and

applying the vec operator to both sides, we obtain

vec (⇤) |H,⌃ ⇠ N

✓
0, diag

✓
�2
1

(H1·ȳ0)
2 , ...,

�2
n

(Hn·ȳ0)
2

�◆
⌦ ⌃

◆
,

which corresponds to the expression in (3.6).

B.4. Sum-of-coefficients prior. The SOC prior of Doan et al. (1984) and Sims and Zha

(1998) corresponds to a special case of the PLR, with a mechanical choice of H = In, and

hyperparameters �1 = ... = �n = µ.

Appendix C. Setting of the Hyperparameters

In this appendix we briefly describe the setting of the hyperparameters to generate our

empirical results.

We have performed the exercise of section 2 and 5.1 about the shape of the deterministic

component using some reference hyperparameter values. In particular, the hyperparameter
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� controlling the tightness of the Minnesota prior has been set to 0.2, which is standard.

For the hyperparameters {�i}ni=1 of the PLR, we have chosen a value equal to 1, which

corresponds to using a single set of dummy observations, with error variance approximately

similar to error variance in the actual sample.

For the forecasting exercise of section 5.2, we have adopted a hierarchical interpretation

of the model as in Giannone et al. (2015), and set the hyperparameters by maximizing their

posterior. The posterior of the hyperparameters is given by the product of the marginal

likelihood and the hyperpriors (the prior density on the hyperparameters). Given that our

priors are conjugate, the marginal likelihood is available in closed form (see Giannone et al.,

2015, and the derivations in their appendix). As priors for the hyperparameters � and µ,

we have chosen Gamma densities with mode equal to 0.2 and 1—the values recommended

by Sims and Zha (1998)—and standard deviations equal to 0.4 and 1 respectively, as in

Giannone et al. (2015). For the hyperparameters of the PLR, {�i}ni=1, we have also used

Gamma densities with mode and standard deviation equal to 1. As argued by Giannone

et al. (2015), an appealing feature of non-flat hyperpriors is that they help stabilize infer-

ence when the marginal likelihood happens to have little curvature with respect to some

hyperparameters.

Appendix D. Data

This appendix describes the data series used for the estimation of the 3-, 5- and 7-

variable VARs. The source of most of our data is the FRED dataset, available on the

website of the Federal Reserve Bank of St. Louis. The sample ranges from 1955Q1 to

2013Q1. The variables entering the 3-variable VARs correspond to the following definitions

(series acronym in parenthesis):

• log-real GDP per capita:

Y = log


Gross Domestic Product (GDP)

Population · GDP Implicit Price Deflator (GDPDEF)

�

• log-real consumption per capita:

C = log


Personal Consumption Expenditure: Nondurable Goods (PCND) + Services (PCESV)

Population · GDP Implicit Price Deflator (GDPDEF)

�
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• log-real investment per capita:

I = log


Gross Private Domestic Investment (GPDI) + Personal Consumption Expenditures: Durable Goods (PCDG)

Population · GDP Implicit Price Deflator (GDPDEF)

�
,

where the population series used to compute the quantities per capita is the Hodrick-

Prescott trend (estimated with smoothing parameter equal to 1600) of the logarithm of the

Civilian Noninstitutional Population (CNP16OV) series. The reason to use this smooth

population series is to avoid the spikes in the original series that correspond to the census

years. The series of GDP, PCND, PCESV, GDPDI and PCDG are in current dollars, while

GDPDEF is a chain-type price index that is equal to 100 in 2009.

The 5-variable VARs also includes:

• log-hours per capita:

H = log


Total Economy: Hours of All Persons

Population · 2080

�

• log-real wages:

W = log


Total Economy: Compensation of Employees (W209RC1Q027SBEA)

Population · GDP Implicit Price Deflator (GDPDEF)

�
,

where the series of hours worked comes from the Total U.S. Economy Hours & Employment

data file, available on the Bureau of Labor Statistics website at www.bls.gov/lpc/special_requests/us_total_hrs_emp.xlsx,

and 2080 is a scale factor representing a reference number of hours worked by a person in

a year (obtained by multiplying the 52 number of weeks by 40).

