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Abstract

We generalize the traditional, static Keynesian cross by deriving an intertemporal
Keynesian cross for the dynamic output response to government spending and taxes
in microfounded general equilibrium models. Intertemporal marginal propensities
to consume (iMPCs) are sufficient statistics for this response, with fiscal multipliers
depending only on the interaction between iMPCs and public deficits. We provide
empirical estimates of iMPCs and argue that they are inconsistent with representative-
agent or two-agent models, but can be matched by certain heterogeneous-agent mod-
els. Models that match empirical iMPCs imply larger and more persistent output re-
sponses to deficit-financed fiscal policy, with cumulative spending multipliers above
one.
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1 Introduction

How do changes in government spending and taxes affect aggregate economic activity? One of
the oldest answers to this question is given by the Keynesian cross, a staple of undergraduate
macro textbooks. The Keynesian cross is derived by assuming that aggregate consumption is a
function only of current after-tax income, resulting in a simple equation for aggregate output:

dYt = dGt −mpc · dTt + mpc · dYt (1)

Here, a fiscal shock to government spending dGt or taxes dTt only affects contemporaneous output
dYt, and transmission is determined entirely by the aggregate marginal propensity to consume
out of income, mpc. The direct impulse from fiscal policy to aggregate demand is dGt −mpc · dTt,
summing the effect of higher government spending and that of lower consumption from higher
taxes. It is amplified in equilibrium by the multiplier 1/ (1−mpc), which reflects the feedback
mpc · dYt from output, and thus income, back to consumption.

From a modern perspective, the static consumption function underlying the Keynesian cross
has serious flaws. It does not respect intertemporal budget constraints and therefore cannot be
microfounded in a dynamic model. It ignores the downward pressure on consumption from an-
ticipation of future taxes if spending is deficit-financed; inversely, it also ignores any positive effect
of past income on spending today via accumulated savings. This matters because, following the
pioneering work of Modigliani and Brumberg (1954) and Friedman (1957), a large body of empir-
ical work has shown that past and expected future income affect current consumption. In light of
these arguments, the literature has moved to dynamic models where consumption is the outcome
of optimizing behavior.

We show that, in these modern models, there instead exists an intertemporal Keynesian cross.
Assuming that monetary policy stabilizes the real interest rate, aggregate consumption is given
by an intertemporal consumption function Ct ({Ys − Ts}), which now depends on past and future,
in addition to current, income. The impulse response of output dY = {dYt} to a change in fiscal
policy dG = {dGt}, dT = {dTt} now solves the infinite vector-valued equation:

dY = dG−M · dT + M · dY (2)

where M ≡ [Mts] is the infinite matrix of partial derivatives Mts ≡ ∂Ct/∂Ys of the intertemporal
consumption function.1 For given dates t and s, Mts captures the response of consumption at date
t to an aggregate income shock at date s. These intertemporal MPCs, or iMPCs, generalize the static
mpc: in fact, the static mpc is usually estimated by looking at the immediate consumption response
M00 = ∂C0/∂Y0 to a surprise in income. Together, the intertemporal MPCs fully characterize the
transmission from fiscal shocks to output. The logic of (2) is similar to (1), with the direct impulse

1Throughout this paper, we use braces {dYt} to denote sequences {dY0, dY1, . . .}; and brackets [Mts] to denote infi-
nite matrices with entries Mts where the first subscript indexes rows, t = 0, 1, . . . and the second columns, s = 0, 1, . . ..
We use boldface dY and M when for the resulting infinite vectors and matrices.
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from fiscal policy to demand being dG−M · dT, which is then amplified by feedback M · dY from
output to consumption. Critically, both the impulse effect and the feedback effect at any date now
depend on the full set of iMPCs and, through those, on past and expected future income and taxes.

Given that iMPCs play a central role in this theory, we look for empirical evidence to dis-
cipline them. We focus on Mt0 = ∂Ct/∂Y0—the dynamic response to an unanticipated income
shock—which is where we have the best data. Our main evidence on Mt0 comes from the dy-
namic response to lottery earnings in Norwegian administrative data, as reported by Fagereng,
Holm and Natvik (2021). These data confirm the common finding in the literature that the aver-
age static MPC M00 is high—above 0.51 at an annual level. The key new fact we uncover is that
iMPCs in subsequent years are sizable as well, with M10 around 0.18. We show that this fact is
corroborated by evidence from the 2016 Italian Survey of Household Income and Wealth (Jappelli
and Pistaferri 2020).

What models can match these patterns? Representative-agent models fail immediately on the
grounds that they cannot match the high static MPC M00. This is not an issue for two-agent models
with a mix of savers and hand-to-mouth spenders, which are sufficiently flexible to allow for an
arbitrary static M00. These models, however, predict a very low subsequent iMPC M10, almost
an order of magnitude below our estimate. A much better fit is achieved by heterogeneous-agent
models with limited liquidity, where many households have short but nonzero effective planning
horizons. This leads them to save part of an unexpected income shock for consumption in the next
few years, matching the evidence on M10.

How important is this fit to intertemporal MPCs for the effects of fiscal policy? The answer
turns out to depend on the degree of deficit financing. When fiscal policy runs a balanced budget,
iMPCs are in fact irrelevant: the intertemporal Keynesian cross implies a multiplier of exactly one,
irrespective of iMPCs.2 In this case, the distinction between representative-agent, two-agent, and
heterogeneous-agent models does not matter.

In contrast, as we highlight in table 1, iMPCs play a pivotal role for deficit-financed fiscal
shocks. We show that for any fiscal policy that involves deficits, the fiscal multiplier is determined
entirely by the interaction between iMPCs and the path of primary deficits. In representative-
agent models, which feature low and flat iMPCs, the fiscal multiplier on government spending
remains equal to 1.3 In two-agent models, which match the static MPC M00 but not subsequent iM-
PCs, the multiplier is given by the static Keynesian cross (1), and so the impact multiplier dY0/dG0

can be significantly above 1. However, because the government must respect an intertempo-
ral budget constraint, the cumulative multiplier—the ratio ∑ (1 + r)−t dYt/ ∑ (1 + r)−t dGt of the
present value of the output response to the present value of the spending shock—is still equal
to 1, as the eventual contraction in the future from higher taxes exactly offsets the initial boom.
On the other hand, in models that match an elevated M10, such as heterogeneous-agent models,
deficit-financed spending has a persistent positive effect on output, and the cumulative multiplier

2This generalizes the balanced-budget multiplier result from static IS-LM models (Gelting 1941, Haavelmo 1945).
3See, eg, Woodford (2011) and Bilbiie (2011). This is also a consequence of Ricardian equivalence, which holds in

that model.
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Table 1: Government spending multipliers in the intertemporal Keynesian cross

Rep. agent (RA) Two agents (TA) Het. agents (HA)
doesn’t match MPC matches MPC matches iMPCs

Fiscal rule Multiplier

balanced budget
impact 1 1 1
cumulative 1 1 1

deficit financing
impact 1 > 1 > 1
cumulative 1 1 > 1

is strictly above 1.
The intuition for this result is that intertemporal MPCs are an additional source of feedback

from output back into consumption. Deficit-financed spending leads to an increase in income
without an immediately offsetting increase in taxes. Households spend this income both today
and in the future, leading to an output boom in the future that triggers its own intertemporal
consumption feedback, and so on. The result is a more persistent output effect, with additional
amplification leading to a larger cumulative multiplier.

We consider two specific heterogeneous-agent models that can achieve a good fit to the first
few iMPCs: first, a standard incomplete markets model a la Bewley (1980), where households
smooth consumption by holding assets in a single liquid account, and second, a “two-account”
model where households hold assets in both a liquid and illiquid account, as in Kaplan and Vi-
olante (2014) and Bayer, Luetticke, Pham-Dao and Tjaden (2019). We call these models HA-one
and HA-two, respectively. In line with their higher entries off the diagonal of the M matrix, both
models have cumulative multipliers on deficit spending that are well above one, but HA-one
has significantly larger multipliers than HA-two. We trace this to a subtle difference in iMPCs
between the two models. In HA-one, iMPCs continue to decline rapidly after several years, as
any remaining above-normal liquidity is spent down. This feature of the model means that the
cumulative MPC over several years is near one, producing very large Keynesian multipliers. In
HA-two, by contrast, iMPCs decline more slowly after several years, because at that point, un-
spent savings have mostly migrated to the illiquid account. Although our evidence on iMPCs is
not precise enough to select between these models directly, we argue that the HA-two model is
more consistent with the Norwegian evidence on asset accumulation after lottery earnings.

The assumptions underlying the intertemporal Keynesian cross, although consistent with many
different consumption-savings models, are special in other dimensions: a constant real interest
rate, no capital, and sticky wages but flexible prices.4 Once we relax these assumptions, iMPCs
out of income are no longer sufficient statistics for the general equilibrium effect of fiscal policy:
now, the consumption response to real interest rates and the iMPCs out of a surprise capital gain
also matter. We prove, however, that under two assumptions on preferences and initial portfolios,
there is an analytical relationship between these objects, such that iMPCs out of income and cap-

4We show in appendix B how these forces can be included analytically in the intertemporal Keynesian cross (2).
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ital gains still fully characterize aggregate household behavior conditional on the non-household
parts of the model. We show that the HA-two model is unique, among the models we consider, in
its ability to fit empirical evidence on spending out of capital gains in addition to income.

With this result in hand, we conclude the paper by studying the effects of fiscal policy in a
rich quantitative environment with a Taylor rule, capital investment, and sticky prices. In this
environment, there are dampening effects that substantially shrink the output response to fiscal
policy: inflation, exacerbated by the supply-side effects of distortionary taxation, triggers a con-
tractionary monetary response, which pushes down both consumption and investment. The key
lessons of the intertemporal Keynesian cross, however, continue to hold. A representative-agent
model has low multipliers; and while a two-agent model delivers a substantial impact multiplier
on deficit spending (in this case, ∼ 1.2), its cumulative multiplier is much smaller, ∼ 0.5. Only
the HA-two model, which matches iMPCs out of income and capital gains, implies substantial
multipliers both on impact and cumulatively, equal to ∼ 1.3 for both.

Throughout the paper, we consider several analytical alternatives to heterogeneous-agent mod-
els. We show that one popular model, the bond-in-the-utility (BU) model (eg, Michaillat and Saez
2021), fails to match intertemporal MPCs, because when calibrated to match M00, it predicts an
M10 that is too high relative to the data. We next introduce the “TABU” model, a two-agent (TA)
model that mixes hand-to-mouth and BU households, and show that it can simultaneously match
M00 and M10. We prove that its M matrix has the same first column as another popular analytical
model, the zero-liquidity (ZL) limit of the one-account heterogeneous-agent model (e.g. Krusell,
Mukoyama and Smith 2011, Werning 2015, Ravn and Sterk 2017).

Because of this result, once calibrated to M00 and M10, both TABU and ZL have similar iMPCs,
and therefore similar fiscal multipliers, to the HA-one model with low but nonzero liquidity. Our
analytical solution for TABU and ZL multipliers shows why cumulative multipliers are high under
deficit financing: future debt enters directly into the formula for current output. It also shows that
cumulative multipliers rise with the calibrated M10—providing an analytical counterpart to our
quantitative finding on the importance of intertemporal MPCs. At the same time, we find that
these analytical models have an important limitation: they imply iMPCs out of capital gains that
are far too large.

A large literature studies fiscal multipliers (see Hall 2009, Ramey 2011, and Ramey 2019 for
surveys). Beyond the Keynesian cross, the first generation of microfounded models assumed a
representative agent, and studied questions ranging from the role of the neoclassical wealth effect
on labor supply (Aiyagari, Christiano and Eichenbaum 1992, Baxter and King 1993) to the role
of monetary policy (Christiano, Eichenbaum and Rebelo 2011, Woodford 2011). By assuming
constant real interest rates, we shut down these effects to focus on the feedback from income to
consumption, and then reintroduce them in our quantitative model.

A second generation of microfounded models, building on Campbell and Mankiw (1989), aug-
mented the representative-agent model with a fraction of hand-to-mouth households, obtaining
“two-agent” models that could explain positive consumption multipliers in the data (eg Galí,
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López-Salido and Vallés 2007). As Coenen et al. (2012) documents, this modeling approach re-
mains dominant at central banks. We show that this approach is close to the static Keynesian cross
(1), echoing Bilbiie (2020). We also show that this class of models fails to match empirical iMPCs.

A recent “HANK” literature revisits stabilization policy with heterogeneous agents. Many
prominent early papers in this literature focused on monetary policy (McKay, Nakamura and
Steinsson 2016, Kaplan, Moll and Violante 2018, Auclert 2019). As shown by Werning (2015),
models in this literature and representative-agent models can have similar predictions for the
aggregate effects of monetary policy. We show, by contrast, that these models have vastly different
predictions for deficit-financed fiscal policy.

Other papers have studied fiscal policy in heterogeneous-agent frameworks with nominal
rigidities. Oh and Reis (2012) was an early paper studying the effect of fiscal transfers. McKay
and Reis (2016) focus on the role of automatic stabilizers. Ferriere and Navarro (2024) stress the
importance of the distribution of taxes for fiscal multipliers when there is heterogeneity in labor
supply elasticities. Closest to our work is Hagedorn, Manovskii and Mitman (2019), who also
study spending multipliers in a model with nominal rigidities similar to ours. Their analysis is
based on a different equilibrium selection criterion that relies on a long-run nominal debt anchor,
following Hagedorn (2016). Both our studies conclude that deficit-financed fiscal multipliers can
be significantly larger than one, and that balanced budget fiscal multipliers tend to be smaller.

