Discussion of Behavioral Sticky Prices by Rebelo, Santana and Teles

Gaetano GABALLO

HEC Paris

ECB Annual conference 19 September 2024

A simple beautiful idea

► **Households** are more attentive in their spending choices when posted prices change.

A simple beautiful idea

► **Households** are more attentive in their spending choices when posted prices change.

As a result, **firms** more likely to change prices with inflation (rockets) rather than deflation (feathers).

t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma - 1} > 1$, is the optimal real price.

t-1: $p_{i,t-1}=\mu$, where $\mu=rac{\gamma}{\gamma-1}>1$, is the optimal real price.

t: π realizes.

t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma - 1} > 1$, is the optimal real price.

t: π realizes.

t: Representative household:

t-1: $p_{i,t-1}=\mu$, where $\mu=\frac{\gamma}{\gamma-1}>1$, is the optimal real price.

t: π realizes.

t: Representative household:

▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;

- t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma 1} > 1$, is the optimal real price.
 - t: π realizes.
 - t: Representative household:
 - ▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;
 - ▶ If $p_{i,t} \neq \frac{\mu}{1+\pi}$, then demand is optimal $x_{i,t} = x(p_{i,t})$.

- t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma 1} > 1$, is the optimal real price.
 - t: π realizes.
 - t: Representative household:
 - ▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;
 - ▶ If $p_{i,t} \neq \frac{\mu}{1+\pi}$, then demand is optimal $x_{i,t} = x(p_{i,t})$.
 - t: Firm *i*:

- t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma 1} > 1$, is the optimal real price.
 - t: π realizes.
 - t: Representative household:
 - ▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;
 - ▶ If $p_{i,t} \neq \frac{\mu}{1+\pi}$, then demand is optimal $x_{i,t} = x(p_{i,t})$.
 - t: Firm *i*:
 - ▶ it sees demand $\tilde{x}_{i,t}$ and then decides $p_{i,t}$.

t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma - 1} > 1$, is the optimal real price.

t: π realizes.

t: Representative household:

- ▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;
- ▶ If $p_{i,t} \neq \frac{\mu}{1+\pi}$, then demand is optimal $x_{i,t} = x(p_{i,t})$.

t: Firm *i*:

- ▶ it sees demand $\tilde{x}_{i,t}$ and then decides $p_{i,t}$.
- ightharpoonup it sets $p_{i,t} = \mu$ if and only if

$$\left(\frac{\mu}{1+\pi}-1\right)\tilde{x}_{i,t}<(\mu-1)\mu^{-\gamma},$$

otherwise $p_{i,t} = \frac{\mu}{1+\pi}$.

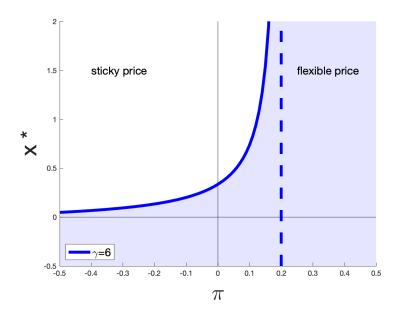
t-1: $p_{i,t-1} = \mu$, where $\mu = \frac{\gamma}{\gamma - 1} > 1$, is the optimal real price.

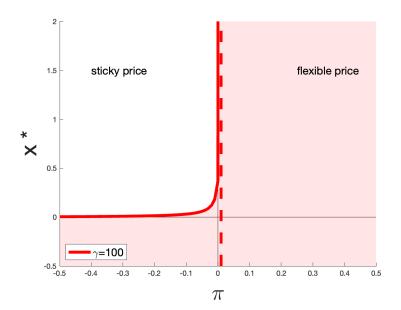
t: π realizes.

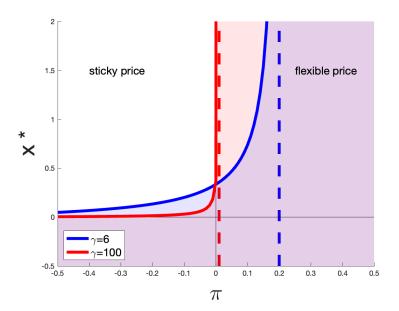
t: Representative household:

- ▶ If $p_{i,t} = \frac{\mu}{1+\pi}$, then demand is stochastic $x_{i,t} = \tilde{x}_{i,t} \sim D_{\mathbb{R}_+}$;
- ▶ If $p_{i,t} \neq \frac{\mu}{1+\pi}$, then demand is optimal $x_{i,t} = x(p_{i,t})$.

t: Firm *i*:


- \triangleright it sees demand $\tilde{x}_{i,t}$ and then decides $p_{i,t}$.
- ightharpoonup it sets $p_{i,t} = \mu$ if and only if


$$\left(\frac{\mu}{1+\pi}-1\right)\tilde{x}_{i,t}<(\mu-1)\mu^{-\gamma},$$


otherwise $p_{i,t} = \frac{\mu}{1+\pi}$.

