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Abstract

We develop inference methods about the degree of long-run comovement of two time
series. The parameters of interest are defined in terms of the population second-moment
properties of low-frequency trends computed from the data. These trends are similar
to low-pass filtered data and are designed to extract variability that corresponds to
periods longer than the span of the sample divided by ¢/2, where g is a small number,
such as 12. We numerically determine confidence sets that control coverage over a
wide range of potential bivariate persistence patterns, which include arbitrary linear
combinations of 1(0), I(1), near unit roots and fractionally integrated models. In an
application to U.S. economic data, we quantify the long-run covariability of a variety
of series, such as those giving rise to the “great ratios”, nominal exchange rates and
relative nominal prices, unemployment rate and inflation, earnings and stock prices,
etc.
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1 Introduction

Economic theories often have stark predictions about the covariability of variables over long-
horizons: consumption and income move proportionally (permanent income/life cycle model
of consumption) as do nominal exchange rates and relative nominal prices (long-run PPP),
the unemployment rate is unaffected by the rate of price inflation (vertical long-run Phillips
curve), and so forth. But there is a limited set of statistical tools to investigate the validity
of these long-run propositions. This paper expands this set of tools.

Two fundamental problems plague statistical inference about long-run phenomena. First,
inference depends critically on the data’s long-run persistence. Random walks yield statis-
tics with different probability distributions than i.i.d. data, for example, and observations
from persistent autoregressions or fractionally integrated processes yield statistics with their
own unique probability distributions. Second, there are few “long-run” observations in the
samples typically used in empirical analyses of long-run relations, so sample information is
limited. Taken together these two problems conspire to make long-run inference particularly
difficult: proper inference depends critically on the exact form of long-run persistence, but
there is limited sample information available to empirically determine this persistence.

The most well-known example of faulty inference due to a mistaken assumption about
persistence is Granger and Newbold’s (1974) “spurious regression”, where standard OLS in-
ference leads to grossly misleading conclusions when applied to independent I(1) variables.
The last 40 years has seen important progress developing inference for specific classes of sto-
chastic processes (most notably for /(0) and integrated/cointegrated processes), but several
aspects of the resulting inference remains fragile. For example, while HAC standard errors
lead to reliable inference in 7(0) settings with limited serial correlation, the resulting hypoth-
esis tests exhibit substantial size distortions for stationary series with high serial correlation
(e.g., den Haan and Levin (1997), Kiefer, Vogelsang, and Bunzel (2000), and Miiller (2014)).
Inference in cointegrated models is well-developed (e.g., Engle and Granger (1987), Johansen
(1988), Phillips (1991), Stock and Watson (1993)), but these models have knife-edge impli-
cations about long-run covariability (cointegrated variables have unit long-run correlations)
and efficient inference methods are not robust to small departures from the model’s assumed
exact unit autoregressive roots (Elliott (1998)). Variables that are highly but not perfectly
correlated in the long-run, or are highly persistent, but perhaps without exact unit roots,

fall outside the standard cointegration framework.



This paper develops methods designed to provide reliable inference about long-run co-
variability for a wide range of persistence patterns (encompassing I(0), I(1), and many other
forms of long-run persistence) and that are applicable regardless of the degree of long-run
correlation. The methods rely on low-frequency averages of the data to measure the data’s
long-run variability and covariability. These long-run data summaries have proven useful for
constructing long-run covariance matrices and associated test statistics in 7(0) settings (e.g.,
Miiller (2004, 2007), Phillips (2005), Sun (2013), and Lazarus, Lewis, and Stock (2016)),
but also for conducting inference about more general patterns of long-run persistence and
measuring uncertainty about long-run predictions (Miiller and Watson (2008, forthcoming)).
A key simplification offered by these averages is that they are normally distributed in large
samples even though the stochastic process generating the data may exhibit substantial per-
sistence (Miiller and Watson (2016)). Large-sample inference about covariability parameters
is thus transformed into finite-sample problems involving a handful of normal random vari-
ables, and, while these problems are “non-standard,” they can be solved using previously
developed statistical methods paired with modern computing power.

The paper’s goal is to provide empirical researchers with an easy-to-use method for
constructing confidence intervals for long-run correlation coefficients, linear regression coef-
ficients, and standard deviations of regression errors. These confidence intervals are both
valid over a wide range of persistence patterns (for example, the 90% confidence interval for
the long-run correlation coefficient includes the true value of the coefficient with probabil-
ity of at least 90%) and nearly optimal (in the sense of having close to shortest expected
length; see Section 4 for details). As discussed in Section 3, the procedures allow for I(0),
I(1), near unit roots, fractionally integrated models, and linear combinations of variables
with these forms of persistence. Using a set of pre-computed “approximate least favorable
distributions”, the confidence intervals readily follow from the formulae discussed in Section
4.1

The outline of the paper is as follows. The next section defines the notion of long-run
variability and covariability that is used in throughout the paper. It is defined in terms
of the population properties of long-run projections, which are usefully thought of as low-
pass filers (e.g., Baxter and King (1999)), Hodrick and Prescott (1997)). The discussion

IThe replication files contain a matlab program for computing these confidence intervals, available at
www.princeton.edu\ “mwatson. This program uses the approximate least favorable distributions discussed

in Section 4 and the appendix, which are also available in the replication files.



is carried out in the context of two leading empirical examples, the long-run relationship
between consumption and GDP and between short- and long-term nominal interest rates.
In the long-run projections we employ, long-run variability and covariability is equivalently
captured by the covariability of a small number of trigonometrically weighted averages of
the data. Section 3 derives the large-sample normality of these averages and introduces
a flexible parameterization of the joint long-run persistence properties of the underlying
stochastic process. The large-sample framework developed in Section 3 reduces the problem
of inference about long-run covariability parameters into the problem of inference about
the covariance matrix of a low dimensional multivariate normal random vector. Section 4
reviews relevant methods for solving this finite sample problem. Section 5 uses the resulting
inference methods to empirically study several familiar long-run relations involving balanced
growth (GDP, consumption, investment, labor income, and productivity), the term structure
of interest rates, the Fisher correlation (inflation and interest rates), the Phillips correlation
(inflation and unemployment), PPP (exchange rates and price ratios), and the long-run
relationship between stock prices, dividends and earnings. Section 6 examines the robustness
of Section 5’s empirical conclusions to changes in the periodicities defining the “long-run”,

and to alternative choices for the information set used for inference.

2 Long-run projections and covariability

2.1 Two empirical examples of long-run covariability

We begin by examining the long-run covariability of GDP and consumption and of short-
and long-term nominal interest rates. These data will motivate and illustrate the methods
developed in this paper.

Consumption and income: One of the most celebrated and studied long-run relation-
ship in economics concerns income and consumption. The long-run stability of consump-
tion/income ratio is one of economics’ “Great Ratios” (Klein and Kosobud (1961)); the
dynamic implications of this stability inspired early work on error-correction models (e.g.,
Sargan (1964) and Davidson, Hendry, Srba, and Yeo (1978)), and these in turn motivated
Granger’s formulation of cointegration (Granger (1981)). While early analysis provided em-
pirical support for the cointegration of consumption and income (e.g., Campbell (1987),
King, Plosser, Stock, and Watson (1991), Cochrane (1994)), more recent work has come



to the opposite conclusion (see Lettau and Ludvigson (2013) for discussion and references).
Whether or not consumption and income are cointegrated (i.e., have an exact unit autore-
gressive root and exact unit long-run correlation), even a casual glance at the data suggests
the two variables move together closely in the long run.