Since this paper was first circulated, a literature has emerged studying fiscal policy with tractable
models that better match iMPCs, including Bilbiie (2024), Cantore and Freund (2021), and Angele-
tos, Lian and Wolf (2023). An open question is whether these models capture the same key forces
as richer heterogeneous-agent models. As we discuss in the paper, the verdict is mixed. Existing
models are essentially isomorphic to either TABU or ZL, which do a very good job of matching
the one-account heterogeneous-agent model, but imply different long-run behavior from the two-
account model and far too much spending out of capital gains. We speculate that a TABU model
enhanced with additional types that are heterogeneous in asset holdings and MPCs, similar to
Auclert, Rognlie and Straub (2023c), might achieve a better fit.

There is also a vast empirical literature on fiscal multipliers based on aggregate macroeconomic
evidence. As surveyed by Ramey (2019), this literature points to output multipliers in the range
of 0.6–0.8, though the data does not reject multipliers as high as 1.5 (Ramey 2011, ben Zeev and
Pappa 2017). The literature testing state dependence has mostly focused on the prediction from
the representative-agent literature that multipliers differ depending on the extent of the monetary
policy response (Auerbach and Gorodnichenko 2012, Ramey and Zubairy 2018). A robust pre-
diction of our heterogeneous-agent model is that multipliers also depend on the extent to which
spending is deficit-financed. While the empirical literature acknowledges the potential impor-
tance of deficits, this prediction has not been subject to extensive testing. One intriguing new case
study may be the large pandemic-associated deficits of 2020–21. These deficits have been followed
by persistently high aggregate demand and inflation, consistent with high intertemporal MPCs.

Finally, our paper builds upon several lines of research that seek to discipline macroeconomic
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models with heterogeneity. One literature identifies sufficient statistics for partial equilibrium
effects (see, for instance, Kaplan and Violante 2014, Berger et al. 2018 and Auclert 2019). This
paper shows that intertemporal MPCs are sufficient statistics for both partial and general equilib-
rium—both in the simpler case of the intertemporal Keynesian cross, where they entirely charac-
terize the transmission of fiscal policy, and also in a quantitative environment, where they continue
to summarize aggregate household behavior.

The paper proceeds as follows. Section 2 describes the environment in which we derive the in-
tertemporal Keynesian cross, and provides a condition for existence and uniqueness of solutions.
Section 3 presents empirical evidence on iMPCs. Section 4 lays out models of the intertemporal
consumption function and discusses their consistency with the iMPC evidence. Section 5 solves
for fiscal multipliers using the intertemporal Keynesian cross. Section 6 shows why iMPCs re-
main important to discipline models of consumption in broader quantitative models. Section 7
quantifies fiscal multipliers in such a model. Section 8 concludes.

2 From the static to the intertemporal Keynesian cross

2.1 The static Keynesian cross

Starting with the General Theory (Keynes 1936), research in the IS-LM tradition postulates that
aggregate consumption expenditure Ct at any date t is a certain static function C of aggregate
after-tax income Yt − Tt, the difference between aggregate output Yt and taxes Tt at that same date
t:

Ct = C (Yt − Tt) (3)

In equilibrium, aggregate output Yt must equal aggregate expenditure. When the latter is made
up of consumption and government spending Gt, this condition reads Ct + Gt = Yt.

Combining these two equations, we obtain an equation for the level of aggregate income Yt:

C (Yt − Tt) + Gt = Yt (4)

This equation is traditionally used to analyze the effect of a small perturbation dGt, dTt to govern-
ment spending or taxes on output dYt, around a steady state in which G, T and Y are constant:

dYt = dGt −mpc · dTt + mpc · dYt (5)

where mpc = C ′ (Y− T) is the economy’s marginal propensity to consume—the derivative of the
consumption function at the steady state.

Equation (5) is the well known, static “Keynesian cross”: it captures the simple idea that an
increase in government spending or a decline in taxes raises private income, which in turn leads
to an increase in private spending, demand, and income. Assuming that mpc < 1, this equation
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can be used to solve for the output response dYt to the fiscal shock dGt, dTt:

dYt =
dGt −mpc · dTt

1−mpc
(6)

Given the shock, the magnitude of the response is entirely determined by mpc. Intuitively, the
shock generates a first-round impulse to demand dGt − mpc · dTt, which is then multiplied by

1
1−mpc due to further rounds of private spending: every additional dollar spent is an additional
dollar earned, which further pushes up spending by mpc dollars and translates into even higher
income, and so on. Summing up the rounds, the multiplier in (6) is:

1 + mpc + mpc2 + · · · = 1
1−mpc

(7)

The static Keynesian cross has been extremely influential and is still routinely used by fiscal
policy analysts, who pay close attention to empirical estimates of the mpc. Its core assumption
of a static consumption function (3), however, has been severely criticized on both theoretical
and empirical grounds. In response to these criticisms, modern macroeconomics has turned to
microfounded models.

2.2 Microfounding an intertemporal consumption function

We now show how a microfounded economy gives rise to an intertemporal generalization of the
static consumption function underlying the Keynesian cross.

Consider an economy inhabited by a mass 1 of agents, labeled by i, with an infinite horizon and
perfect foresight over aggregate variables.5 The only available asset in the economy is a real bond
paying the real interest rate rt between time t and time t + 1. Production Yt is linear in effective
labor Nt, Yt = Nt, and there is perfect competition with flexible prices in the goods market. It
follows that the real wage wt = Wt/Pt (per unit of effective labor) is constant and equal to 1, and
that price inflation πt = (Pt − Pt−1)/Pt−1 is the same as wage inflation πw

t at all times t.
At time t, agent i works nit hours. Each of these hours provides eit units of effective labor, so

that aggregate hours are Nt =
∫

eitnitdi. We assume that the nominal wage Wt (per unit of effective
labor) is partially rigid. Agents are off their labor supply curves in the short run and instead take
their hours nit as given.6 For now, we assume a proportional allocation rule for labor hours, with
nit = Nt.7 We also assume a progressive retention function, as in Heathcote, Storesletten and

5Perfect foresight is not a limitation: since we restrict our attention to small shocks, the economy could alternatively
face aggregate risk, and our results would apply to its first-order perturbation solution in aggregates (see e.g. Boppart,
Krusell and Mitman 2018 and Auclert, Bardóczy, Rognlie and Straub 2021a).

6We assume sticky wages and flexible prices, rather than sticky prices and flexible wages. While the latter assump-
tion is common in the representative-agent New Keynesian literature, the former has more desirable properties when
combining heterogeneous agents and nominal rigidities, since it avoids countercyclical profits and large income effects
on labor supply (Broer, Hansen, Krusell and Öberg 2020, Auclert, Bardóczy and Rognlie 2023a).

7This imposes the normalization
∫

eitdi = 1. A more general proportional rule where nit = n(eit)Nt, with n some
function of eit, is equivalent to redefining the eit to include n, so we use nit = Nt for simplicity.
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Violante (2017), so that agent i’s after-tax income zit is given by:

zit = τt (wteitnit)
1−θ = (Yt − Tt) ·

e1−θ
it∫

e1−θ
it di

(8)

where τt is the time-varying intercept of the retention function and θ ∈ [0, 1] a constant pro-
gressivity parameter. The second equality in (8) follows from the definition of total taxes, Tt ≡
wtNt −

∫
zitdi, as well as Yt = Nt = wtNt. We relax both the proportional allocation assumption

and the functional form of the retention function in section 2.5.
We allow for a general class of models of consumption and saving behavior: agents can have

arbitrary preferences, income processes, and constraints on asset positions. Appendix A.1 de-
scribes this class formally; section 4 offers eight specific examples. All models have in common
that agents make their decisions taking interest rates rt and after-tax incomes zit as given and
respect budget constraints. Agent i’s consumption cit and asset position ait (the amount of real
bonds i holds at the end of period t) satisfy:

cit + ait = (1 + rt−1) ait−1 + zit (9)

with ait remaining bounded at all times.
Monetary policy follows the rule 1 + it = (1 + r) (1 + πt+1) for the nominal interest rate it,

where r is the steady-state real interest rate. Financial market arbitrageurs, as described in ap-
pendix A.2, enforce the Fisher equation 1 + rt = 1+it

1+πt+1
. In equilibrium, the path for the real

interest rate is therefore constant at rt = r for all t.8 This constant-real interest rate rule can be
viewed as a Taylor rule with a coefficient of 1 on expected inflation and provides, intuitively, a
middle ground between loose policy (like at the zero lower bound) and tight policy (like with an
active Taylor rule). We formalize this intuition in section 7.3.

In this environment, the only time-varying aggregate sequence that matters for agent i’s con-

sumption is aggregate post-tax income Zt ≡ Yt− Tt. Zt pins down individual income zit = Zt · e1−θ
it∫

e1−θ
it di

in (8). Hence, starting from the steady-state distribution of agents over their state variables at date
0,9 we can express aggregate consumption at date t as a function of the form:

Ct = Ct
(
{Zs}∞

s=0
)

(10)

taking in the full sequence {Zs}∞
s=0 of aggregate after-tax income. Similarly, there must exist an

aggregate asset function At = At
(
{Zs}∞

s=0
)

mapping {Zs}∞
s=0 to sequences of aggregate assets

8Since all wealth is invested in real bonds, the ex-post real return received by households on their assets at time t
is always equal to rt−1. In particular, there are no valuation effects at time 0, with households earning the steady state
real interest rate r on their assets at that time.

9While (10) can be derived assuming any fixed initial distribution, here we are interested in an MIT shock where
the economy starts from a steady state with no aggregate risk, implying a steady-state initial distribution. This is
consistent with interpreting our linearized model as giving impulse responses in a stochastic economy (see footnote 5).
In appendix E.5, we consider a state-dependent exercise where we start the economy at a different distribution.
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{At}∞
t=0. Appendix A.1 derives these results formally for our class of consumption-saving models.

Different underlying primitives of these models map into different functions Ct(·) and At(·).10

The intertemporal consumption function (10) is similar to the static Keynesian consumption func-
tion (3). Both map after-tax incomes into consumption. The key difference is that the intertemporal
consumption function is consistent with microfoundations and respects budget constraints. For
this reason, the entire time path of income, rather than just current income, matters for determin-
ing consumption. For example, any unspent past income is allowed to be saved and to increase
future consumption in (10), but not in (3). Likewise, agents can potentially borrow and spend
today out of anticipated future income in (10), while that is impossible in (3).

It is worth noting that general equilibrium assumptions are imposed as part of the derivation of
(10): in particular, the path {rs}∞

s=0 is not included as an argument, because of our assumption that
monetary policy fixes rs = r. This distinguishes (10) from intertemporal consumption functions
as defined in Kaplan et al. (2018) and Farhi and Werning (2019), which summarize the household
problem without imposing further equilibrium restrictions. We generalize Ct and move closer to
this other approach in section 2.5.

2.3 The intertemporal Keynesian cross

To solve for general equilibrium, fiscal policy and market clearing conditions remain to be speci-
fied. We let the government exogenously set sequences of taxes Tt and spending Gt, issuing bonds
to satisfy its budget constraint, Bt = (1 + r) Bt−1 + Gt − Tt, and keeping Bt bounded. The goods
market clearing condition is Ct + Gt = Yt. Combined with equation (10) and the definition of Zt,
we obtain:

Ct ({Ys − Ts}) + Gt = Yt (11)

Just like (4), this equation captures a fixed point in output. However, the fixed point in (11)
involves infinite-dimensional sequences: given fiscal policy {Gt} and {Tt}, (11) can be solved for
{Yt} and {Ct}. We have derived an intertemporal analog to the nonlinear version of the static
Keynesian cross (4).

Equation (11) implies that all real aggregates in the economy, {Yt, Ct, Gt, Tt, Bt, rt}, are deter-
mined without any reference to nominal quantities. To obtain the nominal wage and price levels
Wt = Pt, as well as the nominal interest rate it, we need to specify the wage Phillips curve—the
dynamic relation between wage inflation πw

t and real aggregates. In appendix A.3, we derive such
a Phillips curve for our environment by generalizing the standard microfoundation in the sticky-
wage New Keynesian literature (e.g. Erceg, Henderson and Levin 2000 and Schmitt-Grohé and
Uribe, 2005) to models with household heterogeneity.

Linearization. Just as we linearized the nonlinear static Keynesian cross (4), we next linearize
(11). To do so, a few technical assumptions are required. We maintain the assumption that the

10From now on, we drop the s = 0 . . . ∞ sub- and superscripts on the arguments of C.
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economy is initially at a steady state with constant Y, G, T, and r > 0. We consider bounded per-
turbations in output dY ≡ {dYt} ∈ `∞ and similarly bounded policies dT, dG ∈ `∞.11 We assume
that the function C : `∞ → `∞ is Fréchet-differentiable around the steady state, in other words
that its derivative, a sequence-space Jacobian (Auclert et al. 2021a), is a bounded linear operator
M : `∞ → `∞.

For all models introduced in section 4, this operator can be represented by an infinite matrix
[Mts]∞t,s=0, meaning that for any x = {x0, x1, . . .} ∈ `∞, if y = Mx = {y0, y1, . . .} ∈ `∞, then yt can
be written as yt = ∑∞

s=0 Mtsxs (see appendix A.4). We show this directly for our analytical mod-
els by explicitly deriving the matrix, and we verify this numerically for our quantitative models.
Going beyond the models of section 4, we also provide a simple condition in appendix A.4 that
ensures a matrix representation. Henceforth in this paper we will assume that such a representa-
tion exists, and for notational convenience we will use M interchangeably to denote the operator
and the infinite matrix representing it.12

We refer to M as the matrix of intertemporal MPCs, or iMPCs for short. Entry Mts of M gives the
aggregate consumption response at date t to an anticipated increase in aggregate after-tax income
at date s. Entry M00 is the impact response to an unanticipated increase in income, which is usually
how the static mpc is estimated—making intertemporal MPCs M a generalization of the mpc.

