The distributional effects of oil shocks

Tobias Broer John Kramer Kurt Mitman "Global Challenges and Channels for Fiscal and Monetary Policy", July 2024

- Since 1980s: Business cycles as propagation of shocks
- Since 2010s: Shocks have distributional effects
- 2020s: Large supply shocks and strong monetary responses

- Since 1980s: Business cycles as propagation of shocks
- Since 2010s: Shocks have distributional effects
- 2020s: Large supply shocks and strong monetary responses

How do supply shocks and monetary responses affect inequality?

Research question

- What are the distributional effects of oil-price shocks
- ... under observed & counterfactual monetary responses?

Research question

- What are the distributional effects of oil-price shocks
- ... under observed & counterfactual monetary responses?

Empirical Approach

- Responses to oil-price news by income quantile in Germany
 - of earnings
 - of labor market transitions
- ... under observed monetary policy & counterfactual non-response
 - ... due to sequence of surprises (Sims & Zha 2006)
 - ... due to credible change in policy stance (McKay & Wolf 2024)

Over the last 45 years in Germany, oil-price shocks ...

- reduced activity, increased inflation
- triggered pronounced monetary policy response
- strongly reduced earnings and employment of the income-poor
- had little effect above median income
- affected employment to a large extent via monetary reaction

Literature

Macroeconomic effects of oil shocks

• Zhou (2020), Känzig (2020,23), Bobasu et al (2024)

Distributional incidence of shocks

Coibion et al (2017), Guvenen et al (2017), D'Acunto et al (2019a,b), Patterson (2018), De Giorgi & Gambetti (2017), Alves et al (2019), Almgren et al (2019), Holm et al (2021), Broer (2024), Chang et al (2024), Ettmeier (2024)

Effects of shocks with counterfactual policies

 Sims and Zha (2006, WP 1996), Bernanke et al (1997), McKay and Wolf (2023,2024)

- 1. Data
- 2. Aggregate effects of oil shocks in Germany
- 3. Distributional effects of oil shocks in Germany
- 4. Effect of oil shocks with counterfactual monetary policy

Data

- German SIAB sample: 2 percent of all individuals in social-insurance system (no public employees, no self-employed)
- "Daily" frequency (aggregated to monthly averages)
- Sample period: 1974-2020
- Attached workers (employed or unemployed), 25-60 yoa
- Exclude top coded (~ 6 %)
- Main variables of interest:
 - Employment spells (start and end date)
 - Within-spell average labor earnings

- 1. Oil-price (1974-2020)
 - Price change in window around OPEC announcements (Känzig 2020)
- 2. Monetary-policy shocks for Germany
 - Bundesbank (1974-1998): Narrative (Cloyne et al 2022)
 - ECB (1999-2020): High-frequency (Almberg et al 2022)

Aggregate effects of oil shocks

$$y_{t+h} - y_{t-1} = \alpha_h + \beta_h Oilnews_t + \sum_{i=1}^l \gamma_{i,h} X_{t-i} + \varepsilon_{t,h} \quad \forall h \ge 0$$
 (1)

- Oilnews_t negative oil supply news shock (Känzig 2020)
- Scaled to imply $10pp\ {\rm rise}$ in world oil price
- X_{t-i}
 - CPI, industrial production
 - real oil price, world oil inventories & production
 - average employed earnings & employment rate (SIAB)

Aggregate effects of oil shocks: Results

Back MIRFfull Back MIRFecb

Distributional effects of oil shocks

- Do oil shocks affect individuals differently
- ... across sectors, occupations, regions, incomes?
- Here: in different deciles of the (permanent-) income distribution

$$\Delta y_{i,t+h} = \alpha_h + \sum_{i=2}^{10} \gamma_h^d \mathbb{I}_{d=i} + \left(\delta_h + \sum_{i=2}^{10} \beta_h^d \mathbb{I}_{d=i} \right) Oilnews_t + \sum_{j=1}^l \gamma_{j,h} X_{t-j} + \varepsilon_{i,t,h}$$

- Individual-level regressions (vs. Broer et al 2024: decile-averages)
- Decile-specific intercepts γ_h^d (relative to reference decile 1)
- Decile-specific slopes β_h^d (relative to reference decile 1)
- $\Delta y_{i,t+h}$:
 - indicator of employment-transitions E2E, U2E
 - pre-tax earnings growth of the employed $\Delta earn_{i,h}$

Distributional effects: *E*2*E* **transitions**

• Decline in E2E transitions shrinks along income distributions

Back MEEIRF18

Distributional effects: U2E transitions

- After 20 months,1pp fall in U2E at the bottom
- Strongly dampened above median in year 2

Distributional effects: earnings growth of the employed

- Significant earnings decline across the distribution in year 1 (40bp)
- Gap opens in year 2,3: decline strongly shrinks along distribution

- Increased inflation and reduced output / employment
- Pronounced monetary response
- Employment & earnings decline concentrated among income-poor

The effects of oil shocks with counterfactual policies

- How does MP reaction change effects of oil shocks?
- Here: How would German economy respond w/o monetary reaction?