Consider, for example, the evolution of U.S. real per-capita GDP and consumption over
the post-WWII period. In the 17 years from 1948 through 1964, GDP increased by 62%
and consumption increased by 52%. Over the next 17 years (1965-1981) both GDP and
consumption grew more slowly, by only 30%. Growth rebounded during 1982 to 1998, when
GDP grew by 43% and consumption increased 55%, but slowed again over 1999-2015 when
GDP grew by only 17% and consumption increased by only 23%. Over these 17-year periods,
there was substantial variability in the average annual rate of growth of GDP (2.9%, 1.4%,
2.1%, and 0.9% per year, respectively over the sub-samples), and these changes were roughly
matched by consumption (annual average growth rates of 2.5%, 1.5%, 2.6%, and 1.2%). In
this sense, GDP and consumption exhibited substantial long-run variability and covariability
over the post-WWII period.?

There are two distinct notions of “long-run” implicit in this calculation. The most obvious
is that each period makes up 17 years, approximately twice the length of the typical business
cycle. But another is that each period encompasses a large fraction (1/4) of the full 1948-
2015 sample period. Our statistical framework defines long-run in this latter way: long-run
statistical analysis involves inference about characteristics of stochastic processes that govern
the evolution of averages of the data over periods that are large relative to the available
sample.

With this is mind, the first two panels of Figure 1 plot the average growth rates of GDP
and consumption over six non-overlapping sub-samples in 1948-2015. Figure 1.a plots the
averages growth rates against time, and Figure 1.b is a scatterplot of the six average growth
rates for consumption against corresponding values for GDP. Each of the six sub-samples
contains 11.3 year (45 quarters), spans of history longer than the typical business cycle, and

arguably capture “long-run” variability in GDP and consumption. And, each represents

2Consumption is personal consumption expenditures (including durables) from the NIPA; Section 5 shows
results for non-durables, services, and durables separately. Both GDP and consumption are deflated by the
PCE deflator, so that output is measured in terms of consumption goods, and expressed in per-capita terms
using the civilian non-institutionalized population over the age of 16. The data appendix contains data

sources and descriptions for all data used in this paper.



Figure 1: Long-run average growth rates of GDP and consumption
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a substantial fraction (1/6) of the sample and is a long-run observation in a statistical
sense. Average GDP and consumption growth over these subsamples exhibited substantial
variability and (from the scatter plot) roughly one-for-one covariability.

Figure 1.c sharpens the analysis by plotting “low-pass” moving averages of the series
designed to isolate variation in the series with periods longer than 11 years.> Sample variation
in these moving averages is much like the variation in the subsample averages of Figure 1.a,
but Figure 1.c captures the smooth transition of the series from high-growth to low-growth
periods. The scatterplot of these moving averages is plotted in Figure 1.d. Like Figure 1.b,
it shows the close relationship between long-run movements in consumption and GDP, but
it also shows the high degree of serial correlation in the moving averages.

A convenient device for handling this serial correlation is to use projections on low-
frequency periodic functions in place of the low-pass moving averages. To be specific, let x;,
t =1,...,T denote a time series (e.g., growth rates of GDP or consumption). We use cosine
functions for the periodic functions; let W;(s) = 1/2 cos(js7) denote the function with period
2/;j (where the factor /2 simplifies a calculation below), ¥(s) = [¥y(s), Ua(s),..., ¥, (s)]
denote a vector of these functions with periods 2 through 2/q, and ¥t denote the T' x ¢
matrix with ¢’th row given by ¥ ((t — 1/2)/T)’, so the j'th column of W7 has period 27'/;.
Our empirical analysis uses ¢ = 12 which captures periodicities longer than 7'/6, and this
defines the long-run variation in the data the analysis is designed to capture. The projection
of x; onto W ((t —1/2)/T) for t = 1,..., T yields the fitted values

Ty = XpW ((t—1/2)/T) (1)

where X7 are the projection (linear regression) coefficients, X7 = (0. W) 1027, where
1.7 is the T' x 1 vector with t’th element given by x;. The matrix ¥, has two properties
that simplify calculations and interpretation. First, U/l = 0 where I is a vector of ones,
so that Z; also corresponds to the projection of x; — Ty.p onto W ((t — 1/2)/T'), where Ty.p
is the sample mean. Second, T, Wy = [, so X7 corresponds to simple cosine-weighted

averages of the data (i.e., are the “cosine transforms” of {z;})

Xp =T W((t—1/2)/T)z. (2)

3These were computed using an ideal low-pass filter for periods longer than T/6 truncated after T/2
terms. The series were padded with pre- and post-sample backcasts and forecasts constructed from an
AR(4) model.



Figure 2: Long-run projections of GDP and consumption growth rates
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Letting (zy,v;) denote the growth rates of GDP and consumption, the long-run projec-
tions (74, y;) are plotted in Figure 2.a. Except for minor differences near the endpoints,
these long-run projections essentially coincide with the low-pass moving average plotted in
Figure 1.c, so both capture the same long-run sample variability in the data. An advantage
of the long-run projections is that they are fully summarized by the projection coefficients
(X1, Yr), a relatively small number of cosine-weighted averages of the sample data. Figure
2.b plots the projection coefficients, (X;r, Y;r) against the period of the corresponding co-
sine term, 27'/j. Evidently, there is substantial variation and covariation in the projection
coefficients. Indeed, the scatterplot of (X;r,Y;r) shown in Figure 2.c suggests a roughly
one-to-one relationship between the cosine transforms.

The orthogonality of the cosine regressors W, leads to a tight connection between the
variability and covariability in the long-run projections (7, 7;) plotted in Figure 2.a and the
cosine transforms (X7, Yjr) plotted in Figure 2.b and 2.c:

[z X} X, X7y XY,
T*Z(j)(@ @):T‘1< T)q/'T\IfT(XT vp )= | o T
=1 \ Y Y.

/ / ’ (3)

/
T

Thus, sample covariability in the time series projections coincides with sample covariability
in the cosine transforms.

Short-term and Long-term interest rates. The second empirical example involves short-
and long-term nominal interest rates, as measured by the rate on 3-month U.S. Treasury
bills, ;, and the rate on 10-year U.S. Treasury bonds, v;, from 1953 through 2015. The levels
of these interest rates are highly serially correlated, but the term spread, y; — x;, far less so.
Early cointegration work (e.g., Campbell and Shiller (1987)) modeled the level of interest
rates as (1), and short- and long-rates as cointegrated. Later empirical analysis of the term
structure (e.g., Dai and Singleton (2000), Diebold and Li (2006)) model the levels of interest
rates as a function of small number of dynamic common factors that lead to common, but
less than unit-root, long-run persistence.

Figure 3 plots the levels of short- and long-term interest rates, (x4, ), along with their
long-run projections, (¥, ¥:), and cosine transforms, (Xr,Yr). The long-run projections
capture the rise in interest rates from the beginning of the sample through the early 1980s
and then their subsequent decline (Figure 3.a). These long-swings in the level of interest
rates lead to relatively larger values in the long-period cosine transforms (Figure 3.b). The

projections for long-term interest rates closely track the projections for short-term rates and,
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Figure 3: Short- and long-term interest rates

(a) Interest rates and long-run projections

20 T T 1
05F
N : - -10Y rate
10l ‘ 051
B A5}
0F
25}
15;50 19I60 19‘70 1580 19I90 2600 20‘10 2020 N
i (c)‘ Long-ryn projefction c?efficieqts
0 Z %00
05 0 g)
RN
15+
2L
25 0
-3 L L L L L L

1 0.5 0 0.5 1

-3 2.5 -2 -1.5 -
M rate

(b) Long-run projection coefficients

T

?- s o ?
) 0¥ oo
)
SlS 31‘.5 2‘1 15l.8 1é.6 10‘.5

Period (years)

Notes: Panel (a) plots the data and projections of the data onto the low-frequency cosine terms
discussed in the text, where sample means have been added to projections). Panel (b) plots the
projection coefficients (X7, Yjr) against period 277/ (in years). Panel (c) is a scatterplot of the

variables from (b).




given the connection between between the projections and cosine transforms, X and Yjr
are highly correlated (Figure 3.c).