We consider the first-order perturbation solution to (4) for a bounded fiscal policy shock dG,
dT satisfying the intertemporal budget constraint of the government,

∞

∑
t=0

dGt

(1 + r)t =
∞

∑
t=0

dTt

(1 + r)t (12)

We next characterize the sequences dY that solve (11) to first order.

Proposition 1 (The intertemporal Keynesian cross). Consider a bounded shock dG, dT satisfying (12).
Then, any impulse response of output, dY, must satisfy:

dY = dG−M · dT + M · dY (13)

where M has entries Mts ≡ ∂Ct
∂Zs

, and satisfies ∑∞
t=0

Mts
(1+r)t−s = 1 for all s.

Equation (13) is the intertemporal Keynesian cross, or IKC for short. It is the intertemporal analog
to the static Keynesian cross (5). In the IKC, the impulse response of output dY depends on the
entire time path of government spending dG and taxes dT. For example, as consumption today
typically responds to past and future after-tax income in (10), output today also generally depends
on taxes and government spending in the past and future.

11Here boldface denotes an infinite-dimensional sequence indexed by 0, 1, . . ., which we represent as a column vector,
and `∞ is the space of bounded sequences endowed with the sup norm.

12More generally, it is possible that a bounded linear operator M : `∞ → `∞ may not have an infinite matrix repre-
sentation: indeed, we describe a non-economic counterexample in appendix A.4. As we discuss there, it seems unlikely
that such a counterexample could emerge from a reasonable economic model.
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Analogously to the static Keynesian cross, where mpc is the sole determinant of the output
response to fiscal policy, in the intertemporal Keynesian cross, the matrix of iMPCs M is the suf-
ficient statistic for this response. This result puts M at the heart of this paper. In section 3, we
discuss how much we can learn about M from the data alone. In section 4, we derive M for sev-
eral models of the intertemporal consumption function C (·), and explain how the data disciplines
the structural parameters of these models. Sections 5–7 investigate the role of M in determining
the effects of fiscal policy across our models.

In the next subsection, we start by solving the IKC (13) for a given M.

2.4 Solving the intertemporal Keynesian cross

In the static Keynesian cross, provided that mpc < 1, the solution to (5) is always given by (6),
and can also be obtained from the iteration (7). For the intertemporal Keynesian cross (13), it is
tempting to proceed analogously, writing dY = (I−M)−1(dG−M · dT) where I is the identity,
or dY = (I + M + M2 + . . .)(dG−M · dT).

Unfortunately, the solution is not so straightforward. The reason is that, in a present value
sense, intertemporal MPCs must aggregate to 1—the present value of any column s of M is iden-
tical to the present value of a date-s income transfer:

∞

∑
t=0

Mts

(1 + r)t =
1

(1 + r)s (14)

We can write this more succinctly by introducing the vector of present-value discount factors as
q ≡

{( 1
1+r

)t
}∞

t=0
. Then (14) reads q′M = q′, or alternatively q′ (I−M) = 0. It follows that the

inverse (I−M)−1 cannot exist: no sequence with nonzero present value lies in the range of I−M.
Similarly, the series I + M + M2 + . . . may diverge.

However, a bounded solution to (13) can still exist. This is because the term dG−M · dT on
the right hand side of the IKC (13) does, in fact, have a present value of zero: q′dG− q′M · dT =

q′dG− q′dT, which is zero by the government’s intertemporal budget constraint (12). The term
dG−M · dT can, in fact, lie in the range of I−M.13

To obtain the solution when it exists, we first pre-multiply the IKC (13) with an appropriately
chosen infinite matrix K:

K(I−M)dY = K(dG−MdT) (15)

We then observe that, if K(I −M) is invertible, the solution is simply given by dY = (K(I −
M))−1K(dG−MdT). Our next proposition shows that there is in fact a choice of K such that this
strategy works whenever the IKC has a unique solution.14 To state the proposition, we denote

13Loosely speaking, in (6), the denominator is effectively zero but the numerator is also zero, so that it is possible to
have a finite solution dYt.

14Note that, in finite dimensions, this approach never works: no matter how we pre-multiply a finite-dimensional
singular square matrix, it remains singular. In infinite dimensions, however, this is possible. A simple example is that
neither the lead operator F nor its transpose the lag operator L is invertible, but their product FL = I is.
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by F the lead operator that maps {x0, x1, . . .} to {x1, x2, . . .}, corresponding to a matrix with ones
directly above the diagonal. We have:

Proposition 2. Let K ≡ −∑∞
t=1(1+ r)−tFt. There exists a unique solution dY ∈ `∞ to (13) for all shocks

dG, dT ∈ `∞ satisfying (12) if and only if K(I−M) is invertible. When this is the case, the solution is
given by

dY =M(dG−MdT) (16)

where the multiplierM is the bounded linear operator defined byM ≡ (K(I−M))−1K. This multiplier
satisfiesM(I−M) = I as well as (I−M)Mx = x for all x ∈ `∞ such that q′x = 0.

The proposition, proved in appendix A.6, picks K such that K(I −M) is the asset Jacobian
A—the derivative of the aggregate asset function At ({Zs}) defined in the previous section. With
this choice of K, we also have K (dG− dT) = dB, where dBt is the path of debt implemented by the
government. Hence, (15) reads A (dY− dT) = dB, which is the linearized asset market clearing
condition. By Walras’s law, if we can find such a solution that clears the asset market, then it also
will clear the goods market at all dates. Interestingly, even though the shock to demand from
fiscal policy, dG−MdT, has zero present value, and even though M conserves present value, the
general equilibrium output response (16) generally does not have zero present value.

How do we know when A = K(I−M) is invertible? We pursue two routes in this paper. For
simple models, A has an analytical form, and we will check invertibility directly. For quantita-
tive models, where A is constructed numerically, we check that the winding number of A is zero,
applying the criterion in Auclert, Rognlie and Straub (2023b). We discuss the numerical imple-
mentation of proposition 2 in appendix A.7.

2.5 Extending the intertemporal Keynesian cross

We just derived an intertemporal Keynesian cross (13) for the response to fiscal policy shocks. We
now discuss how this equation extends to other shocks and to more general environments.

To do this, we generalize the intertemporal consumption function (10). We allow for (a) a
general allocation rule, nit = N (eit, Nt), subject to

∫
N (eit, Nt)di = Nt at all times; (b) a general

retention function zit = Z (eitnit, Tt); (c) real interest rates rt to vary; and (d) a general shifter Θ to
the consumption function. As we show in appendix A.8, the consumption function then becomes:

Ct = Ct ({Ys, Ts, rs, Θ})

and the nonlinear fixed-point equation for output is now:

Ct ({Ys, Ts, rs, Θ}) + Gt = Yt (17)

The shifter Θ can represent any shock that shuffles intertemporal consumption out of income,
while leaving the aggregate budget constraint undisturbed: for instance, a shock to preferences,
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borrowing constraints, income risk, or inequality. By having Yt and Tt enter separately, we allow
changes in labor income and taxes to have different incidence across agents—for instance, taxes
may be increased mostly on the rich, but higher aggregate income benefits the poor as well. Ad-
ditionally, monetary policy now implements an arbitrary exogenous real interest rate path {rt}.15

With slight abuse of notation, we define the vector dr to have elements d log (1 + rt) = drt
1+r . To

respect the intertemporal government budget constraint, fiscal policy shocks must now satisfy
q′dT = q′dG + Bq′dr.

Following the same steps as in proposition 1, we can differentiate (17) to obtain:

dY = Mrdr + ∂C + dG−MTdT + MdY (18)

where ∂C ≡ ∂C
∂Θ dΘ is defined to be the direct effect of the shifter on consumption, and now M ≡

∂C
∂Y , MT ≡ ∂C

∂(−T) , and Mr ≡ ∂C
∂ log(1+r) . If Yt has the same incidence as Tt for all agents, so that

individual income is determined by Yt − Tt, we have MT = M.16

Equation (18) has the same exact form as (13), except that the demand impulse dG−MdT is
replaced by the more general expression Mrdr + ∂C + dG−MTdT; as we show in appendix A.8,
this sequence still has zero present value. It immediately follows that the solution to (18) is:

dY =M
(

Mrdr + ∂C + dG−MTdT
)

(19)

Equation (19) shows that many different kinds of shocks—not only fiscal shocks, but also
shocks to interest rates, preferences, borrowing constraints, and inequality—work through the
same general equilibrium mechanisms, governed by iMPCs M and the resulting multiplier op-
eratorM. Indeed, M allows us to make predictions about transmission from partial to general
equilibrium more generally. For instance, if a deleveraging shock has a direct consumption effect
of ∂C, then a fiscal shock that perturbs government spending by dG = ∂C, leaving taxes un-
affected, will have exactly the same general equilibrium output effect, because dG and ∂C both
have the same multiplierM in (19). The same result applies to shocks to inequality (Auclert and
Rognlie 2018), taxes (Wolf 2023b), and monetary policy (Wolf 2023a).17

15See appendix A.2 for details on how a monetary authority controlling nominal interest rates can implement any
arbitrary path of real interest rates in this economy.

16In the absence of dr and ∂C shocks, in this case we recover the original form of the intertemporal Keynesian cross
(13) under slightly more general assumptions: it is not necessary to assume proportional labor allocation and our
specific tax rule, only that individual income is determined by Yt − Tt.

17Since two models with different M matrices have different M, equation (19) shows that they have a different
impulse responses of output to pure government spending shocks dG. In the language of Kaplan and Violante (2018),
they are nonequivalent for these shocks. However, they could be weakly equivalent, i.e. deliver the same impulse
responses, for monetary policy (see footnote 41), or even strongly equivalent for balanced-budget fiscal policy (see
proposition 3, where after-tax income entering the household problem is unchanged in equilibrium).
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2.6 Limitations of the intertemporal Keynesian cross

In more general environments, the intertemporal Keynesian cross no longer holds with our defini-
tion of the M matrix. This is typically because endogenous variables other than aggregate output
matter for aggregate consumption.

For instance, suppose that nominal interest rates are set according to a Taylor rule. Then, the
real interest rate path is determined by inflation, which is itself endogenous, and this matters for
consumption. In this case, even our generalized intertemporal Keynesian cross (18) cannot be
used to solve directly for output, and must instead be solved jointly with another equation that
characterizes the real interest rate path dr. As we show in appendix B.1, it is still possible to reduce
equilibrium to a single equation with the same form as the IKC, by replacing the M with a more
complex M̃ that reflects the feedback through endogenous dr. But now, constructing M̃ requires
knowledge of structural parameters beyond just iMPCs out of income.

Appendix B shows that a variety of other changes to the model—nominal bonds, sticky prices,
endogenous labor supply with GHH preferences, durable goods, and investment—have similar
implications: they break the original IKC, and replace M with a more complicated M̃ that involves
other structural parameters. Although this representation can be useful, M̃ is harder to interpret
than M and lacks a simple sufficient statistic interpretation. This representation also requires the
ability to reduce equilibrium to a sequence of equilibrium conditions in a single goods market.18

Away from these cases, it is generally no longer possible to obtain a single equation map-
ping shocks to general equilibrium outcomes. However, it is often still possible to summarize
the aggregate consumption behavior in the model using our original definition of M, combined
with other derivatives of the consumption function. These still constitute sufficient statistics for
how household consumption responds to variables such as income and interest rates, but now
the equilibrium evolution of these variables depends on the non-household parts of the model
as well. Section 6 takes this approach, finding that, in the quantiative environment we consider,
the only additional piece of information beyond M required to summarize aggregate household
behavior is the impulse response of consumption to capital gains.

3 Empirical evidence on intertemporal MPCs

In the intertemporal Keynesian cross, the matrix of iMPCs M is a sufficient statistic for the output
response to fiscal policy. In this section, we explore what we can learn about M from micro data
on consumption responses to income changes.

18This is not generally true, for instance, when there is flexible labor supply and preferences are not GHH, since then
two endogenous prices (real interest rates and wages) must clear two markets (goods and labor).
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3.1 Response to unexpected income shocks

To estimate the first column of M, we observe that given the assumptions of section 2.2, this
column can be expressed as an average of individual responses to an unexpected income shock,
∂E0 [cit] /∂zi0, weighted by after-tax income in the year of the income shock. Formally, we have:19

Lemma 1. The first column of M can be written as:

Mt0 =
∫ zi0∫

zι0dι
· ∂E0 [cit]

∂zi0
di (20)

We propose two sources of evidence for the path of individual responses ∂cit/∂zi0.20 In both
cases, consumption cit is defined as spending on all goods, including durable goods, consistent
with the theory (see appendix B.5).

Norwegian lottery evidence. Our first source of evidence comes from Norwegian administra-
tive data, as analyzed in Fagereng et al. (2021). The data includes comprehensive information
on consumption and uses the random winnings of lotteries to identify the dynamic consumption
responses to income shocks. The authors’ main estimating equation is:

ci,t+k = αi + τt+k + γklotteryit + δXit + ε it k = 0, . . . 5 (21)

where ci,t+k is consumption of individual i in year t + k, αi an individual fixed effect, τt+k a time
fixed effect, Xit are household characteristics, and lotteryit is the amount household i wins in year
t. The authors provided us with regression results weighted by after-tax incomes at the time of the
lottery win.21 Since lottery wins are not forecastable and disbursed at the time they are announced,
the estimated γ̂k correspond exactly to the weighted average in (20), and therefore to the Mk0 that
matters for the theory.