▶ Denote $x^*(\pi)$ such that $p_{i,t} = \mu$ if and only if $x_{i,t} < x^*(\pi)$.

Results

- 1 Pass-through (in the limit of perfect competition):
 - $ightharpoonup \pi > 0$: full ightharpoonup rockets
 - $\pi < 0$: zero pass through \rightarrow **feathers**

Results

- 1 Pass-through (in the limit of perfect competition):
 - $ightharpoonup \pi > 0$: full ightharpoonup rockets
 - $\pi < 0$: zero pass through \rightarrow **feathers**
- 2 Welfare (in the limit of perfect competition):
 - $\pi > 0$: optimal allocation but cognitive costs;
 - $ightharpoonup \pi < 0$: suboptimal allocation, no cognitive costs.

Results

- 1 Pass-through (in the limit of perfect competition):
 - $ightharpoonup \pi > 0$: full ightharpoonup rockets
 - $\pi < 0$: zero pass through \rightarrow **feathers**
- 2 Welfare (in the limit of perfect competition):
 - $\pi > 0$: optimal allocation but cognitive costs;
 - $ightharpoonup \pi < 0$: suboptimal allocation, no cognitive costs.
- 3 Optimal Policy (in the limit of perfect competition):
 - ▶ high cognitive costs → price stability;
 - ▶ low cognitive costs → inflation better than deflation;

A lot to like

Price-Demand duality.

- Brilliant idea: positive profits at any demand level, but not at any price.
- Prices are used strategically by firms as prices move households' beliefs (more to come).
- Asymmetric theory of price stickiness: does the data like it?
 - Ex. Aggregate markup more strongly countercyclical in deflation rather than in inflation states.
 - Ex. Market concentration makes rockets and feathers phenomenon less pronounced.

Some important elements of non-rationality are central to the normative analysis.

▶ What is behavioral, what is rational?

- What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)

- What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal

- ▶ What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...

- What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...
 - Gaballo and Paciello (JEEA, cond. accepted): $\uparrow \pi$ leads to \uparrow household price hunting

- What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...
 - Gaballo and Paciello (JEEA, cond. accepted): $\uparrow \pi$ leads to \uparrow household price hunting
 - Gaballo (AEJ:Macro, 2016): current inflation is a free signal, information about news is subject to RI constraints

- What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...
 - Gaballo and Paciello (JEEA, cond. accepted): $\uparrow \pi$ leads to \uparrow household price hunting
 - Gaballo (AEJ:Macro, 2016): current inflation is a free signal, information about news is subject to RI constraints
- ...nor they consider the opportunity cost of revising demand

- ► What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...
 - Gaballo and Paciello (JEEA, cond. accepted): $\uparrow \pi$ leads to \uparrow household price hunting
 - Gaballo (AEJ:Macro, 2016): current inflation is a free signal, information about news is subject to RI constraints
- ...nor they consider the opportunity cost of revising demand
 - revision occurs even for infinitesimal price changes

- ► What is behavioral, what is rational?
 - ▶ RI plays only a cosmetic role here (no need in the toy model)
 - Price is a trigger, but not a signal
- Households neither learn anything from price changes...
 - Gaballo and Paciello (JEEA, cond. accepted): $\uparrow \pi$ leads to \uparrow household price hunting
 - Gaballo (AEJ:Macro, 2016): current inflation is a free signal, information about news is subject to RI constraints
- ...nor they consider the opportunity cost of revising demand
 - revision occurs even for infinitesimal price changes
 - so, too much cognitive costs from the social point of view

Households' mistakes in demand at the variety level are "representative".

What does coordinate households' mistakes?

- What does coordinate households' mistakes?
 - What about observing multiple prices?

- What does coordinate households' mistakes?
 - What about observing multiple prices?
 - Should households reason at the basket level?

- What does coordinate households' mistakes?
 - What about observing multiple prices?
 - Should households reason at the basket level?
- How the firm may be informed of these mistakes?

- What does coordinate households' mistakes?
 - What about observing multiple prices?
 - Should households reason at the basket level?
- How the firm may be informed of these mistakes?
 - ▶ I remain uncertain about the timing in a dynamic setting.

Conclusion

A beautiful model of behavioural demand and optimal pricing.