These two datasets differ markedly in their persistence: GDP and consumption growth
rates are often modeled as low-order MA models, while nominal interest rates are highly
serially correlated. Yet, the variables in both data sets exhibit substantial long-run variation
and covariation which is readily evident in the long-run projections (Z;,¥;) or equivalently
(from (3)) the projection coefficients (X7, Y7). This suggests that the covariance/variance
properties of (Xr,Yr) are a useful starting point for defining the long-run covariability

properties of stochastic processes exhibiting a wide range of persistent patterns.

2.2 A measure of long-run covariability using long-run projections

A straightforward definition of long-run covariability properties is based on the population
analogue of the sample second moment matrices in (3). Let Y7 denote the covariance matrix

of (X} Y]), partitioned as X xx 7, Xxvr, etc., and define

Op =T 1ZE < )(;gt @)]:E

where the equalities directly follow from (3).

XXy XhYy
le—vXT lewYT tr(EYX,T) tI’(Zyy’T)

(4)

_ ( o(Sxxr) (Sxvr) )

The 2 x 2 matrix Qr is the average covariance matrix of the long-run projections (7, 4;)
in a sample of length 7', and provides a summary of the variability and covariability of the
long-run projections over repeated samples. Corresponding long-run correlation and linear

regression parameters follow from the usual formulae

pxy,T = QIZLT/ V QJ?J/’,TQZ/%T

BT = Qxy,T/Qxa:,T (5)

2

Oyla,r = Qyr — Uy, 1)/ Qe

where (1, Quy. 1, Sy 1) are the elements of Q7. The linear regression coefficient ;- solves

the population least-squares problem

Bp = arg mbin E

T
Zyt_bxt ]7

so that (3 is the coefficient in the population best linear prediction of the long-run projection

10



; by the long-run projection &;,* ai‘x’T is the average variance of the prediction error, and
piva is the corresponding population R?. These parameters thus measure the population
comovement of the long-run variation of (x, y;). Equivalently, by the second equality in (4),

B also solves

Br = arg mbin E

zq:(YjT - ijT)2]

with a corresponding interpretation Uzlx,T and pi%T. Thus, these parameters equivalently
measure the (population) linear dependence in the scatter plots in Figures 2.c and 3.c.

The objective of the remaining analysis to develop inference about the parameters

(PWT? Br, UZ\I,T)-

3 Asymptotic approximations and parameterizing

long-run persistence and covariability

The long-run correlation and regression parameters are functions of X1, the covariance ma-
trix of (X7, Yr). This section takes up two related issues. The first is the asymptotic nor-
mality of the cosine-weighted averages (Xr, Y7), which serves as the basis for the inference

methods developed in Section 4 and provides large-sample approximation for the matrices

2

Yl T The second issue

Yr and {7, and thus of the parameters of interest p,, , 87, and o
involves parameterizing the form of long-run persistence and comovement, which determines

the large sample value of X1 and Q7.

3.1 Large-sample properties of long-run sample averages

Because (Xr, Yr) are smooth averages of (x4, y;), a central limit theorem effect suggests that
these averages are approximately Gaussian under a range of primitive conditions about
(x4,y:). The set assumptions under which asymptotic normality holds turns out to be
reasonably broad, and encompasses many forms of potential persistence. Specifically, let
2z = (x4, y;)" and suppose that Az, has moving average representation Az, = Cr(L)e;, where

¢ is a martingale difference sequence with non-singular covariance matrix, the coefficients

4The parameter 3, is closely related to a linear band-spectrum regression coefficient (Engle (1974)),

corresponding to periods longer than 27'/q.
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in Cr(L) die out sufficiently fast that Az; has a spectral density Fa.r, and &, and Cr(L)
satisfy other moment and decay restrictions given in Miiller and Watson (2016, Theorem

1).% If the spectral density converges for all frequencies close to zero

T3_2"FAZ7T(w/T) — Saz(w)

1-k XT X
T (YT>;»<Y>~N<0,2), (6)

and the finite-sample second moment matrix correspondingly converges to its large-sample
counterpart (Miiller and Watson (2016, Lemma 2))

in a suitable sense, then

T

X
T2 Var ( g ) = T*2%, — % (7)

The limiting covariance matrix ¥ in (6) and (7) is a function of the “local-to-zero”
spectrum Sa, and the cosine weights W;(s) that determine (Xr, Y7); see Miiller and Watson
(2016) for additional details and an explicit formula. We make three comments about these
large-sample results. First, they hold when the first-difference of z; has a spectral density
(and therefore has limited persistence); the level of z; may (but doesn’t have to) be more
persistent. This is possible because the cosine averages sum to zero (V/.lr = 0), so they do
not extract zero-frequency variation in the data. If the level of z; has a spectral density, then
this restriction on the weights is not required and, for example, the sample mean of z; also has
a large-sample normal limit. Second, in common parameterizations of persistence models,
the scale factor 7% depends on the form of persistence; for example, the factor is 7~/ for
I(0) persistence and T~3/2 for I(1) persistence. However, we focus on inference procedures
that do not depend on the scale of z; (due to invariance or equivariance), so 7—" does not

need to be known. Third, because T%~2*%; — X, then T7?72¢Qp — Q where Q is defined as in

the last expression of (4) with X in place of Xr. Correspondingly, (1 87, 7% > 02,
(nyﬁﬁi\x) with the limits defined by (5) with © in place of Q7. Thus, a solution to

the small-sample problem of inference about (p,,, 3,0%,) from observing (X,Y) readily

) —

translates into a large-sample solution to inference about (pxy’T, Br, 012;|m,T)’

®The dependence of Cr and Fa, r on the sample size T accommodates many forms of persistence that
require double arrays as data generating process, such as autoregressive roots of the order 1 — ¢/T, for fixed

c. We omit the corresponding dependence of z; = (z4,y:) on T to ease notation.

12



3.2 Parameterizing long-run persistence and covariability

The limiting covariance matrix of the long-run projections, €2, is a function of the covariance
matrix of the cosine projections, ¥, which in turn is a function of the local-to-zero spectrum
for the first-difference of z, Sa,. The corresponding local-to-zero (pseudo-) spectrum for the
level of 2 is S, (w) = w™2Sa.(w). In this section we discuss parameterizations of S,, ¥, and
Q.

It is constructive to consider two leading examples. In the first, z; is /(0) with long-run
covariance matrix A. In this case S,(w) o« A, and straightforward calculations show that
Y =A®I,; and Q o< A, so the covariance matrix associated with the long-run projections cor-
responds to the usual long-run /(0) covariance matrix. In this model, the cosine transforms
(X,r,Y;r) plotted in Figures 2 and 3 are, in large samples and up to some deterministic
scale, i.i.d. draws from a A(0, A) distribution. Inference about Q = A and (p,,, 53, ai‘x) thus
follows from well-known small sample inference procedures for Gaussian data (see Miiller
and Watson (2016)). In the second example, z; is (1) with A the long-run covariance matrix
for Az;. In this case S.(w) oc w™2A, and a calculation shows that ¥ = A ® D, where D is
a ¢ X g diagonal matrix with j’th diagonal element D;; = (j7)~2. In this model, the cosine
transforms (X, Yjr) plotted in Figures 2 and 3 are, in large samples and up to some de-
terministic scale, independent but heteroskedastic draws from N'(0, (jm)~2A) distributions.
Thus © o A, so the covariance matrix for long-run projections for z; corresponds to the
long-run covariance matrix for its first differences, Az;. By weighted least squares logic, in-
ference for I(1) processes follows after reweighting the elements of (X7, Y;r) by the square
roots of the inverse of the diagonal elements of D and then using the same results as in the
1(0) model.