The black dots in figure 1 represent the point estimates for γ̂0 through γ̂5, together with 99%
confidence intervals. Consistent with a large empirical literature, the annual MPC out of a one-
time transfer is large, at about 0.51. What the literature has not stressed as much, but clearly
appears in the Norwegian data, is that the iMPC in the year following the transfer is also quite
large, at around 0.18. After this point, the iMPCs slowly decay and become statistically insignifi-
cant around year 4.

19For a proof, see appendix C.1. When the incidence of taxes and labor income are different, this approach can be
generalized to separately estimate MT , using a different weighting function.

20The existing literature mostly focuses on estimating contemporaneous marginal propensities to consume (which is
helpful to inform M00 in our notation), e.g. Shapiro and Slemrod (2003), Johnson, Parker and Souleles (2006), Blundell,
Pistaferri and Preston (2008), Jappelli and Pistaferri (2014), and Fuster, Kaplan and Zafar (2021).

21Our reference estimates are their weighted full sample estimates, including responses to all sizes of lottery winnings
up to $150,000 (see appendix C.2 for additional details.) An alternative would have been to restrict the sample to only
small winnings. However, MPC estimates in this sample are inherently imprecisely estimated due to the large noise-
signal ratio.
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Figure 1: iMPCs in the Norwegian and Italian data
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A lower bound from Italian survey evidence. Our second source of evidence is a lower bound
estimate for ∂E0 [cit] /∂zi0 constructed from survey data on MPCs. We implement this bound
using the 2016 version of the Italian Survey of Household Income and Wealth (SHIW), which asks
survey respondents to report their annual contemporaneous MPC, MPCi ≡ ∂ci0/∂zi0.

We obtain a point estimate for M00 by weighting MPCi by income. To bound Mt0 for t > 0,
we propose the following idea. In any model where current income and assets enter the budget
constraint interchangeably, MPCi also gives consumption at the margin out of saved assets.22

Now consider M10. How small can this be, assuming the cross-sectional distribution of MPCi is
the same in years 0 and 1? It is smallest when the households who save the most out of an income
shock in year 0—i.e. the households with the lowest MPCi, and the highest savings (1 + r) · (1−
MPCi) entering the next period—are again the households who have the lowest MPCi out of their
savings in year 1. It follows that a weighted average of (1 + r) · (1−MPCi) ·MPCi gives a lower
bound M10 for M10.

In appendix C.3, we formalize this argument, and extend it to all iMPCs Mt0 for t > 0.23 For
t > 1, the implied lower bounds are on the cumulative iMPC—the present value of spending
through each date t—and we calculate Mt0 that sum to these cumulative bounds.

The red diamonds in figure 1 display our Mt0. The results are remarkably consistent with

22This is true for all models in section 4 except the two-account HA model, where assets in the illiquid account do
not enter interchangeably with income, and therefore the argument for the lower bound does not apply. We will use
the lower bound to reject other models where it does apply.

23To deal with weighting by income at date 0, the full argument in appendix C.3 requires an intuitive additional
assumption on the dynamic relationship between date-0 income and subsequent MPCs. We verify that this assumption
holds in this paper’s one-account heterogeneous-agent model. We also validate that the overall distribution of MPCs is
stationary by comparing the 2010 and 2016 distributions of MPCs in the SHIW.
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those obtained from the Norwegian administrative data. While the weighted contemporaneous
MPC is slightly lower, at 0.44, the subsequent lower bound estimates are closely aligned with those
obtained from the Norwegian data. The year-1 lower bound, in particular, is equal to 0.14 and thus
only slightly below the Norwegian estimate of 0.18. Recall that this bound is a weighted average
of (1 + r) · (1− MPCi) · MPCi, so it is entirely accounted for by individuals in the sample that
report intermediate MPCs, not too close to either 0 or 1. This suggests that matching the iMPCs in
the data will require models that generate an entire distribution of MPCs, including intermediate
MPCs, strictly between zero and one.

3.2 Other evidence on iMPCs

We now discuss what we know from the data about the other elements of M, beyond the first six
elements of its first column.

Other elements of the first column of M. Proposition 1 restricts the first column of M to have a
present discounted value of 1. In the Norwegian data, the present value ∑5

k=0
γ̂k

(1+r)k is below, but
not too far from, 1 for reasonable values of r: for instance at r = 5% we obtain a present value of
0.87. This suggests that, while households in the aggregate spend the majority of lottery earnings
in the first years after receipt, they also save a small fraction, which then remains available to be
spent in later years. Figure 2 in Fagereng et al. (2021) confirms that this is the case: the point
estimate for the increase in total assets by year 5 is 0.16. Around 50% of this total is accounted for
by stocks, bonds and mutual funds. This suggests that some of these savings may be held for the
long term, and that households may spend them down fairly slowly.

Other columns of M: expected income shocks. In an ideal world, we would also have informa-
tion about the other columns of the M matrix. Unfortunately, there currently exists very limited
information on consumption responses to anticipated changes in income one year out or later. As
we discuss in appendix C.4, the existing evidence points to the presence of some, albeit modest,
anticipation effects (e.g. Fuster et al. 2021, Agarwal and Qian 2014, Di Maggio et al. 2017). The
evidence is currently too imprecise for us to confidently use it as a model input.

Takeaway: the need for additional structure. The discussion in this section suggests that exist-
ing data are currently too limited to allow us to fully construct M without imposing more structure
from a model. We thus proceed by specifying several microfounded models of consumption and
saving, each of which implies an iMPC matrix M. We show how the existing data on M can be
used to discriminate between the models, and how each model’s M shapes its fiscal policy impli-
cations. As the empirical literature estimating iMPCs develops further, we should be able to learn
more about M and refine our view of the types of models that can fit the empirical evidence.
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4 Models of iMPCs and their fit to the data

We now specify several models of the intertemporal consumption function Ct
(
{Zs}∞

s=0
)
, starting

from standard models with analytical solutions and proceeding to increasingly complex quantita-
tive models. Each of the models we study offers a low-dimensional parameterization of M, which
we compare and calibrate to the evidence in the preceding section.

4.1 Analytical models: RA, BU, TA and TABU

We start by describing a class of four analytically tractable models, for which M admits a closed-
form solution. This section summarizes our results; appendix D.2 provides detailed derivations.

There is a mass 1− µ of unconstrained agents. These agents earn post-tax income Zt ≡ Yt − Tt

in period t and have access to a risk-free bond that pays the real interest rate r. Given initial bonds
au
−1, they solve the problem:

max
∞

∑
t=0

βt {u (cu
t )− v (nu

t ) + χ (au
t )}

s.t. cu
t + au

t = Zt + (1 + r) au
t−1 (22)

where u (increasing and concave) is the utility from consumption, v (increasing and convex) the
disutility from labor, and χ (concave, though not necessarily increasing everywhere) is the utility
for holding assets at. The remaining mass µ of agents are constrained, or “hand-to-mouth”, with
flow utility u (cc

t)− v(nc
t), and consumption cc

t = Zt. Aggregate consumption is Ct = (1− µ) cu
t +

µcc
t . We study these models around a steady state with constant Y, T, cc, cu, and au.

Two canonical models are nested in this setting, as well as two more recent models of house-
hold behavior. The two canonical models are the representative-agent model (RA), which only has
unconstrained agents and no assets in utility, µ = χ = 0; and the two-agent model (TA), which
has some fraction µ > 0 of constrained agents but no assets in utility, χ = 0. The two more re-
cent models are, first, the asset-in-utility or bond-in-utility model (BU) which only has unconstrained
agents µ = 0, but χ 6= 0. And second, we introduce the two-agent bond-in-utility model (TABU),
which has both µ > 0 and χ 6= 0. The steady-state assumption imposes that β (1 + r) = 1 in both
RA and TA. By contrast, BU and TABU can have any β (1 + r), depending on the sign of χ′ (au).

The two canonical models: RA and TA. The RA model provides the simplest and earliest theory
of the intertemporal consumption function (Friedman 1957). This model admits the M matrix:

MRA =


(1− β) (1− β) β (1− β) β2 · · ·
(1− β) (1− β) β (1− β) β2

(1− β) (1− β) β (1− β) β2

...
. . .

 = (1− β) 1q′ =
1q′

q′1
(23)
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Figure 2: iMPCs in the Norwegian data and in several models
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(b) Alternative models

Data
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Notes: All models are calibrated to match r = 0.05. RA does not have any other free parameter. The single free
parameter in BU (λ), TA (µ), HA-one (A/Z) and HA-two (ν) is calibrated to match M00 = 0.51. The additional free
parameter in TABU and ZL (µ) is calibrated to match M10 = 0.16 (its value in the HA-one model). The HA-two and
HA-hi-liq models are calibrated to an aggregate ratio of assets to post-tax income of A/Z = 6.29, its value in the model
with capital in section 7.

where 1 is a vector of ones, and q ≡
{( 1

1+r

)t
}∞

t=0
is the vector of discount factors defined in section

2.4, and here 1
1+r = β. MRA encodes well-known permanent-income consumption behavior: each

period, agents spend a constant fraction 1− β out of the present value of their income. Observe
that MRA has rank 1, and is described by the single parameter β. Therefore, once we calibrate the
model to a target real interest rate r, the RA model has no free parameters.

The red line in figure 2(b) shows the first column of MRA: the impulse response to an unex-
pected date-0 income shock. This impulse response is flat at 1− β = r

1+r , where we pick r = 5%.
Clearly, the RA model cannot fit the data for any value of r. As figure 3(a) shows, the other
columns of MRA are also flat, reflecting the ability of agents to borrow and smooth consumption
perfectly in anticipation of any future increase in income.

A classic strategy to raise MPCs is to assume that a fraction µ of agents are hand-to-mouth:
this is the TA model, also known as the spender-saver model (Campbell and Mankiw 1989). Since
for hand-to-mouth households as a group, M equals the identity I (agents consume income in the
period they receive it), the M matrix of the TA model as a whole is the weighted average:

MTA = (1− µ)M + µI (24)

Relative to the RA model, MTA has one additional free parameter µ. This parameter can be cali-
brated to generate any desired M00. The orange line in figure 2(b) shows the first column when we
calibrate µ to match M00 in the Norwegian data. The iMPCs drop off immediately after the receipt
of income, and therefore cannot match the data’s M10. As figure 3(b) shows, other columns have
the same feature: the MTA matrix features sharp spikes when income is received, representing the
response of constrained hand-to-mouth agents in that period, and that period alone.
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Recent tractable models: BU and TABU. A simple model that relaxes this sharp spike property,
yet maintains high MPCs, is the BU model, as recently studied by Kaplan and Violante (2018),
Hagedorn (2018) and Michaillat and Saez (2021). The M matrix of the BU model has three param-
eters: β and r, as well as λ, the slope of the asset policy function in the steady-state. In appendix
D.2, we provide a complete analytical expression for MBU as a function of these parameters. In
particular, we show that the first column of MBU decays exponentially:24

MBU
t0 =

(
1− λ

1 + r

)
· λt for all t ≥ 0 (25)

We keep r = 5% and calibrate λ to match M00 from the Norwegian data in figure 2(b). As the
figure shows, M10 is significantly higher for the BU model than for the TA model. In fact, due to
the exponential decay, MBU

10 = λMBU
00 is too large relative to the data.

Figure 3(c) plots other columns of MBU for a choice of β = 0.87, the discount factor in the
one-account heterogeneous-agent model introduced below. Observe that the columns s of MBU

initially differ in shape, because for small s, agents have little or no time to spend in anticipation
of the date-s income shock. As we increase s, this effect goes away and the columns converge
to a stable long-run pattern, which we derive analytically in the appendix. The existence of this
long-run pattern is a property shared among all the remaining models we introduce in this section
(see figures 3(d)–(f)).

Finally, by assuming µ hand-to-mouth and 1 − µ bond-in-utility households, we obtain the
“TABU” model. This model offsets the disadvantages of the TA model, where M10 was too low,
and the BU model, where M10 was too high. Its iMPC matrix is a weighted average of I and MBU ,
MTABU = µI + (1− µ)MBU . The TABU model has four parameters r, β, µ and λ. In figures 2(a)
and 3(d), we leave r and β as before and calibrate µ and λ to jointly match M00 and M10.25

4.2 The one-account heterogeneous-agent model and its zero liquidity limit

We now introduce the consumption function for the canonical one-account heterogenous-agent
model, which is the backbone of a large literature following Bewley (1980).

The economy is populated by a unit mass of households, who face idiosyncratic income un-
certainty. Agents vary in their idiosyncratic ability state eit, which follows a Markov process with
fixed transition matrix Π. The mass of agents in idiosyncratic state e is always equal to π (e),
the probability of e in the stationary distribution of Π. The average ability level is normalized
to be one, so that ∑e π (e) e = 1. As in section 2.2, agent i’s post-tax labor income is given by

24For other derivations of some of the iMPCs of a BU model, see Cantore and Freund (2021), Aggarwal, Auclert,
Rognlie and Straub (2023), and Wolf (2023a). The former argues that this model is first-order equivalent to a model
with portfolio adjustment costs. The latter two argue that it is also first-order equivalent to a perpetual-youth OLG
model as in Blanchard (1985). See proposition 7 in Aggarwal et al. (2023) for a proof of this equivalence.