- How does MP reaction change effects of oil shocks?
- Here: How would German economy respond w/o monetary reaction?
 - ... due to sequence of surprises (Sims & Zha 2006)
 - ... due to credible change in policy stance (McKay & Wolf 2024)

• Sequence of surprises z_{t+j} that implement 0-response to $oilnews_t$

$$\bar{i}_{t+h} = i_{t+h} | oilnews_t + \sum_{j=0}^{h} i_{t+h} | z_{t+j} = 0, h = 0, 1, ..., H$$

- One monetary IRF $i_{t+h}|z_t$ enough
- Here: Use full-sample estimate

- Credible change to non-response policy stance in \boldsymbol{t}
- Equivalent to set of period-t shocks $\{z_t^j\}$ s.t. for h = 0, 1, ..., H

$$\bar{i}_{t+h} = i_{t+h} |oilnews_t + \sum_j i_{t+h} | z_t^j = 0$$

- Assumptions: $\forall h = 1, ..., H, j = 1, ..., J$
 - MP-effects only via instrument path $i_{t+h}|z_t^j$
 - Full information about $i_{t+h}|z_t^j$
- Need many, sufficiently different IRFs $i_{t+h}|z_t^j$

• McKay & Wolf (2024): Choose θ_i to minimise $\sum_h (\overline{i}_{t+h})^2$, for

$$\bar{i}_{t+h} = i_{t+h}^{oil} + \theta_{RR} \ i_{t+h} | z_t^{RR} + \theta_{GK} \ i_{t+h} | z_t^{GK}$$

-
$$z_t^{RR}$$
 Romer and Romer (2004)

- z_t^{GK} Gertler and Karadi (2015)
- Here: Use
 - z_t^{CL} Cloyne et al (2022): narrative identification,1974-1998
 - z_t^{AL} Almberg et al (2022): high-frequ. identification, 1999-2017
- Maintained assumption:Constant response to $\{i_{t+h}|z_t\}_h$ 1974 2020

Aggregate effects of monetary shocks

- Local-projection IV (Jordà 2005): instrument i_t with MP shocks z_t
- Two separate first-stage regressions

$$i_{t} = a + bz_{t} + \sum_{i=1}^{l} d_{i,h} X_{t-i} + \epsilon_{t,h}$$
(2)

- 1974-1998: z_t from Cloyne et al (2022)
- 1999-2017: z_t from Almberg et al (2022)
- X_{t-i} : as before
- Gives fitted values \hat{i}_i

TS
$$\hat{i}_t$$

Aggregate effects of monetary shocks

- Local-projection IV (Jordà 2005): instrument i_t with MP shocks z_t
- Two separate first-stage regressions

$$i_{t} = a + bz_{t} + \sum_{i=1}^{l} d_{i,h} X_{t-i} + \epsilon_{t,h}$$
(2)

- 1974-1998: z_t from Cloyne et al (2022)
- 1999-2017: z_t from Almberg et al (2022)
- X_{t-i} : as before
- Gives fitted values \hat{i}_t TS \hat{i}_t
- Second-stage regression

$$\widetilde{\Delta y_{t+h}} = a_h + \beta_h \hat{i}_t + \varepsilon_{t,h},$$

- $\widetilde{\Delta y_s}$ residual from regression of Δy_s on $X_{s-i}, i = 0, 1, ..., l$
- Estimated on full sample, or separately for Buba and ECB
- Shock scaled by 2 st dev (BUBA: 0.33 pp, ECB: 0.05 pp)

Aggregate effects of monetary shocks: Full sample

25

Aggregate effects of monetary shocks: Buba sample

F

Aggregate effects of monetary shocks: ECB sample

Aggregate effects of oil shocks with counterfactual policies

Shocks

28

Oil shocks with counterfactual policies: Aggregate effects

• MP achieved $\downarrow 10-15$ bp inflation for $\uparrow 10$ bp higher UE

- Need: Estimates of distributional effects of monetary-policy shocks
- Simplified estimation, for d = 1, ..., 10

$$y_{i,d,t+h} - y_{i,d,t-1} = \alpha_{d,h} + \beta_{d,h}^y w_t + \sum_{i=1}^l \gamma_{i,d,h} X_{t-i} + \varepsilon_{i,d,t+h}$$
 (3)

where $w_t = \{oilnews_t, \hat{i}_t\}$

Distributional MP effects at h = 18**:** EE transitions

Full sample

Buba sample, Cloyne et al (2022) shocks

ECB sample, Almgren et al (2022) shocks

Distributional MP effects at h = 18**:** *EE* transitions

- E2E decline stronger in bottom tercile (see also Broer et al 2024)
- BUBA sample: ≈ 10pp oil-price shock; ECB: 1/4 stronger OILEELRF

Distributional MP effects at h = 18**:** UE transitions

Full sample

Buba sample, Cloyne et al (2022) shocks

ECB sample, Almgren et al (2022) shocks

Distributional MP effects at h = 18**:** UE transitions

- U2E decline, not in top tercile
- 1/5 of 10pp oil-price shock

Distributional MP effects at h = 18: earnings of employed

Full sample

Buba sample, Cloyne et al (2022) shocks

ECB sample, Almgren et al (2022) shocks

Distributional MP effects at h = 18: earnings of employed

- Earnings of employed not much affected by Buba MP
- ECB sample: homogeneous and positive (selection?) effect

Distributional effects of oil shocks with counterfactual policies

Employment probability of the employed

Job-finding probability of the unemployed

Earnings growth of the employed

Distributional effects of oil shocks with counterfactual policies

Earnings growth of the employed

• MP accounted for substantial part of employment decline

Summary

- Oil shocks raise inflation and lower output / employment
- Employment & earnings decline concentrated among income-poor
- MP response caused substantial output and inflation decline
- ... and much of the employment fall among the poor

Future research

- Other dimensions of heterogeneity: Sectors, occupations, regions
 Sectors
- Other supply shocks
- Same-sample monetary shocks in McKay and Wolf (2024)

Time series of policy shocks: fitted values \hat{i}_t

Distributional effects of oil shocks: dirty vs clean sectors

Counterfactual shocks

• $\theta_{CL} = -0.043 bp$ (0.26× st dev), $\theta_{AL} = -0.018 bp$ (0.72× st dev)