The 7-variable VARs also includes:

• inflation:
⇡ = �log [GDP Implicit Price Deflator (GDPDEF)]

• short-term nominal interest rate:

R =
Effective Federal Funds Rate (FEDFUNDS)

400
.
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Appendix E. Comparison with the Dummy-Initial-Observation Prior

In this appendix, we evaluate the accuracy of the forecasts obtained when we include a

dummy-initial-observation prior in the 3-, 5- and 7-variable VARs. This prior was designed

to avoid the bias against cointegration of the sum-of-coefficients prior, while still reducing

the explanatory power of the deterministic component of the model (see Sims and Zha,

1998 for the details of its implementation). In the existing literature, it is often combined

with the Minnesota and sum-of-coefficients priors (see, for example, Sims and Zha, 1998 or

Giannone et al., 2015).

Figure E.1, E.2 and E.3 compare the forecasting performance (in terms of MSFEs) of the

3-, 5- and 7-variable MN- and SZ-BVARs without (as in the main text of the paper) and

with the dummy-initial-observation prior. As usual, all hyperparameters are selected by

maximizing their posterior. These figures make clear that the marginal contribution of the

dummy-initial-observation prior is negligible, and the forecasting results of the MN+DIO-

and SZ+DIO-BVARs are nearly identical to those of the MN- and SZ-BVARs reported in

the main text of the paper.

Appendix F. Proof of the Invariance Result

The purpose of this appendix is to prove that the prior implied by the dummy observation

(6.1) in section 6 is invariant to rotations of the linear combinations of y that should be

stationary according to economic theory.

Without loss of generality, suppose that the first n�r rows of H represent the coefficients

of the likely nonstationary linear combinations of y, while the remaining r rows contain the

coefficients of the likely stationary combinations of the variables. To prove the invariance

property, we need to show that the dummy observation (6.1) only depends on the space

spanned by the last r rows of H. In other words, we need to demonstrate that (6.1) is

invariant to pre-multiplications of H by a block diagonal matrix of the form

R =

2

4 In�r 0

0 Q

3

5 ,

where Q is a generic r ⇥ r invertible matrix.

To this end, define H̃ = RH, whose last r rows are linear combinations of the last

r rows of H, i.e. H̃(n�r+1:n)· = QH(n�r+1:n)· Notice that H̃�1 = H�1R�1, implying



PRIORS FOR THE LONG RUN 43

0 10 20 30 40

M
S

F
E

    0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

 0.01
Y

Quarters ahead
0 10 20 30 40

M
S

F
E

   0

0.05

 0.1

0.15
Y + C + I

0 10 20 30 40
    0

0.002

0.004

0.006

0.008

 0.01

0.012

0.014
C

Quarters ahead
0 10 20 30 40

     0

0.0002

0.0004

0.0006

0.0008

 0.001

0.0012
C - Y

MN SZ MN + DIO SZ + DIO

0 10 20 30 40
    0

0.005

 0.01

0.015

 0.02

0.025

 0.03

0.035

 0.04

0.045

 0.05
I

Quarters ahead
0 10 20 30 40

    0

0.005

 0.01

0.015

 0.02

0.025

 0.03
I - Y

Figure E.1. Mean squared forecast errors in models with three variables. MN: BVAR
with the Minnesota prior; SZ: BVAR with the Minnesota and sum-of-coefficients priors;
MN+DIO: BVAR with Minnesota and dummy-initial-observation priors; SZ+DIO: BVAR
with the Minnesota, sum-of-coefficients and dummy-initial-observation priors.

that the last r columns of H̃�1 are linear combinations of the last r columns of H�1, i.e.h
H̃�1

i

·(n�r+1:n)
=
⇥
H�1

⇤
·(n�r+1:n)

Q�1. Using H̃ instead of H in (6.1) yields

h
H̃�1

i

·(n�r+1:n)

H̃(n�r+1:n)·ȳ0
�i

=
⇥
H�1

⇤
·(n�r+1:n)

Q�1Q| {z }
Ir

H(n�r+1:n)·ȳ0
�i

,

which does not depend on Q, proving that the prior only depends on the space spanned by
the last r rows of H.
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