25β = 0.87 and M10 = 0.16 are chosen to be the same as in the next section’s HA-one model to make these models
comparable. Appendix D.2 provides analytical formulas showing the effect of changing these parameters for the M
matrix, and section 5 provides related formulas for fiscal multipliers.
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Figure 3: iMPCs in eight standard models
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Notes: The models are calibrated as in figure 1. The discount factors, which are relevant for anticipation, are reported
in table 2.

zit =
e1−θ

it∫
e1−θ

it di
Zt. Agent i can only hold assets in a single, liquid account ait. Given his initial asset

position ai,−1, his objective is to maximize utility:

E

[
∞

∑
t=0

βt {u (cit)− v (Nt)}
]

(26)

subject to the budget constraint in (9) and to the borrowing constraint ait ≥ 0. Here, u (c) is the
constant elasticity of substitution (CES) utility function c1−1/σ

1−1/σ with intertemporal elasticity σ.
Given a calibration for the income process (Π, e, θ) and (r, β), the model generates a stationary

distribution over its state variables (a, e) and an aggregate consumption function of the form (10).
We follow Heathcote et al. (2017) and set the curvature parameter in the retention function to
θ = 0.181. For our calibration of Π, we follow standard practice in the literature and assume
that gross income follows an AR(1) process. We use Floden and Lindé (2001)’s estimates of the
persistence of the US wage process, equal to 0.91 yearly, set the variance of innovations to match
the standard deviation of log gross earnings in the US of 0.92 as in Auclert and Rognlie (2018), and
discretize this process as an 11-point Markov chain. Appendix D.3 discusses the model’s solution.

The traditional way to complete the calibration of this one-account model is to select the dis-
count factor β to hit a target for total assets. We calibrate the HA-hi-liq model, for “high-liquidity”,
to hit a ratio of assets to after-tax income A/Z = 6.29, its value in our quantitative model of sec-
tion 7. This is typical for a calibration where households can invest in capital as well as bonds.26

26We calibrate A/Y ' 3, and Z/Y ' 0.5 to be consistent with the US labor share and the average tax rate on labor.
See section 7.1.
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Table 2: Calibrating models of the intertemporal consumption function

Parameter Parameter RA HA-hi-liq TA BU TABU ZL HA-one HA-two

σ Elasticity of int. substitution 1 (same across all models)
r Real interest rate (annual) 0.05 (same across all models)
A/Z Assets to post-tax income 6.29 6.29 6.29 6.29 6.29 0 0.21 6.29
β Discount factor (annual) 0.95 0.94 0.95 0.87 0.87 0.87 0.87 0.93
µ Effective share of HtM 0 0.01 0.49 0 0.29 0.29 0.30 0.36
λ Effective persistence of assets 0.51 0.72 0.72
m Effective MPC of saver 0.51 0.31 0.31
(ρe, σe) log e persistence & std. dev (0.91, 0.92) (0.91, 0.92)
θ Retention function curvature 0.181 0.181
Ailliq/Z Illiquid assets to post-tax inc. 4.83
ζ(1 + r) Illiquid-liquid spread 0.08
ν Adjustment probability 0.089

Note: For analytical models (RA, TA, BU, TABU, ZL), the effective share of hand-to-mouth (HtM) is the parameter µ.
For quantitative models (HA-hi-liq, HA-one, HA-two), it is the share of income accruing to agents that have zero assets
in their liquid accounts, and so an MPC of 1 out of transfers to that account.

Figure 1(b) shows the outcome of this exercise. The static MPC M00 is too low: as Kaplan and
Violante (2022) have argued, this model cannot explain the high MPCs in the data. The following
iMPCs are too low as well. In fact, as figure 2(b) shows, all iMPCs are close to those of an RA
model. Given that M is a sufficient statistic for the response to fiscal policy, this suggests that this
model will behave similarly to RA in general equilibrium, reminiscent of the famous Krusell and
Smith (1998) quasi-aggregation result.

An alternative way to approach calibration is to select β to hit a target for M00. We call this
the HA-one model. As table 2 shows, this procedure delivers an annual β = 0.87: agents have
to be quite impatient to allow themselves to stay close to the borrowing limit where their MPCs
are high. Consequently, the average ratio of assets to after-tax income is only A/Z = 0.21, very
low relative to the data. While this makes HA-one a challenging model for general equilibrium
analysis, from the perspective of household behavior, this model turns out to have a much better
fit to the iMPC data: as figure 2(a) shows, once we calibrate the model to hit M00, it also fits the
other Mt0 from the data very well. Figure 3(e) plots other columns of the Mone matrix.

Note, in fact, from figure 3, that the iMPC matrix of the HA-one model looks extremely similar
to that of our calibrated TABU model. This is not a coincidence, as can be understood by studying
the well-known zero liquidity limit of the one-account model. As we show in appendix D.4, if
we keep recalibrating β as we take the limit A → 0, the resulting steady state is tractable and
admits a closed form solution for its iMPC matrix, MZL. Just like TABU, MZL is described by four
parameters r, β, λ, µ, and, in fact, has the same first column as MTABU . This explains the similarity
between TABU and the HA-one model, which has low enough liquidity that it is similar to the ZL
model.27

27In spite of their similarities, ZL and TABU are not exactly identical. The distinction is due to the fact that the
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4.3 The two-account heterogeneous-agent model

We saw that the one-account HA model faces a tradeoff between hitting a reasonable ratio of assets
to post-tax-income A/Z (in HA-hi-liq) and hitting a reasonable M00 (in HA-one). This is a well-
known tradeoff in the literature. The leading model that is able to match both M00 and a reasonable
A/Z is the two-account model (see Kaplan and Violante 2014, 2022).28 Here we model illiquidity
a la Calvo as in Bayer, Born and Luetticke (2024), because this is computationally tractable and
more amenable to analytical results.29 In the two-account model, or HA-two, households choose
consumption c̃it, which gives them flow utility u (c̃it). Otherwise, the objective is (26), the same
as for the HA-one model, with CES utility u, which households maximize subject to the following
budget and borrowing constraints:

c̃it + aliq
it =

e1−θ
it∫

e1−θ
it di

Zt + (1 + r) (1− ζ) aliq
it−1 − dit · 1{adjit=1} (27)

ailliq
it = (1 + r)ailliq

it−1 + dit · 1{adjit=1} (28)

aliq
it ≥ 0, ailliq

it ≥ 0 (29)

Here, dit represents net transfers from the liquid to the illiquid account. Agents are only able to
transfer funds between accounts when adjit = 1, which occurs iid with probability ν. Both liquid
and illiquid accounts are invested in bonds earning return r, but holding assets in the liquid ac-
count incurs a flow cost of ζ(1 + r)aliq

it−1, proportional to the value of liquid assets entering period
t. This cost is paid to a perfectly competitive financial intermediary providing liquidity services.
Defining aggregate assets as ait ≡ ailliq

it + aliq
it and consolidating (27) and (28), we still have the

constraint in (9) after defining consumption inclusive of the liquidity services from financial inter-
mediation, cit ≡ c̃it + (1 + r)ζaliq

it−1.
The first-order conditions, policy functions, and the stationary distribution of this model are

described in appendix D.5. In the steady state, agents accumulate wealth in their liquid accounts to
self-insure against fluctuations in their income. Self-insurance is costly as it incurs a return penalty
of ζ (1 + r) per period. Households therefore keep some of their wealth in their illiquid account,
where it earns the higher rate of return 1 + r. If their income falls too much, they hope to be
able to take distributions from this account. If the return penalty is sufficiently large, households

ZL model has a slightly stronger anticipated spending response, as derived and explained in appendix D.4. Another
derivation of the M matrix for a zero-liquidity model with slightly different features is available in Bilbiie (2024), who
also considers countercyclical income risk (see also Pfäuti and Seyrich 2022). To our knowledge, the analytical relation-
ship with the TABU model is new.

28This model is often called the “two-asset” model in the literature. We prefer the name “two-account” for our model
because households have multiple accounts they can invest in, but the financial intermediaries that ultimately provide
these accounts invest them in any number of assets. For instance, in our current environment, they only invest in one
asset, government bonds. In the quantitative environment of sections 6–7, both accounts will be invested in both bonds
and firm equity—which we think is reasonable, given that in practice both bonds and stocks are held in liquid accounts
(e.g. bank deposits and brokerage accounts) and illiquid accounts (e.g. pension funds).

29We conjecture that our findings are robust to an alternative formulation where illiquidity takes the form of a fixed
cost of adjustment.
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Figure 4: log iMPCs out of unexpected and expected income shocks
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keep little wealth in their liquid account and most of their wealth in the illiquid account. This
leaves them exposed to hitting the borrowing constraint after negative income shocks; thus, they
are “wealthy hand-to-mouth” (Kaplan, Violante and Weidner 2014) and simultaneously have high
MPCs and high wealth.

We calibrate this model by selecting β and ν to meet targets for M00 and aggregate assets A/Z.
This calibration delivers a very reasonable β = 0.93, and an annual probability of accessing the
illiquid account of ν = 0.089. This is about half as large as the frequency in Kaplan and Violante
(2014), which corresponds to ν = 0.168, likely because our target for M00 is somewhat higher.

Figure 2(a) shows that the iMPCs after an unanticipated shock (column s = 0) in the HA-two
model fit the data well, as they do in the HA-one, ZL, and TABU models. However, among these
four fitting models, only HA-two and TABU can be calibrated to large aggregate assets A/Z.
Figure 3(f) plots multiple columns of the model’s iMPC matrix. The stable long-run pattern is
evident here as well.

Overall, figures 2 and 3 suggest that models with very different primitives, once calibrated
to the existing evidence on iMPCs out of unexpected income shocks, predict similar tent-shaped
iMPCs out of expected income shocks. Given the lack of good empirical evidence on these iMPCs,
this is reassuring.

4.4 The long-term spending response in heterogeneous-agent models

We have found four models that can fit the existing evidence on the year 0 through year 5 spending
behavior after unanticipated income shocks in figure 2(a): TABU, HA-one, ZL, and HA-two. While
these models share very similarly-shaped M matrices, they also differ in subtle ways, which turn
out to matter for the effects of fiscal policy. In this section, we examine these subtle differences.

Figure 4(a) plots the common logarithm of the first column of M out to 30 years, for each of
these four models. HA-one, TABU, and ZL settle on exponentially decaying iMPCs Mt0 rather
quickly. HA-two implies significantly greater spending further out, with iMPCs that eventually
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decay at a much slower rate. This is because, after a decade, most assets remaining from an
income shock are in the illiquid account, and thereafter are depleted slowly. Figure 4(b) shows
similar, slower decay rates in the right and left tails of the HA-two iMPCs after anticipated shocks
(here for s = 50).30

There is currently no direct evidence that can tell apart the tail behavior shown in figure 4.
Evidence from Fagereng et al. (2021) indicates that after year 5, most of any remaining increase in
assets is in investments such as stocks, bonds, and mutual funds (see section 3.2). Since these in-
vestments may be fairly illiquid, and since estimated spending propensities out of illiquid wealth
tend to be low (e.g. Di Maggio, Kermani and Majlesi 2020, Chodorow-Reich, Nenov and Simsek
2021), we conjecture that the HA-two model may provide a more accurate picture of tail spend-
ing behavior. However, more empirical research on long-term saving and spending responses to
income shocks is needed before drawing definitive conclusions. The next section shows that this
distinction matters for the quantitative efficacy of fiscal stimulus.

5 Fiscal policy according to the intertemporal Keynesian cross

We now solve the intertemporal Keynesian cross, obtaining the impulse response to a government
spending shock when iMPCs are generated by the models in section 4. As it turns out, the results
depend crucially on the financing of fiscal policy. We first consider the case of balanced-budget
policy, and then move to the general case with deficit-financed spending.

For simplicity, we will focus on the canonical RA and TA models, which do not match iMPCs,
and the HA-one and HA-two models, which do. To better understand fiscal policy transmission
in the two HA models, we will also study the TABU model, which has a similar fit to iMPCs but
allows for analytical results. The proofs for this section are available in appendices E.1–E.3; for
completeness, we cover fiscal policy in the other models of section 4 in appendix E.4.

It is standard in the literature to summarize the effects of government spending on output
using a “multiplier”. We study both the impact multiplier dY0/dG0 and the cumulative multiplier

∑∞
t=0(1 + r)−tdYt/ ∑∞

t=0(1 + r)−tdGt (see Mountford and Uhlig 2009 and Ramey 2019). The latter
is sometimes considered a more useful measure of the overall impact of policy, capturing propa-
gation as well as amplification of fiscal shocks.31

5.1 Balanced-budget fiscal policy

Our first result is a sharp characterization of the effects of balanced-budget fiscal policy.

30This relationship between unanticipated and anticipated shocks can be derived as a consequence of the result in
appendix D.1. While figure 4 shows that the TABU model cannot match all the iMPCs of HA-two, we conjecture that
adding a small fraction of another BU household, with λ close to 1, might achieve a good fit. If this household holds a
large share of assets, this modification would also improve the fit to capital gains discussed in section 6.3. See Auclert
et al. (2023c) for a model that mixes different types of BU households.

31The literature also sometimes refers to intermediate objects such as ∑T
t=0(1 + r)−tdYt/ ∑T

t=0(1 + r)−tdGt for some
T > 0. This number is generally in between our reported impact and cumulative multipliers.
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Proposition 3 (Balanced-budget policy). Assume a unique equilibrium, and that the fiscal policy {dG, dT}
has a balanced budget, that is, dG = dT. Then, the fiscal multiplier is 1 at every date, dY = dG.