GDP, consumption, short-, and long-term interest rates: Table 1 presents estimates and
confidence sets for (p;, BT,ai‘x_T) using (Xr, Yr) with ¢ = 12 for GDP and consumption
(panel a) and short- and long-term interest rates (panel b). Results are presented for 7(0)
and I(1) models, and for a more general model of persistence introduced below. For now,
focus on the I(0) and I(1) results. The point estimates shown in the table are MLEs, and
confidence intervals for (5, U?,\:;:,T) are computed using standard finite-sample normal linear
regression formulae (after appropriate weighting in /(1) model), and confidence sets for p,
are constructed as in Anderson (1984, section 4.2.2).

For GDP and consumption, there are only minor differences between the 7(0) and /(1)

13



Table 1: Long-run covariability estimates and confidence intervals from the 1(0), I(1), and

(4,B,c,d) models
a. GDP and consumption

p B Oylx

Estimate 0.93 0.76 0.35
1(0) 67% CI 0.87, 0.96 0.67,0.85 0.30, 0.46
90% CI 0.81,0.97 0.60, 0.92 0.26, 0.55

Estimate 0.93 0.84 0.35
I(1) 67% CI 0.88, 0.96 0.74, 0.94 0.29, 0.45
90% CI 0.82,0.97 0.67, 1.01 0.26, 0.54

Estimate 0.91 0.76 0.09
67% CI 0.83, 0.96 0.66, 0.86 0.05, 0.12
(4,B,c,d) 90% CI 0.71, 0.97 0.48, 0.95 0.05, 0.19
67% Bayes CS 0.83, 0.96 0.66, 0.86 0.05, 0.12
90% Bayes CS 0.71, 0.97 0.58, 0.95 0.05, 0.19

b. Short- and long-term interest rates

p B Ojx

Estimate 0.97 0.96 0.63
1(0) 67% CI 0.95, 0.98 0.89, 1.03 0.53, 0.81
90% CI 0.93, 0.99 0.84,1.08 0.47, 0.97

Estimate 0.94 0.85 0.48
I(1) 67% CI 0.88, 0.96 0.76, 0.95 0.40, 0.62
90% CI 0.82,0.97 0.68,1.03 0.36, 0.74

Estimate 0.96 0.92 0.15
67% CI 0.92, 0.98 0.83, 1.05 0.09, 0.22
(4,B,c,d) 90% CI 0.89, 0.98 0.75, 1.14 0.09, 0.40
67% Bayes CS 0.92, 0.97 0.83, 1.00 0.09, 0.22
90% Bayes CS 0.89, 0.98 0.75 1.07 0.09, 0.40

Notes: The rows labeled "Estimate" are the maximum likelihood estimates using the large-

sample distribution of the cosine transforms for the 1(0) and I(1) models, and are the posterior
median based on the /(d) model for the (4, B,c,d) model. "CI" denotes confidence interval, which
is calculated as described in the text. "Bayes CS" are Bayes equal-tailed credible sets based on
the posterior from the /(d) model.
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estimates and confidence sets. The estimated long-run correlation is greater than 0.9, the
lower range of the 90% confidence interval exceeds 0.8 in both the /(0) and /(1) models.
Thus, despite the limited long-run information in the sample (captured here by the 12 ob-
servations making up (X7, Y7)), the evidence points to a large long-run correlation between
GDP and consumption. The long-run regression of consumption onto GDP yields a regres-
sion coefficient that is estimated to be 0.76 in the /(0) model and 0.84 in /(1) model. This
estimate is sufficiently accurate that 5 = 1 is not included in the 90% I(0)confidence set.
The results for long-term and short-term nominal interest rates are similarly informative —
for example, there is strong evidence that the series are highly correlated over the long-run
— although the 7(0) and /(1) results differ more sharply than for GDP and consumption.
To take just one example, the 90% confidence interval for S ranges from 0.68 to 1.03 in the
I(1) model but is narrower (0.84 to 1.08) in the /(0) model.

These empirical results raise two related questions: which of the 7(0) or I(1) models fit
the data better better, and more generally, are either of these models adequate descriptions of
the long-run properties of the series? Figure 4 provides some suggestive evidence. The figure
is constructed under the assumption that the data are generated as linear combinations of
two independent fractional processes, the first (d;) and the second I(dy). The model thus
nests the 7(0) model (d; = dy = 0), the /(1) model (d; = dy = 1), but also allows d; # d»
to take on values between —0.4 and 1.0. Figure 4.a plots the (d1, ds) log-likelihood contours
for GDP and consumption, and Figure 4.b shows the corresponding contours for short- and
long-term interest rates.® Both plots are normalized so the log-likelihood value takes on a
value of 0 for the I(0) model. The likelihood surfaces imply that a wide range of (dy,ds)
values are consistent with the data. For GDP and consumption, the 7(0) model fits much
better than the I(1) model (the likelihood difference is 3.4 log-points), but an intermediate
model with d; = dy = 0.3 fits best. More to the point, a range of values of d;, dy between -0.2
and 0.5 yield likelihoods within one log-point of the maximum. For interest rates, the I(1)
model fits much better than the I(0) model (the likelihoods differ by 6.4 log-points), but
an intermediate model with (dy,ds) = (0.9,0.7) achieves the best fit, with a value 0.8 log-
points higher than the 7(1) model. Moreover, models with one highly persistent component
(dy =~ 0.9) and one less persistent component (d; ~ 0.2) also provide good fits. Thus, while

the data are sufficiently informative to rule out some models of persistence (the /(1) model

6We report the asymptotic profiled likelihood based on the normal approximation (6) to (Xr, Yr), with

the linear combination parameters smaximized out for each value of the pair (dy, da).
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Figure 4: Log-likelihood values in the /(d) model
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Notes: The figures show the log-likelihood contours for di and @ for the bivariate /(d) model.
The log-likelihood is normalized to be equal to zero for the /(0) model.
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for GDP /consumption and the /(0) model for interest rates), they are consistent with a

range of persistence parameters.

3.2.1 (A, B,¢,d) model

The shape of the local-to-zero spectrum determines the long-run persistence properties of
the data, and misspecification of this persistence leads to faulty inference about long-run
covariability. Thus, parameterizing S, is a crucial issue for inference about long-run co-
variability. Addressing this issue faces a familiar trade-off: the parameterization needs to
be sufficiently flexible to yield reliable inference about long-run covariability for a wide
range of economically-relevant stochastic processes, and yet be sufficiently constrained to be
tractable. I(0) persistence generates a flat local-to-zero spectrum, and (1) persistence gen-
erates a local-to-zero spectrum proportional to w=2. Both of these models are tractable, but
tightly constrain the spectrum. This limits their usefulness as general models for conducting
inference about long-run covariability. The bivariate I(d) model adds more flexibility at
the cost of a few additional parameters, but it may be too tightly parameterized to provide
reliable inference for the range of persistence patterns seen in economic time series.

With this trade-off in mind, we use a parameterization that nests and generalizes a range
of models previously used to model persistence in economic time series. The parameteri-
zation is a bivariate extension of the univariate (b, ¢,d) model used in Miiller and Watson

(forthcoming) and yields a local-to-zero spectrum of the form

W2 & 2)—dh
S.(w) o A ( ( +0 1) - +002)d2 > A'+ BB (8)
where A is unrestricted and B is lower triangular.”

This model generates the standard spectral shapes: A = 0 yields the 7(0) model; B = 0,
¢ =0 and d; = dy = 1 yields the I(1) model; B = 0, d; = dy = 1 yields a model with two
AR roots local-to-unity; B = 0 and ¢ = 0 yields the bivariate I(d) introduced above. Other
choices of (A, B, ¢,d) yield models that combine persistent and non-persistent components

(as in cointegrated or “local-level” models) but go beyond the usual 7(0)/1(1) formulations.