This result can easily be shown by guessing and verifying that dY = dG = dT satisfies (13).
Hence, if there is a unique solution for dG = dT, then dY = dG is this solution. The intuition is
simple: output and therefore pre-tax income rise by exactly the shock to spending, and then taxes
rise by the same amount. This leaves after-tax income, and therefore consumption, unchanged.32

As long as fiscal policy keeps the budget balanced, proposition 3 implies that the fiscal mul-
tiplier in every period is exactly equal to 1, irrespective of iMPCs M. For instance, HA and RA
economies, despite very different iMPCs, have the same balanced-budget multiplier.

It is critical for this result that income and taxes have the same incidence across households.
This ensures that when aggregate income and taxes increase by the same amount, individual
agents’ after-tax incomes are unchanged. If, alternatively, income and taxes have different in-
cidence, there is an additional redistribution effect between income-earners and taxpayers that
changes the multiplier. For instance, appendix E.1 shows that when taxes are raised lump-sum
at the margin, the fiscal multiplier is less than 1, because then taxpayers have higher short-term
iMPCs than income-earners.

5.2 Deficit-financed fiscal policy

While iMPCs are irrelevant for balanced-budget policies, they are central with deficit financing.

Proposition 4 (Deficit-financed policies). Assume a unique equilibrium. The output response to a fiscal
policy shock {dG, dT} is the sum of the government spending policy dG and the effect on consumption dC,

dY = dG +M·M · (dG− dT)︸ ︷︷ ︸
dC

. (30)

The consumption response dC only depends on the path of primary deficits dG− dT. In particular, holding
the deficit fixed, government spending has a greater effect on output than transfers do.

Proposition 4 shows that for non-balanced-budget policies, the consumption response is en-
tirely driven by the interaction between iMPCs—which determine MM—and primary deficits
dG− dT.

One implication of (30) is a clear relationship between government spending and transfer mul-
tipliers: assuming the same plan for deficit financing, the spending multiplier should equal the
transfer multiplier plus one. This is not always found in empirical work: for instance, Ramey
(2019) argues that transfer multipliers as in Romer and Romer (2010) tend to be larger than spend-
ing multipliers minus one. Our result suggests that this difference should be traceable to either
different deficit financing for the two kinds of shocks, or some other difference that does not ap-
pear in (30), such as different monetary responses or different incidence of taxes.

32Gelting (1941) and Haavelmo (1945) were the first to spell out this logic in the context of a static IS-LM model.
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In the remainder of this section, we explore the interaction between iMPCs and primary deficits
in (30): first for analytical models, and then for heterogenous-agent models.

5.3 Multipliers in analytical models

We begin with the RA and TA models. These models do feature multiple equilibria, since for them,
M1 = 1: adding a constant to output at every date continues to satisfy the IKC (13). However, if
limt→0 dGt = limt→0 dTt = 0, there exists a unique equilibrium dY satisfying limt→0 dYt = 0. We
restrict our analysis to these equilibria in the propositions below.33

Woodford (2011) and Bilbiie (2011) prove the following result for the RA model:

Proposition 5 (Fiscal policy in the RA model). In the RA model, dY = dG irrespective of dT. In
particular, impact and cumulative multipliers are equal to 1.

This follows from (30), where the intertemporal government budget q′(dG− dT) = 0 implies
that M (dG− dT) = (1− β) 1q′ (dG− dT) = 0, and therefore that the second term is zero. A sim-
ple interpretation is that Ricardian equivalence holds in the RA model, so any policy is equivalent
to a balanced-budget policy (proposition 3) and has a unit multiplier.

The solution (30) is also tractable in the TA model, which has been very influential for the
study of fiscal policy, largely because it can be solved with pen and paper and offers insightful
results (see Bilbiie and Straub 2004, Galí et al. 2007). We prove the following:

Proposition 6 (Fiscal policy in the TA model). In the TA model, dY = dG + µ
1−µ (dG − dT). The

impact multiplier is equal to 1
1−µ −

µ
1−µ

dT0
dG0

, but the cumulative multiplier is 1.

The TA model is no longer Ricardian and therefore generally produces non-unitary multipliers
when dG 6= dT. However, the model’s non-Ricardian behavior is entirely driven by its fraction µ

of hand-to-mouth agents, which spend their income entirely in the same period as it is received.
This static relationship between income and consumption leads output to follow the static Key-
nesian cross (5), with µ playing the role of mpc.34 The outcome is an impact multiplier of 1

1−µ for
spending that is entirely deficit-financed (dT0 = 0), and a transfer multiplier of µ

1−µ . Interestingly,
however, the model still generates unitary cumulative multipliers, since consumption declines as
soon as deficits are turned into surpluses.35

Neither RA nor TA can produce iMPCs consistent with the data. We next study a model that
can, the TABU model, and later show that the insights we gather here carry over numerically to
our heterogeneous-agent models HA-one and HA-two.36

33This selection is standard in the literature with a constant real interest rate rule (see e.g Woodford 2011). One
justification could be that, at a distant point in the future, we revert to a Taylor rule that ensures determinacy. Another
is that this selection is the unique limiting equilibrium with a rule it = r + φπt+1 as φ approaches 1 from above.

34Note that µ is slightly less than the actual MPC out of current income in the model, which includes the consumption
response of the permanent-income agents. These agents do not appear in the multiplier because they are Ricardian,
and the present value of their after-tax income is unchanged.

35This unitary cumulative multiplier with constant r was earlier noted by Bilbiie, Monacelli and Perotti (2013).
36See appendix E.3 for a similar formula giving fiscal multipliers in the ZL model and an analog to corollary 1. The

BU model is the special case of proposition 7 where µ = 0.
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Proposition 7 (Fiscal policy in the TABU model). Consider a TABU model with parameters λ, µ, β

and r, and assume that β (1 + r) < 1. Then, there exists a unique solution {dYt} to the IKC (13) for given
fiscal policy {dGt, dTt} generating a path of debt dBt = ∑s≤t (1 + r)s (dGs − dTs), and it is given by:

dYt = dGt +
µ

1− µ
(dGt − dTt) + (1 + r)

1− λ
1+r

1− µ

(
1
λ
− β (1 + r)

) ∞

∑
s=0

(β (1 + r))s dBt+s (31)

The TABU output response (31) begins with the same two terms as the TA response in propo-
sition 6, reflecting static Keynesian cross forces. But there is a new, third term, which depends on
current and future government debt. This term arises because the bond-in-utility households have
elevated iMPCs out of recent past and future income. When they receive unusually high income,
these households accumulate asset balances in excess of their steady-state target, which they later
spend down, and anticipation of future income from this spending triggers even more spending
beforehand. This is the dynamic income-spending feedback from the intertemporal Keynesian
cross. The TA model, by contrast, lacks this term because its households are at one of two ex-
tremes—either completely Ricardian, or completely hand to mouth—and no one tries to spend
down excess assets when the government incurred a deficit in the past.

One useful way to see the difference between the TABU and TA models—and the role of in-
tertemporal MPCs—is the following. Given a fixed target for M00, the TABU model can match it in
two ways: either with many hand-to-mouth agents as in the TA model (high µ), or with BU house-
holds that quickly spend down excess assets (low λ). In the second case, iMPCs immediately off
the main diagonal, such as M10, are higher, and one can show that the coefficient on future debt in
(31) is also higher, leading to a larger cumulative multiplier in the presence of debt.

Corollary 1. Consider a TABU model with β (1 + r) < 1. Recalibrating µ and λ to match a higher M10

with the same M00 increases the cumulative multiplier whenever dB ≥ 0 and dBt > 0 for some t.

Proposition 7 and corollary 1 are important because they show that, for deficit-financed policy,
intertemporal MPCs matter: they interact with the level of debt in a way that is not summarized by
the contemporaneous MPC M00. Larger consumption responses to recent past and future income
imply a larger cumulative multiplier.37

The TABU model is a convenient vehicle to make these points analytically. We show next that
the same insights carry over numerically in our heterogeneous-agent models.

37Note that it is not just the existence of positive iMPCs that matters here—since households eventually spend the
full present value of their income in any model—but the fact that these households have a frontloaded consumption
response. In parallel work, Angeletos et al. (2023) prove a related result: when M10 increases in a TABU model, “self-
financing” is more likely under a fiscal rule that holds the tax rate fixed. A limitation of Corollary 1 is that, when
permanent-income agents are added to the model, the cumulative multiplier goes back to 1. Angeletos et al. (2023)
explain why this is not an empirically relevant result.
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Figure 5: Multipliers according to the IKC
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Note. These figures assume a persistence of government spending equal to ρG = 0.76, and vary ρB in dBt = ρB(dBt−1 +

dGt). See section 7.1 for details on calibration choices.

5.4 Multipliers in heterogeneous-agent models and quantitative comparison

To study fiscal policy in heterogeneous-agent models, we numerically compute the output re-
sponse to a specific fiscal policy shock. We assume that government spending declines expo-
nentially at rate ρG, dGt = ρt

GdG0. Taxes are chosen such that public debt is given by dBt =

ρB(dBt−1 + dGt). In this formulation, ρB is the degree of deficit financing: if ρB = 0, the policy
keeps a balanced budget, while for greater ρB, the policy leads to a greater deficit. We compute
the responses to this shock for various degrees of deficit financing and for the main models con-
sidered in figure 2, and report the corresponding impact and cumulative multipliers.

Figure 5 displays these multipliers. As in proposition 3, both impact (left panel) and cumu-
lative multipliers (right panel) are exactly equal to 1 when fiscal policy balances the budget, irre-
spective of iMPCs. As the degree of deficit financing ρB rises, however, the models separate.

Impact multipliers increase with ρB in all models except RA, where multipliers remain at 1,
as in proposition 5. This emphasizes that high impact multipliers can be generated entirely in
models with high static MPC M00. Cumulative multipliers, on the other hand, crucially depend
on intertemporal MPCs, such as M10.

Despite having high M00, the TA model predicts cumulative multipliers of one, independent
of deficit financing, as in proposition 6. The two HA models, as well as TABU, by contrast, find
cumulative multipliers that increase with deficit financing, confirming the insights in proposition
7 and corollary 1.38

38These results are not special to our assumption of small shocks starting from the steady state. In appendix E.5, we
demonstrate that the fiscal multipliers exhibit limited nonlinearity and state dependence in the models we consider.
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Figure 6: Effect of adding cognitive discounting to, and of truncating the tails of M

0.0 0.2 0.4 0.6 0.8 1.0
Cognitive discount factor δ

2

3

4

5

6

7

8
∑

t(
1

+
r)
−

t dY
t/

∑
t(

1
+

r)
−

t dG
t

(a) Cumulative multiplier with cognitive discounting
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Note. In this calibration, ρG = ρB = 0.76. See section 7.1 for details on calibration choices.

5.5 Differences between TABU, HA-one, and HA-two

In figure 5, although the multipliers for TABU, HA-one, and HA-two are qualitatively similar,
there are noticeable quantitative differences. This is for two reasons. First, these models have dif-
ferent anticipatory effects, which are not directly pinned down by the data. Second, these models
have different long-term iMPCs, as documented in section 4.4.

Figure 6(a) explores the role of anticipatory effects, by allowing for cognitive discounting as in
Gabaix (2020) to dampen these effects, with δ = 0 corresponding to no anticipation and δ = 1
being the original model (see appendix E.6 for details). We see that as δ → 0, the multipliers
become more similar across models.39

Figure 6(b) explores the role of long-term iMPCs more generally, by setting iMPCs to zero past
a certain distance T0 from the diagonal (“truncating” M), and scaling up the remaining iMPCs
to enforce budget balance. This raises multipliers across the board, since it pushes up both M00

and M10. It has an especially strong effect, however, for HA-two, because it reallocates HA-two’s
higher long-term iMPCs (section 4.4) toward the main diagonal. For low enough T0, multipliers
converge to similar levels. This indicates that HA-two’s higher long-term iMPCs are responsible
for its lower multipliers: they make the model slightly more Ricardian, weakening the short-term
income-consumption feedback in the intertemporal Keynesian cross.

5.6 Taking stock: the interaction of iMPCs and deficits

This section established that it is the interaction of the shape of iMPCs M and primary deficits
that drives multipliers. By matching M00, the TA model generates high impact multipliers, but

39Two forces shape whether output dY = M(dG −MdT) increases or decreases as δ → 0: it increases because
future taxes are less anticipated; it decreases because the multiplierM is lower. Figure E.5 separates these two effects.
Anticipation of taxes matters more for the two-account model because its households care more about income in the
relatively distant future, as seen in section 4.4.
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not high cumulative multipliers. By matching M00 as well as other, “off-diagonal” elements such
as M10, both TABU and heterogeneous-agent models generate high impact and high cumulative
multipliers. The exact quantitative magnitude of the multipliers depends not only on the cur-
rently observable elements of M summarized in figure 1, but also on anticipation effects and on
the longer-term spending response to income, for which more empirical research is needed. In the
next two sections, we show that these conclusions continue to hold in more quantitative environ-
ments provided that the models match one additional set of intertemporal MPCs—those out of
capital gains.

6 Allowing for interest rate effects and capital gains

Sections 2–5 showed that, under some restrictions on the environment, the general equilibrium
effects of fiscal policy can be reduced to a single equation, the intertemporal Keynesian cross, with
the iMPC matrix M capturing all relevant details of the model.

We now take a step toward relaxing these restrictions. In this section, we characterize house-
hold behavior when real interest rates are no longer constant and assets are subject to valuation
effects. Our main result is that, surprisingly, under two common assumptions on preferences and
portfolio shares, only a single additional sequence, mcap—the consumption response to unantici-
pated capital gains—is needed to capture household behavior together with M. Comparing mcap

across models with evidence on the MPC out of capital gains, we argue that the evidence strongly
favors the two-account model.

6.1 Extending the consumption function

We now extend the environment of section 2.2. We allow for a time-varying real rate rt, and for a
second asset besides government debt—firm equity. There is a unit mass of shares, each of which
trades at an end-of-period price pt and pays a dividend dt at time t. As we explain in the next
section, the value of these shares derives from firms’ capital, their market power, and fluctuations
in profits from sticky prices.

Households can frictionlessly exchange bonds and shares, so that a no arbitrage condition
equates their expected returns at all t ≥ 0,

1 + rt =
pt+1 + dt+1

pt
(32)

This condition does not pin down the realized return on shares at date 0, p0+d0
p−1

, which can deviate
from the steady state expected return rss due to unexpected capital gains and losses resulting from
changes in the present discounted value of dt.40

40Repeatedly applying (32), we see that p0 + d0 = ∑t≥0

(
∏s<t

1
(1+rs)

)
dt.
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Since steady-state expected returns are equal across the two assets, steady state portfolio shares
of households are indeterminate. For all models except HA-two, we denote the equity portfolio
share of household i entering period 0 by vi,−1. For HA-two, each household i has two equity
shares, one in the liquid and the other in the illiquid account, v

liq
i,−1 and v

illiq
i,−1. The equity shares

satisfy the initial condition
∫

vi,−1ai,−1di = p−1 in all models except HA-two, and
∫

v
illiq
i,−1ailliq

i,−1di +∫
v

liq
i,−1aliq

i,−1di = p−1 in HA-two.
In this environment, appendix F.1 shows that the consumption function becomes:

Ct = Ct ({Zs, rs} , p0 + d0) (33)

As before, Zt = wtNt − Tt is aggregate after-tax labor income, now including a possibly time-
varying real wage wt; and p0 + d0 is the cum-dividend value of shares. Linearizing this equation
around the steady state, we obtain:

dC = M · dZ + Mr · dr + mcap dcap0 (34)

Equation (34) shows that in this broader environment, two new terms emerge as determinants of
consumption behavior, beyond M · dZ. The first new term, Mr · dr, captures the consumption re-
sponse to changes in real interest rates dr; here, Mr ≡

[
∂Ct

∂ log(1+rs)

]
ts

is the Jacobian of consumption
to interest rates. The second new term, mcap dcap0, captures the consumption response to the the
surprise capital gain dcap0 ≡ d (p0 + d0) at date 0; here, mcap

t ≡ ∂Ct
∂(p0+d0)

is the impulse response of
consumption to an unexpected capital gain on the unit mass of shares.

6.2 iMPCs as sufficient statistics for interest rate effects

We have identified three sufficient statistics for household behavior: M, Mr, and mcap. We argued
in sections 3–5 that data could meaningfully discipline M, and in the next section we will discuss
how similar data can also be used to discipline mcap—which is ultimately a set of intertemporal
MPCs, too, just out of capital gains. In principle, we could also seek direct data on Mr. Here, we
provide an alternative route: we show that, for a broad class of models, Mr is directly determined
by M and mcap.

Proposition 8. For the RA, TA, HA-one, ZL, and HA-two models, assuming an elasticity of intertemporal
substitution of σ = 1, and equal initial equity portfolio shares vi,−1 = v (with v

liq
i,−1 = v

illiq
i,−1 = v in

HA-two) for all i, we have:

Mr = −C
(

I−
(

1− rA
C

)
M
)

U + (1 + r)A mcap1′ (35)

where U is an upper-triangular matrix of ones, A =
∫

aidi and C =
∫

cidi are aggregate assets and
consumption in the steady state.

Proposition 8, proved in appendix F.2, is a nontrivial result. It states that across all models
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listed, the entire matrix Mr of date-t consumption responses to date-s interest rate changes can be
expressed using iMPCs M and the consumption response to capital gains mcap—neither of which
have any obvious connection to interest rate changes.

For intuition, suppose first that assets are zero, A = 0. Then, (35) simply reads Mr = −C (I−M)U.41

Here, higher iMPCs M out of labor income lower the sensitivity of consumption to interest rates,
as they imply a shorter effective planning horizon for consumption.42 When assets are positive,
A > 0, higher iMPCs mcap out of capital gains also imply a shorter effective planning horizon, and
similarly lower the sensitivity of consumption to interest rates.

As stated, the result in proposition 8 requires equal equity shares across all households. In
heterogeneous-agent models with a single account, this is a common baseline assumption. For
the two-account model, proposition 8 also requires equal equity shares across the liquid and illiq-
uid accounts, which is a less common assumption. In both cases, however, the assumption only
matters quantitatively to the extent that it affects mcap, which in the next section we argue is low
regardless.43 We also show in appendix F.5 that a model in which all equity is held in illiquid
accounts is quantitatively close to the equal-equity-share model considered here.

The assumption that the elasticity of intertemporal substitution equals 1 is relaxed in appendix
F.3, although this requires generalizing mcap to a richer object Mcap that captures the iMPCs out of
capital gains in arbitrary periods, not just date 0. Also using Mcap, the proposition can be extended
to the BU and TABU models (appendix F.4).44

6.3 iMPCs out of capital gains in models and data

The previous section showed that there is a tight link between iMPCs out of income and capital
gains on the one hand, and the consumption response Mr to interest rates on the other. This makes
it important to understand iMPCs out of capital gains, both because of their direct role in (34), and
because of their indirect role via Mr.

Figure 7(a) plots mcap, the response of consumption to a one-time date-0 capital gain across
models.45 RA, TA, and HA-two all have relatively low mcap. For the RA model, this is because it
has low iMPCs in general (figure 7(b)). For TA, it is because assets are only held by unconstrained
households. For HA-two, it is because most assets are held in the illiquid account, and iMPCs
out of the illiquid account are small. iMPCs are even somewhat smaller if all equity is held in
illiquid accounts (appendix F.5). By contrast, TABU has very high mcap. This is because even the
unconstrained agents in TABU, which own all assets, have sufficiently high MPCs to push the

41This result can be combined with section 6.1 to show that, when A = B = 0, the effect of monetary policy dr is
simply dY = −CUdr , i.e. the representative-agent outcome. This is an instance of the Werning (2015) neutrality result.

42See also Auclert (2019), Auclert, Rognlie, Souchier and Straub (2021b), Farhi, Olivi and Werning (2022), as well as
Koby and Wolf (2020) for a related relation between the elasticities of investment to interest rates vs output.

43In practice, equity does appear in both liquid accounts (e.g. easy-to-trade brokerage accounts) and illiquid accounts
(e.g. pensions), but the equity share may not be the same across both. The mcap that is relevant for proposition 8 is the
response to a uniform capital gain across all accounts.

44Wolf (2023a) has previously shown a relationship between M and Mr in analytical models.
45From now on, we drop HA-one, as it cannot be calibrated to a realistic target for total assets (see table 2).
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Figure 7: iMPCs out of capital gains vs income
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In the data, the MPC out of capital gains is generally estimated to be low, consistent with
the first set of models. For instance, Di Maggio et al. (2020) estimate an mcap

0 of 5 cents, and
Chodorow-Reich, Nenov and Simsek (2021) estimate a relatively flat path of mcap

t around 2.8 cents.
Among the two models that can match both M and aggregate assets, TABU and HA-two, only HA-
two is consistent with this evidence. This provides further support for HA-two being a suitable
household model for quantitative fiscal policy analysis, even in the presence of interest rate and
capital gains effects.

7 Fiscal policy in a quantitative HANK model

We now embed our consumption-savings models in a fully-specified quantitative general equi-
librium environment, which relaxes several restrictive assumptions of the IKC environment in
section 2. The main features of our quantitative environment are: (a) a realistic supply side, with
output produced from capital and labor; (b) investment as a component of aggregate demand; (c)
wage and price rigidities; and (d) a broader set of monetary policy rules, including active Taylor
rules and a possible zero lower bound (ZLB).

It is well understood from the existing literature on fiscal multipliers that, with an active Tay-
lor rule, real interest rates rise in response to expansionary fiscal policy. This tends to crowd
out consumption and investment, especially when taxation is distortionary (eg, Woodford 2011,
Drautzburg and Uhlig 2015). It is also is well understood that, at the zero lower bound (ZLB),
these effects are reversed, with falling real interest rates tending to crowd in consumption and
investment (eg, Christiano et al. 2011). This section shows that, while heterogenous-agent models
also feature these standard effects, the multipliers they generate are nevertheless quite different,
especially when spending is deficit-financed and the interaction effect in proposition 4 has bite.
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7.1 Extended model setup

Here we describe the problem solved by firms and households; monetary and fiscal policy; and
our equilibrium concept. Without loss of generality given our first-order perturbation solution,
we assume that all agents have perfect foresight with respect to aggregates (see footnote 5).

Production, sticky prices, and sticky wages. Away from a real interest rate rule, inflation mat-
ters for the determination of aggregate demand. We adopt the microfoundations for nominal
wage rigidities described in appendix A.3, with Rotemberg (1982)-like adjustment costs. With the
disutility of labor specified as v (N) = γN1+ 1

φ , this leads to a nonlinear wage Phillips curve:

πw
t (1 + πw

t ) = κw

µw γN
1
φ

t

(C∗t )
−σ (1− θ) Zt/Nt

− 1

+ βπw
t+1 (1 + πw

t+1) (36)

describing the dynamics of wage inflation πw
t as a function of aggregate hours Nt, aggregate post-

tax income Zt, and a “virtual” consumption aggregate C∗t ≡
(∫

i
e1−θ

it∫
e1−θ

it di
c−σ

it di
)− 1

σ

which summa-

rizes how the distribution of consumption across the population affects the aggregate wealth effect
on labor supply.

To accommodate production from capital and sticky prices, we now assume a standard two-
tier production structure. Final goods firms aggregate intermediate goods with a constant elas-
ticity of substitution µp/(µp − 1) > 1. Intermediate goods are produced by a mass one of iden-
tical monopolistically competitive firms, whose shares are traded, with price pt and dividends
dt at time t, and owned by households. All firms have the same production technology, now
assumed to be Cobb-Douglas in labor and capital, yt = F(kt−1, nt) = Θkα

t−1n1−α
t , where Θ is a

constant TFP term. Capital is subject to quadratic capital adjustment costs, so that investment
it ≡ kt − (1− δ) kt−1 to attain kt from kt−1 requires an additional adjustment cost ϕ

(
kt

kt−1

)
kt−1,

where ϕ(x) ≡ 1
2δε I

(x− 1)2, δ denotes depreciation, and ε I is the sensitivity of gross investment to
Tobin’s Q. Finally, any firm chooses a price Pt in period t subject to Rotemberg (1982) adjustment

costs ξ (Pt,Pt−1) ≡ 1
2κp(µp−1)

(
Pt−Pt−1
Pt−1

)2
, where κp is the slope of the price Phillips curve.46

In this setting, an intermediate goods firm entering period t with capital kt−1 chooses its price
Pt, labor nt and capital for next period kt to maximize its value:

Jt(kt−1) = max
Pt,kt,nt

{Pt

Pt
F(kt−1, nt)−

Wt

Pt
nt − it − ϕ

(
kt

kt−1

)
kt−1 − ξ(Pt,Pt−1)Yt +

1
1 + rt

Jt+1(kt)

}
(37)

subject to the requirement that it satisfies final goods firms’ demand in each period at its chosen

46Since we solve the model to first order in aggregates, Rotemberg adjustment costs are equivalent to price setting à
la Calvo (1983).
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price:

F(kt−1, nt) =

(Pt

Pt

)−µp/(µp−1)

Yt (38)

Since all intermediate goods firms are identical, in equilibrium they make the same choices kt =

Kt, nt = Nt, and Pt = Pt; moreover the stock price satisfies pt = 1
1+rt

(dt+1 + pt+1), with the

aggregate dividend equal to dt ≡ F (Kt−1, Nt)− Wt
Pt

Nt − It − ϕ
(

Kt
Kt−1

)
Kt−1 − ξ (Pt, Pt−1)Yt.

As we show in appendix G.1, this setup generates a nonlinear Phillips curve for price inflation,

πt (1 + πt) = κp (µp ·mct − 1) +
1

1 + rt

Yt+1

Yt
πt+1 (1 + πt) (39)

where mct ≡ Wt/Pt
Fn,t

is real marginal cost, as well as a set of two standard Q theory equations for
capital demand and the dynamics of investment.

Households. We consider the six structural models of consumption and savings of section 4 that
can be calibrated to a realistic level of aggregate assets: RA, TA, BU, TABU, HA-hi-liq and HA-two
(see table 2). We calibrate these models to σ = 1 and equal initial portfolio shares in bonds and
equities for all households and all accounts. As shown in section 6, this means that in aggregate,
these household models are entirely summarized by their M and their mcap.

Monetary and fiscal policy. The monetary authority now follows a Taylor rule:

it = r + φππt (40)

where the coefficient on inflation φπ ensures determinacy47 and r is the steady-state interest rate.
As in section 5.4, the government follows an AR(1)-type spending policy, dGt = ρt

GdG0, with
ρG ∈ (0, 1) and dG0 equal to 1% of steady-state output. Taxes are chosen such that the path of
public debt is given by dBt = ρB(dBt−1 + dGt).