"This is the spectrum of a bivariate Whittle-Matérn (c.f., Lindgren (2013)) process with time series
representation z; = AT + e;, where 74 is a bivariate process with independent elements, (1 — ¢i7TL)di7'i =
T=%2ey, ¢, p = (1= ¢;/T), & ~ I(0) with long-run variance equal to I3, e; ~ I(0) with long-run variance

equal to BB’, and zero long-run covariance with &;.
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The cost of the (A, B, ¢,d) model’s flexibility is that it contains 11 parameters as opposed
to just 3 in the /(0) and /(1) models or 6 in the bivariate I(d) model. Yet, as we discuss in
the next section, it is still possible conduct valid inference even in the loosely parameterized
(A, B, c,d) model.

4 Constructing confidence intervals for p, 5, and o,

4.1 An overview

There are several approaches one might take to construct confidence intervals for the para-
meters p, 3, and oy,. As a general matter, the goal is to compute confidence intervals that
are as informative (“narrow”) as possible, subject to the coverage constraint that they con-
tain the true value of the parameter of interest with a pre-specified probability. We construct
confidence intervals by explicitly solving a version of this problem.

Generically, let # denote the vector of parameters characterizing the probability distri-
bution of (X,Y’), and let © denote the parameter space. (In our context, # denotes the
parameters in (A, B,c,d).) Let v = g(0) denote the parameter of interest. (v = p, 5,
or oy, for the problem we consider). Let H(X,Y) denote a confidence interval for v and
vol(H (X,Y)) denote the length of the interval. The objective is to choose H so that it
has small expected length, E [vol(H (X, Y)], subject to coverage, P (y € H(X,Y)) > 1 — a,
where « is a pre-specified constant. Because the probability distribution of (X,Y") depends
on 6, so will the expected length of H(X,Y') and the coverage probability. By definition, the
coverage constraint must be satisfied for all values of § € ©, but one has freedom in choosing
the value of # over which expected length is to be minimized. As a general matter, let W

denote a distribution that puts weight on different values of 6, so the problem becomes

it / Ey(vol(H(X,Y))dW (8) )
subject to
gugpg(’yEH(X,Y))Zl—Oé (10)

where the objective function (9) emphasizes that the expected volume depends on the value
of 0, with different values of 6 weighted by W, and the coverage constraint (10) emphasizes

that the constraint must hold for all values of # in the parameter space ©.
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As noted by Pratt (1961), the expected length of confidence set for v can be expressed
in terms of the power of hypothesis tests of Hy : v = 7,. The solution to (9)-(10) thus
amounts to the determination of a family of most powerful hypothesis tests, indexed by 7.
Elliott, Miiller, and Watson (2015) suggest a numerical approach to compute corresponding
approximate “least favorable distributions” for . We implement a version of those methods
here; details are provided in the appendix. A key feature of the solution is that, conditional
on the weighting function W and the least favorable distribution, the confidence sets have
the familiar Neyman-Pearson form with a version of the likelihood ratio determining the
values of 7 included in the confidence interval.

While the resulting confidence intervals have (close to) smallest weighted expected length,
they can have unreasonable properties for particular realizations of (X,Y"). Indeed, for some
values of (X, Y), the confidence intervals might be empty, with the uncomfortable implication
that, conditional on observing these values of (X,Y'), one is certain that the confidence
interval excludes the true value. To avoid this, we follow Miiller and Norets (2016) and

restrict the confidence sets to be supersets of 1 — « Bayes credible sets.

4.2 Some specifics
4.2.1 Invariance and equivariance

Correlations are invariant to the scale of the data. The linear regression of y onto z is
the same as the regression of y + bx onto x after subtracting b from the latter’s regression
coefficient. It is sensible to impose the same invariance/equivariance on the confidence
intervals. Thus, letting H,, Hg, and H, denote confidence sets for p, 5, and 0,/,, we

restrict these sets as follows:
p e H,,(X, Yyepe Hp(bzX, byY) for b,b, > 0 (11)

) o by 3 + bya

Tyl € Hay‘m(X, Y) & |byloy. € H, . (b, X,b,Y +b,,X) for b,,b, # 0 and all values of b,,.
(13)

These invariance/equivariance restrictions lead to two modifications to the solution to

g e Hy(X,Y € Hp(b, X, b)Y +b,,X) for b,, b, # 0 and all values of b, (12)

(9)-(10). First, they require the use of maximal invariants in place of the original (X,Y"). The

density of the maximal invariants for each of these transformations is derived in the appendix.
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Second, because the objective function (9) is stated in terms of (X, Y'), minimizing expected
length by inverting tests based on the maximal invariant leads to a slightly different form
of optimal test statistic. Miiller and Norets (2016) develop these modifications in a general

setting, and the appendix derives the resulting form of confidence sets for our problem.

4.2.2 Parameter space

The parameter space for § = (A, B,c,d) is as follows: A and B are real, with B lower-
triangular and (A, B) chosen so that 2 is non-singular, 0 < ¢; < 400, and —0.4 < d; < 1,
for i = 1,2. Thus, the confidence intervals control coverage over a wide range of persistence
patterns including processes less persistent than 7(0), as persistent as I(1), local-to-unity
autoregressions, and where different linear combinations of x and y may have markedly
different persistence (as, for example, in a cointegrated model).

The confidence sets we construct require three distributions over 6: the weighting function
W for computing the average length in the objective (9), the Bayes prior associated with the
Bayes credible sets that serve as subsets for the confidence sets (Miiller and Norets (2016)),
and the least favorable distribution for # that enforces the coverage constraint. The latter is
endogenous to the program (9)-(10) and is approximated using numerical methods similar to
those discussed in Elliott, Miiller, and Watson (2015), with details provided in the appendix.
We use the same distribution for W and the Bayes prior. Specifically, the distribution is
based on the bivariate I(d) model (so that ¢; = ¢; = 0, B = 0) with d; and ds independently
distributed U(—0.4,1.0). Because of the invariance/equivariance restrictions, the scale of
the matrix A is irrelevant and we set A = R(A\;)G(s)R (\2), where R()\) is a rotation matrix
indexed by the angle A\, with A\; and )y independently distributed U0, 7]. The relative
eigenvalues of A are determined by the diagonal matrix G(s), with G11/G2e = 15° with s
distributed U0, 1].

4.2.3 Empirical results for GDP, consumption, and interest rates

Table 1 in Section 3.2 above shows estimates for (o7, B, 0y»,r) and confidence sets using the
(A, B, c,d) model. The estimated value of (p;, B7, 0yjz7) is the median of the posterior using
the I(d)-model prior, and the table also shows Bayes credible sets for this prior for comparison
with the frequentist confidence intervals. For GDP and consumption, the (A, B, ¢, d) results

look much like the results obtained for the 7(0) model. For most entries, the Bayes credible
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Table 2: Coverage rates for efficient 90% confidence intervals with data generated by
different stochastic processes

Efficient Data generated by:
confidence
set for
1(0) I(1) 1(0)+1(1) 1(d) (4,B,¢c,d)
1(0) 0.90 0.01 0.01 0.01 0.01
I(1) 0.00 0.90 0.00 0.00 0.00
1(0)+1(1) 0.91 0.91 0.90 0.68 0.68
I(d) 0.90 0.90 0.87 0.90 0.87
(4,B,¢,d) 0.91 0.90 0.90 0.90 0.90

sets are slightly larger than the I(0) sets, presumably reflecting the possibility of persistence
greater than 1(0), as was evident in Figure 4. The frequentist confidence intervals often
coincide with Bayes intervals, but occasionally are somewhat wider. The results indicate
that GDP and consumption are highly correlated in the long-run (the 90% confidence set
is 0.71 < p < 0.97) and the long-run regression coefficient of consumption onto GDP is
large, but less than unity (the 90% confidence set is 0.48 < 5 < 0.95). The results for
interest rates are somewhat different. The confidence intervals (and Bayes credible sets) are
roughly in-between the 7(0) and /(1) intervals, a result consistent with the I(d) likelihood
values plotted in Figure 4. Substantively, the results indicate that long-run movements in
short- and long-rates are highly correlated, and that a unit long-run response of long-rates

to short-rates is consistent with these data.

4.3 Coverage properties of restricted versions of the (A, B,c,d)

model

In this subsection we investigate the coverage distortions for confidence intervals constructed
using misspecified models of persistence. Specifically we consider five models of persistence,
and for each model we both generate data and construct confidence intervals for p. The data
are generated using p = 0 and Table 2 shows the fraction of the confidence sets that include
the true value p = 0.8 The models considered are the I(0) model (S.(w) o< BB’), the I(1)

8Results are shown for confidence sets that do not incorporate the Miiller-Norets Bayes superset adjust-

ment. Including this adjustment yields similar results.
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model (S,(w) = w 2AA’), a bivariate “local-level” that includes 7(0) and I(1) components
(S,(w) x w2AA" + BB'), the fractional I (d) model (S.(w) o< ADA’, D diagonal with
D;; = w24 and the general (A, B, c,d) model with S,(w) given by (8). Because data were
generated and confidence intervals constructed by each of these five models, the table contains
25 entries. The columns indicate the model used to generate the data, the rows shows the
model used to construct the confidence set, and the entries are fraction of confidence sets
that contain the true value of p, minimized over the other parameters used to generate the
data. The diagonal entries of the table are 0.90 indicating that each method has coverage
90% under its assumed data generating process. The off-diagonal differ from 0.90 and show
the coverage distortions. For example, 90% I(0) confidence sets have coverage of just 1%
when the data are generated by the other four models. I(1) confidence sets have similarly
bad coverage when the data are not generated by the /(1) model. The (0) + I(1) model
encompasses both the 7(0) and 7(1) models, so the associated confidence intervals has good
coverage for these models, but has coverage of only 68% in the I(d) and (A, B, ¢, d) models.
The I(d) model encompasses the 1(0) and 7(1) models, and so has good coverage for these
models. It does not encompass the the 1(0)+ I(1) or (A, B, ¢,d) models, but exhibits only a
small coverage distortion in these cases. Finally, the general (A, B, ¢, d) model encompasses
all of the other models, and so controls coverage uniformly across these models.

Table 2 highlights the large coverage distortions associated with confidence intervals based
on 1(0), I(1), or I(0) + I(1) models. These results echo results in the earlier literature on
the fragility of 1(0) and I(1) inference (e.g., den Haan and Levin (1997) for HAC inference
in 7(0) models and Elliott (1998) for inference in cointegrated models). Table 2 suggests
that inference based on the I(d) model is much less fragile; indeed it offers near nominal
coverage in Table 2. However, the I(d) model does not fare as well in other contexts; for
example Miiller and Watson (forthcoming) show that /(d) model yields long-run prediction
sets with significant undercoverage when data are generated by a univariate analogue of the
(A, B, ¢, d) model.

5 Empirical Analysis

The last section showed results for the long-run covariation between GDP and consumption
and between short- and long-term nominal interest rates. In this section we use the same

methods to investigate other important long-run correlations. We focus on two questions:
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first, how much information does the sample contain about the long-run covariability, and
second, what are the values of the long-run covariability parameters. A knee-jerk reaction to
investigating long-run propositions in economics using, say, 68-year spans of data is that little
can be learned, particularly so using analysis that is robust to a wide range of persistence
patterns. In this case, even efficient methods for extracting relevant information from the
data will yield confidence intervals that are so wide that they rule out few plausible parameter
values. We find this to be true for some of the long-run relationships investigated below. But,
as we have seen from the consumption-income and interest rate data, confidence intervals
about long-run parameters can be narrow and informative, and this is true for several of the

relationships that we now investigate.

5.1 Balanced growth correlations.

In the standard one-sector growth model, variations in per-capita GDP, consumption, invest-
ment, and in real wages arise from variations in total factor productivity (TFP). Balanced
growth means that the consumption-to-income ratio, the investment-to-income ratio, and
labor’s share of total income are constant over the long run. This implies perfect pairwise
long-run correlations between the logarithms of income, consumption, investment, labor com-
pensation, and TFP. In this model, the long-run regression of the logarithm of consumption
onto the logarithm of income has a unit coefficient, as do the same regressions with con-
sumption replaced by investment or labor compensation. A long-run one-percentage point
increase in TFP leads a long-run increase of 1/« percentage points in the other variables,
where « is labor’s share of income. Of course, these implications involve the evolution of
the variables over the untestable infinite long-run. That said, empirical analysis can deter-
mine how well these implications stand-up to the long-run variations that can be estimated
using, for example, data spanning the post-WWII period. We use data for the U.S. and
the methods discussed above to investigate these long-run balance growth propositions. The
appendix contains a description of the data that are used.

Table 3 summarizes the results on the long-run correlations. The values above the main
diagonal show point estimates constructed as the posterior median using the I(d)-model with
prior discussed above, together with 67% confidence intervals using the general (A, B, ¢,d)
model (shown in parentheses). The values below the main diagonal are the corresponding

90% confidence intervals using the (A, B, ¢, d) model. Table 4 reports results from selected
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Table 3: Long-run correlations of GDP, consumption, investment, labor compensation,

and TFP
GDP Cons. Inv. wxn TFP
GDP 0.91(0.83,0.96) | 0.53(0.29,0.72) | 0.98 (0.97,0.99) | 0.78 (0.64, 0.89)
Cons. (0.71,0.97) 0.53(0.30,0.72) | 0.92 (0.86,0.96) | 0.70 (0.48, 0.82)
Inv. (0.02, 0.81) (0.03, 0.81) 0.51(0.27,0.71) | 0.38 (0.05, 0.60)
wxn (0.95,0.99) (0.68, 0.97) (0.02, 0.80) 0.72 (0.56, 0.85)
TFP (0.45,0.95) (0.28,0.91) (-0.08, 0.71) (0.38,0.93)

Notes. All variables are measured in growth rates. The entries above the diagonal show the
median of the posterior distribution followed by the 67% confidence interval. The entries below
the diagonal show the 90% confidence interval.

Table 4: Selected long-run regressions involving GDP, consumption, investment, labor
compensation, and TFP

Y X B G
B 67% CI 90% CI

Consumption GDP 0.76 0.66, 0.86 0.48, 0.95 0.40

Investment GDP 1.24 0.64,1.78 0.21,2.21 2.18

Labor comp. (w xn) GDP 1.29 1.22,1.36 1.17,1.41 0.27

GDP TFP 1.21 091,147 0.71, 1.71 0.74

Cons. (Nondurable) GDP 0.35 0.13, 0.57 -0.06, 0.76 0.88

Cons. (Services) GDP 0.83 0.66, 1.00 0.55,1.21 0.59

Cons. (Durables) GDP 1.86 1.47,2.25 1.17,2.55 1.49

Inv. GDP 0.96 0.41,1.46 -0.09, 1.89 2.18
(Nonresidential)

Inv. (Residential) GDP 2.17 0.87,3.48 -0.27,4.62 5.48

Inv. (Equipment) GDP 0.81 0.12,1.57 -0.41,2.10 2.74

Notes. All variables are measured in growth rates. The entries were constructed from the long-run
regression of the variable labeled Y onto the variable labeled X.
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long-run regressions.

As reported in the previous section, the long-run correlation between GDP and consump-
tion is large. Investment and GDP are less highly correlated; the upper bound of the 90%
confidence interval is only 0.8 and the lower bound is close to zero. Labor income and GDP
are highly correlated with a tightly concentrated 90% confidence interval of 0.95 to 0.99.
The estimated long-run correlation of TFP and GDP is also high, although the correlation
of TFP and the other variables appears to be somewhat lower.

Table 4 shows results from long-run regressions of the growth rates of consumption, in-
vestment, and labor income onto the growth rate of GDP, and the corresponding regression of
GDP onto TFP. Labor compensation appears to vary more than one-for-one with GDP and
(as reported above) consumption less than one-for-one. The long-run investment-GDP re-
gression coefficient is imprecisely estimated. Disaggregating consumption into nondurables,
durables, and services, suggests that durable consumption responds more to long-run vari-
ations in GDP than do services and non-durables. These long-run regression results are
reminiscent of results using business cycle covariability, and in Section 6 we investigate the
robustness of these results to the periodicities incorporated in the long-run analysis.

In summary, what has our 68-year sample been able to say about the balanced-growth
implications of the simple growth model? First, that several of the variables are highly
correlated over the long-run (labor compensation and GDP, consumption and GDP), and
second that the long-run regression coefficient on GDP is different from unity for some
variables (consumption and labor compensation). There is less information about the long-
run covariability of investment with the other variables, although even here there are things
to learn, such as the long-run correlation of investment and GDP is unlikely to much larger
than 0.8.

5.2 Other long-run relations.

Table 5 shows long-run covariation measures for eight pairs of variables, using post-WWII
U.S. data. (See the data appendix for description and sources.) We discuss each in turn.
CPI and PCE inflation. The first row of the table considers the long-run covariation of
two widely-used measured of inflation, the first based on the consumer price index (CPI)
and the second based on the price deflator for personal consumption expenditures (PCE).

The Boskin Commission Report and related research (Boskin, Dulberger, Gordon, Griliches,
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and Jorgenson (1996), Gordon (2006)) highlights important methodological and quantitative
differences in these two measures of inflation. For example, the CPI is a Laspeyres index,
while the PCE deflator uses chain weighting, and this leads to greater substitution bias
in the CPI. Differences in these inflation measures may change over time both because of
the variance of relative prices (which affects substitution bias) and because measurement
methods for both price indices evolved over the sample period.

The data are informative about the long-run covariability these two inflation measures.
Table 5 suggests that PCE and CPI inflation are highly correlated in the long-run; the
90% confidence interval suggests that p > 0.95. The long-run regression of CPI inflation
on PCE inflation yields an estimated slope coefficient that is 1.13 (90% confidence interval:
0.98 < 3 < 1.24) suggesting a larger bias in the CPI during periods of high trend inflation.

Long-run Fisher correlation: The next two rows show the long-run covariation of inflation
and short- and long-term nominal interest rates. The well-known Fisher relation (Fisher
(1930)) decomposes nominal rates into an inflation and real interest rate component making
it is interesting to gauge how much of the long-run variation in nominal rates can be explained
by long-run variation in inflation. The long-run correlation of nominal interest rates and
inflation is estimated to be approximately 0.5, although the confidence intervals indicate
substantial uncertainty. A unit long-run regression coefficient of nominal rates onto inflation
is consistent with data, but again the confidence intervals are very wide.” The data are
therefore not very informative about the long-run Fisher correlation.

Long-run Phillips correlation: The next row of the table summarizes the long-run corre-
lation between the unemployment and inflation. This estimated long-run Phillips correlation
and slope coefficient are positive, but p = 5 = 0 is contained in the 67% confidence interval.
That said, the confidence intervals are wide so that, like the Fisher correlation, the data are
not very informative about the long-run Phillips correlation.

Unemployment and Productivity: The fifth row of the table investigates the long-run
covariation of the unemployment rate and productivity growth. The data are informative
about this covariability: there is a statistically significant negative long-run relationship be-

tween the variables, and a long-run one percentage point increase in the rate of growth of

9These estimates measure the long-run Fisher “correlation,” not the long-run Fisher “effect”. The long-
run Fisher correlation considers variation from all sources, while the Fisher effect instead considers variation
associated with exogenous long-run nominal shocks (e.g., Fisher and Seater (1993), King and Watson (1997)).
A similar distinction holds for the Phillips correlation and the Phillips curve (King and Watson (1994)).
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productivity is associated with an estimated one percentage point decline in the long-run
unemployment rate. The large negative in-sample long-run correlation has been noted pre-
viously (e.g., Staiger, Stock, and Watson (2001)); the confidence intervals reported in Table
5 show that the correlation is unlikely to be spurious. We are unaware of an economically
compelling theoretical explanation for the large negative correlation.

Stock Prices, Dividends, and Earnings: Present value models of stock prices show a
tight link between long-run values of prices, dividends, and earnings (e.g., Campbell and
Shiller (1987)). An implication of this long-run relation in a cointegration framework is that
dividends, earnings, and stock prices share a common /(1) trend, so that their growth rates
are perfectly correlated in the long-run and the dividend-price or price-earning ratio is useful
for predicting future stock returns. This latter implication has been widely investigated
(see Campbell and Yogo (2006) for analysis and references). Table 5 shows the long-run
correlation of stock prices with dividends and with earnings.!® While there is considerable
uncertainty about the value of the long-run correlation between prices and dividends or
earnings, the data suggest that the correlation is not strong. For example, values above
p = 0.43 are ruled out by the 67% confidence set and values above 0.68 are ruled out by the
90% sets.

Long-run PPP: The final row of the table shows results on the long-run correlation be-
tween nominal exchange rates (here the U.S. dollar/British pound exchange rate from 1971-
2015) and the ratio of nominal prices (here the ratio of CPI indices for the two countries).
Long-run PPP implies that the nominal exchange rate should move proportionally with the
price ratio over long time spans, so the long-run growth rates of the nominal exchange rate
and price ratios should be perfectly correlated. A large literature has tested this proposition
in a unit-root and cointegration framework and obtained mixed conclusions. (See Rogoff
(1996) and Taylor and Taylor (2004) for discussion and references ). From the final row of
Table 5, the growth rate of nominal exchange rates and relative nominal prices are positively
correlated over the long-run, statistically significantly so at the 33% significance level, but
the correlation is far from perfect (p < 0.71 based on the 90% confidence set.) We highlight
two caveats. First, we use the post-Bretton Woods sample period, so the sample includes
only 45 years, and using ¢ = 12 cosine terms the long-run projections capture variability with

periods of (approximately) 7 years or higher. This 7-year period may be sufficiently short

0The data are for the S&P, are updated updated versions of the data used in Shiller (2000), and were
obtained from Robert Shiller’s webpage. Table 5 is based on the data from 1947-2015.
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that long-run adjustments have not occurred, something we investigate in the next section.
Second, the price ratio uses relative CPIs, a large component of which includes non-traded

goods which may be less tightly linked to exchange rates than prices of traded goods.

6 Alternative measures of long-run covariability

The empirical results in the last section relied on covariance measures associated with pro-
jections of the data onto ¢ = 12 cosine functions capturing periodicities of 7'/6 or higher,
where T is the length of the sample. Using data from 1948-2015 (T' = 68 years) this analysis
used periods longer than 11 years to define “long-run” variation and covariation. While 11
years is longer than typical business cycles, it does incorporates periods corresponding to
what some researchers refer to as the “medium run” (Blanchard (1997), Comin and Gertler
(2006)). In this section we consider measures of long-run covariability that focus on a subset
of the ¢ periods. This allows a comparison of, say, results from periods corresponding to the
“medium-long run” and to those from the “longer-long run.”

To motivate the new measures, look again at Figure 2.a which plots the projections of
GDP and consumption growth rates onto ¢ = 12 cosine regressors with periods that range
from T/6 (=~ 11 years) to 27" (136 years). Figures 5.b and 5.c show the corresponding
projections onto the first ¢; = 6 of these cosine terms (with periods from 7'/3 ~ 23 years to
2T = 136 years) and last g2 = 6 cosine terms (with periods 7'/12 &~ 11 years to 27'/7 ~ 19
years). The first of these captures the longer-long-run variation in the data, and the second
captures the medium-long-run variability. Each can be studied separately. To differentiate

these periodicities, we replace equation (4) with

Lijt ~ ~ -
~ Tigt Yigt =
Yi:jt

where the subscript "i : j" notes that the projection is computed using the i through j

1 !
Xz‘;iji:j,T X@;jjﬁ:j,T

V! o Xpir Y)Y, (14)
ig, T} 45,1 i:g, T+ 43,1

T
Qijr=T7" Z E
=1

cosine terms (i.e., the ¢ through j columns of ¥7) corresponding to periods 27°/j through
2T /i. Thus the longer-long-run periodicities shown in Figure 5.a correspond to the covariance
matrix Q.6 (the first 6 cosine terms) and the medium-long-run periodicities in Figure 5.b
correspond to 27,107 (the 7-12th cosine terms).

Throughout the paper we have used ¢ to denote the number of low-frequency cosine

terms that define the long-run periods of interest (perhaps divided further into longer-long
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Figure 5: Long-run projections for GDP and consumption growth rates for different periodicities
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Notes: Panel (a) plots the projections of the data onto six cosine terms with periods 23-136 years. Panel
(b) shows the projections onto six low-frequency terms with periods 11-19 years. Sample means have
been added to both sets ofr projections. Panels (¢) and (d) are scatterplots of the coefficients (cosine
transforms) from panels (a) and (b).
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and medium-long). But ¢ plays another important role in the analysis. The value of Q (or
now €2;.;) ultimately depends on the variability and persistence in the stochastic process as
exhibited in the local-to-zero (pseudo-) spectrum S,. This spectrum is parameterized by
(A, B, c,d); see equation (8). We learn about the value of these parameters (and therefore
the value of €2) using the data (X1.,7, Y1.4r). Thus, ¢ also denotes the sample variability in
the data that is used to infer the value of the long-run covariance matrix €2. So, while our
interest might lie in the longer-long-run covariability captured in §2;.¢, the sample variability
in (X127, Y1.127) might be used to learn about €.4. While it is arguably most natural to
match the variability in the data used for inference to the variability of interest, for example
using (X1.,7, Y1.q7) to learn about €2y, if the (A4, B, ¢, d) model accurately characterizes the
spectrum over a wider frequency band, then variability over this wider band can improve
inference. But of course using a wider frequency band runs the risk of misspecification if
the (A, B,¢,d) model is a poor characterization of the spectrum over this wider range of
frequencies. This is the standard trade-off of robustness and efficiency.

With these ideas in mind, Table 6 shows results for long-run correlation and regression
parameters from .15, 1.6, and €719, corresponding the periods 7'/6 and higher, 7'/3 and
higher, and 7'/6 through 27'/7. Results are shown using inference based on the same ¢ = 12
cosine transforms used in the sections above, but also using ¢ = 6, so only lower frequency
variability in the data is used to learn about (A, B, ¢, d), and with ¢ = 18, so higher frequency
variability is also used. Table 6.a shows results for long-run covariability of GDP, consump-
tion, investment, labor compensation, and TFP. Table 6.b shows results for selected long-run
relationships involving the other variables. (Results for all the pairs of variables shown in
Table 3-5 are available in the appendix.)

The first block of results in Table 6.a are for consumption and GDP. The first row repeats
earlier results using the ¢ = 12 cosine terms to learn about €;.; with ¢ = 1 and j = 12. The
other rows are for other values of ¢, 7, and j. The results suggest remarkable stability across
the different values of ¢, ¢, and j. Figure 5.c provides hints at this stability. It shows the
scatter plot of (Xi.6r, Y1.67) and (X727, Y7.127) corresponding the projections plotted in
panels 5.a and 5.b. The scatter plots corresponding to the different periodicities are quite
similar, and this is reflected in the stability of the results shown in Table 6. This same
stability across ¢, i, and j is evident for the other pairs of variables in Table 6.a. Looking
closely at Table 6.a, there are subtle differences in the rows. For example, the confidence

intervals for the parameters from ;.15 tend to be somewhat narrower using ¢ = 18 than
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using ¢ = 12, consistent with a modest amount of additional information using a larger value
of q. The same result holds for results for €2;. computed using ¢ = 6 and q = 12.

The results summarized in Table 6.b show much of the same stability as Table 6.a, but
there are some notable differences. For example, the point estimates suggest a somewhat
larger Fisher correlation over longer periods (greater than 23 years) than over shorter periods
(11 to 19 years), and the same holds for stock prices and dividends. In both cases however,
the confidence intervals remain wide. And, the puzzling negative correlation between the
unemployment rate and TFP appears to be stronger over the longer-long run than over the

medium-long run.

7 Concluding remarks

This paper has focused on inference about long-run covariability of two time series. Just as
with previous frameworks, such as cointegration analysis, it is natural to consider a gener-
alization to a higher dimensional setting. For example, this would allow one to determine
whether the significant long-run correlation between the unemployment rate and productiv-
ity is robust to including a control for, say, some measure of human capital accumulation.
Many elements of our analysis generalize to n time series in a straightforward manner:
The analogous definition of €21 is equally natural as a second-moment summary of the covari-
ability of n series, and gives rise to corresponding regression parameters, such as coefficients
from a n— 1 dimensional multiple regression, corresponding residual standard deviations and
population R?s.!! Multivariate versions of Qp can also be used for long-run instrumental
variable regressions. As shown in Miiller and Watson (2016), the Central Limit Theorem that
reduces the inference question to one about the covariance matrix of a multivariate normal
holds for arbitrary fixed n. The (A, B, ¢,d) model of persistence naturally generalizes to a n
dimensional system. And, confidence sets for multiple regression parameters satisfy natural
invariance and equivariance constraints, which reduces the number of effective parameters.
Having said that, our numerical approach for constructing (approximate) minimal-length
confidence sets faces daunting computational challenges in a higher order system: The
quadratic forms that determine the likelihood require O(n?q?) floating point operations.

Worse still, even for n as small as n = 3, the number of parameters in the (A, B, ¢,d) model

HMiiller and Watson (2016) provide the details of inference in the I(0) model.
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is equal to 21. So even after imposing invariance or equivariance, ensuring coverage requires
an exhaustive search over a high dimensional nuisance parameter space.

At the same time, it would seem to be relatively straightforward to determine Bayes
credible sets also for larger values of n: Under our asymptotic approximation, the (A, B, ¢, d)
parameters enter the likelihood through the covariance matrix of a ng x 1 multivariate
normal, so with some care, modern posterior samplers should be able to reliably determine
the posterior for any function of interest. Of course, such an approach does not guarantee
frequentist coverage, and the empirical results will depend on the choice of prior in a non-
trivial way. In this regard, our empirical results in the bivariate system show an interesting
pattern: Especially at a lower nominal coverage level, for many realizations, there is no
need to augment the Bayes credible set computed from the bivariate fractional model. This
suggests that the frequentist coverage of the unaltered Bayes intervals is not too far below
the nominal level, so these Bayes sets wouldn’t be too misleading even from a frequentist
perspective.'? While this will be difficult to exhaustively check, this pattern might well

generalize also to larger values of n.

12In fact, a calculation analogous to those in Table 2 shows that the 67% Bayes set contains the true value
of p = 0 at least 64.1% of the time in the bivariate (4, B, ¢,d) model, and the 95% Bayes set has coverage
of 82.8%.
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8 Appendix

In preparation
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