Equilibrium. Given initial values for the nominal wage W−1, price level P−1, government debt
B−1, and capital K−1, and an initial distribution of households i over their state variables such
that the economy is initially at a steady state, and given exogenous sequences for fiscal policy
{Gt, Tt} that satisfy the government’s intertemporal budget constraint, a (perfect-foresight) general
equilibrium is a path for prices {Pt, Wt, πt, πw

t , rt, it, pt} and aggregates {Yt, Kt, Nt, Ct, dt, Bt, Gt, Tt},
such that households optimize, unions optimize, firms optimize, monetary and fiscal policy follow
their rules, and all markets clear: the goods market,

Gt +
∫

c̃itdi + ζt + It + ϕ

(
Kt

Kt−1

)
Kt−1 + ξ(Pt, Pt−1)Yt = Yt

47By usual arguments, RA and TA are determinate for φπ > 1. The winding number test (Auclert et al. 2023b) shows
that the determinacy threshold for HA-hi-liq is 1.02. Determinacy thresholds for HA-two, BU and TABU are 1.05, 1.12
and 1.09, respectively. Our calibration to φπ = 1.5 therefore ensures that all of these models are determinate.
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Table 3: Calibration of the quantitative environment

Parameter Description Value Parameter Description Value

α Capital share 0.294 φ Frisch elasticity of labor supply 1
G/Y Gov. spending-to-GDP 0.20 ε I Investment elasticity to q 4
B/Y Debt-to-GDP 0.70 κp Price flexibility 0.23
K/Y Capital-to-GDP 2.26 κw Wage flexibility 0.03
µp SS price markup 1 φπ Taylor rule coefficient 1.5
µw SS wage markup 1 ρG Persistence of gov. spending 0.76
δ Depreciation rate 0.08 ρB Persistence of debt 0.93

where ζt ≡
∫ (

(pt + dt)v
liq
it−1 + (1 + rt−1)

(
1−v

liq
it−1

))
aliq

it−1di; the bond market
∫
(1−vi,t) ai,tdi =

Bt, and the equity market
∫

vi,tai,tdi = pt. (See appendix G.2 for a list of all the equilibrium equa-
tions.)

Calibration. Since the iMPC evidence that constitutes our primary calibration target is annual,
we calibrate the entire model to an annual frequency. Our parameters and calibration targets are
shown in table 3, with details in appendix G.3. We assume that the real interest rate is r = 0.05 and
that the Frisch elasticity of labor supply is φ = 1. For fiscal policy, we assume conventional targets
for spending-to-GDP of G

Y = 0.2 and debt-to-GDP of B
Y = 0.7. For all our household models, we

follow Kaplan and Violante (2022) and choose a ratio of aggregate assets to labor income of A
wN =

4.2. Assuming a labor share of income of 1−α
µp = 0.706, this implies that aggregate assets to GDP are

A
Y = 4.2 · 0.706 = 2.96. Given that assets-to-GDP are given by A

Y = B
Y + K

Y + 1
r

(
1− 1

µp

)
, we have

to distribute 2.26 GDPs between capital and price markups. We assume that µp → 1, so that all
assets are capital. This implies a Cobb-Douglas coefficient on capital of α = 1− µp · 0.706 = 0.294,
and a depreciation rate of δ = 0.08, so that K/Y = α/ (r + δ) = 2.26.

Next, we note that the ratio of post-tax to pre-tax labor income is Z
wN = 1− T

wN , where the
steady-state government budget constraint imposes T

wN = µp

1−α

(G
Y + r B

Y

)
= 0.33. Hence, aggre-

gate assets to post-tax income are A/Z = 4.2/0.67 = 6.29. For the six consumption-savings
models that can match this target, we pick the exact same steady-state calibration as in section 4,
as summarized in table 2. For wage markups, we make a parallel assumption to prices and set
µw → 1; finally, we set the scale parameter in the disutility of labor supply, γ, to normalize output
Y to 1.

We set the parameters relevant to the dynamics as follows. We follow Auclert and Rognlie
(2018) and assume an elasticity of investment to Q of 4. We calibrate the slope of the Phillips curves
using the standard formula implied by the Calvo model, κ = 1

1+Γ

(
1− 1

1+r (1− freq)
)

freq/ (1− freq),
where freq is the frequency of price change and Γ is a real rigidity parameter. For prices, we con-
vert the frequency of price change from Nakamura and Steinsson (2008) to annual, giving us
freq = 0.67. For wages, we take Grigsby, Hurst and Yildirmaz (2021)’s freq = 0.33. We then
apply to both a real rigidity coefficient of Γ = 5, delivering κp = 0.23 and κw = 0.03. This is
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Figure 8: Government spending shock in quantitative HA-two model vs. RA and TA
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Note: The HA-two model is a two-account heterogeneous-agent model which is calibrated to match evidence on in-
tertemporal MPCs. The government spending shock declines exponentially at rate ρG = 0.76 and public debt follows
dBt = ρB (dBt−1 + dGt) for ρB = 0.93.

consistent with the conventional view in the literature that there is more rigidity in wages than
prices. As our baseline, we follow Nakamura and Steinsson (2014)’s estimate of the persistence of
military spending, which gives ρG = 0.76 at an annual level. For the persistence of debt, we use
Auclert and Rognlie (2018)’s estimate of ρB = 0.93. While these numbers are subject to debate, we
show that our results are robust to plausible changes all of these parameters. We solve the model
numerically using the sequence-space Jacobian method of Auclert et al. (2021a).

7.2 Quantitative effect of deficit financed policy

What are the effects of fiscal policy with capital, a realistic monetary policy rule, and realistic
iMPCs? As we show next, the interaction between high intertemporal MPCs and primary deficits,
which we emphasized in proposition 4, remains a crucial determinant of fiscal multipliers.

Figure 8 assumes a given degree of deficit financing (ρB = 0.93) and shows how iMPCs matter
by comparing the responses of the RA, TA, and HA-two economies to the government spending
shock. In all three models, the Taylor rule lifts real interest rates in response to the shock, crowd-
ing out investment. In the RA economy, consumption is crowded out as well, severely limiting
the expansion of output. For TA, we find a stronger output response on impact, but one that fades
quickly, driven by a fast reversal in consumption that mirrors primary deficits (cf proposition 6).
HA-two stands out in that, despite the active Taylor rule and rising real rates, consumption con-
tributes positively to output for about two years, offsetting investment crowd-out.

Figure 9 varies instead the degree of deficit financing ρB across models.48 Echoing our find-

48See figure G.1 in appendix G.4 for the full set of impulse responses.
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Figure 9: Multipliers in the quantitative models
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ings in section 5.4, HA-two and TABU predict impact and cumulative multipliers that increase in
the degree of deficit financing. This is especially surprising as the RA model predicts cumulative
multipliers that sharply decline with debt persistence: since inflation is forward-looking, pushing
distortionary taxes to the future creates a larger inflation effect and therefore—given the active
Taylor rule—more tightening by the central bank. The intertemporal Keynesian cross forces over-
come this neoclassical effect. As in section 5.4, the TA model has impact multipliers that depend
on deficit financing, but essentially flat cumulative multipliers.49

As expected given the active Taylor rule, the overall level of multipliers in figure 9 is signifi-
cantly lower than in figure 5. Consistent with the results of section 5.4, however, the models share
similar balanced-budget and cumulative multipliers, between 0.2 and 0.5. In the HA-two model,
both impact and cumulative deficit-financed multipliers are around 1.3: this is the only model that
generates deficit-financed multipliers above 1. TABU, on the other hand, has significantly lower
multipliers.50

Recall from figure 5 that with the intertemporal Keynesian cross, TABU had higher multipliers
than HA-two across the board. Why are these magnitudes flipped once real interest rates rise and
investment falls? We can investigate this question by using the sequence-space decomposition in
(34). This equation shows that the consumption response is the sum of responses to income; to an
initial capital gain; and to a change in interest rates.

Figure 10 shows this decomposition for a deficit financed shock with ρB = 0.93 for HA-two and
TABU. As figure 10(a) shows, the rise in consumption in HA-two is more than entirely accounted
by the rise in labor income, consistent with the IKC, overcoming the crowding-out effect from
rising real rates. Since investment is crowded out and interest rates rise, the stock market falls.

49In the TA model, inflation—and therefore the monetary response—is increased by future distortionary taxation as
in the RA model, but is reduced by the negative demand effect of future tax increases, and these forces roughly balance
out for the cumulative multiplier.

50Angeletos et al. (2023) further explore the effects of deficit-financed fiscal policy in a quantitative TABU model,
finding that, under a fiscal rule that holds the tax rate fixed, “self-financing” can occur.
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Figure 10: Decomposing the consumption responses in the two-account and TABU model
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However, this capital loss is of limited consequence for consumption because, consistent with the
data, the MPC out of capital gains is very low.

For the TABU model in figure 10(b), by contrast, this capital loss manifests itself in a strongly
negative consumption response due to high MPCs out of capital gains mcap (cf figure 7). This effect
dampens aggregate demand, and hence the output response. With weaker output, the income
component in figure 10(b) is also lower than for HA-two. Interestingly, the interest rate component
actually contributes positively to consumption in TABU, even though real interest rates rise. This
is a consequence of equation (35): with high mcap, Mr is high as well, and the income effect of
interest rates starts to dominate.51 This result suggests caution when using tractable analytical
models for quantitative purposes: these models should be consistent not only with M, but also
mcap from the data. To our knowledge, existing tractable models do not meet this bar.

To conclude, HA-two is unique among our models in generating positive consumption multi-
pliers and an output multiplier above 1. As we demonstrate in appendix G.4, this result is robust
to other parameter values, unless the Taylor rule coefficient is very high (φπ ' 2), the sensitivity
of investment to Q is very high (ε I ' 20)—amplifying crowd-out—or wages and prices are very
flexible, making neoclassical forces dominate the response to fiscal policy.

7.3 Role of monetary policy

So far we have parameterized the aggressiveness of monetary response with the conventional
Taylor rule coefficient φπ, with higher φπ amplifying the crowd-out effect. It is conventional in the
literature to also study fiscal policy when nominal rates are immobilized by a zero lower bound
(e.g. Christiano et al. 2011). We implement such a scenario by assuming a constant nominal
interest rate for Tzlb = 3 years, with the economy reverting to the Taylor rule thereafter.

Figure 11 contrasts the impulse responses of output under the Taylor rule (solid) vs. the ZLB
(dotted), at two levels of deficit financing. Irrespective of the degree of deficit financing, the ZLB

51See appendix G.4 for details on the quantitative TABU model and appendix F.4 for the extension of proposition 8.
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Figure 11: Role of monetary policy: contrasting active Taylor rule, ZLB, and constant real rate
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dramatically increases the output response, echoing the well-known result in the literature that the
fiscal multiplier can be very large at the ZLB: positive inflation with unresponsive nominal interest
rates means real interest rates fall on impact, crowding in both consumption and investment,
generating further inflation, and so on.

The dashed line shows the effect of replacing our ZLB experiment with an experiment of main-
taining the real interest rate constant for the same 3-year duration. Since now the nominal interest
rate does increase in response to the inflationary effect of government spending, albeit less aggres-
sively than with a Taylor rule, the outcome is somewhere in between the ZLB and the Taylor rule.
This substantiates our claim in section 2 that a constant-r monetary policy is an intermediate pol-
icy, standing between easy monetary policy, such as at the ZLB, and tight monetary policy, such
as an active Taylor rule.

7.4 Taking stock

Table 4 revisits table 1 from the introduction and summarizes our main results for impact and
cumulative multipliers under balanced budget fiscal policy ρB = 0 vs deficit financed policy ρB =

0.93. The two tables emphasize the complementarity between iMPCs and deficit financing: the
combination of realistic iMPCs and deficit-financed fiscal policy predicts sizable multipliers above
1, both on impact and cumulatively. This is true with the IKC environment for TABU, HA-one and
HA-two, and with our quantitative environment only for HA-two. HA-one cannot be calibrated
to have reasonable aggregate assets, and TABU’s iMPCs out of capital gains are far higher than is
realistic (see our discussion in sections 6.3 and 7.2).

Multipliers for the quantitative HA-two model in table 4 lie between 0.3 and 1.3 depending
on the horizon. The survey by Ramey (2019) concludes that the multiplier for temporary deficit-
financed spending is “probably between 0.8 and 1.5”, although reasonable people could argue that
the data do not reject 0.5 or 2. There are two caveats, however, which complicate the comparison
of our model-based conclusions with the data. First, in line with the theoretical literature, our
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Table 4: Complementarity between iMPCs and deficit financing: multipliers across models

IKC environment

Fiscal rule Multiplier RA TA TABU HA-one HA-two

balanced budget
impact 1.0 1.0 1.0 1.0 1.0
cumulative 1.0 1.0 1.0 1.0 1.0

deficit financing
impact 1.0 1.9 5.6 6.9 3.6
cumulative 1.0 1.0 15.5 16.6 2.7

Quantitative environment

Fiscal rule Multiplier RA TA TABU HA-one HA-two

balanced budget
impact 0.4 0.4 0.3 — 0.4
cumulative 0.4 0.3 0.2 — 0.3

deficit financing
impact 0.5 1.2 0.5 — 1.3
cumulative -0.5 0.5 0.6 — 1.3

Note. Simulated multipliers. Columns present five models of household behavior, whose calibrations are presented in
table 2. Panels describe two different general equilibrium environments: the “IKC environment” described in sections
2–5 with only government spending and bonds; and the “quantitative environment” described in section 7, which
includes capital and a Taylor rule, The government spending shock is an AR(1) with (annual) persistence ρG = 0.76.
“Balanced budget” corresponds to contemporaneous taxation, and “deficit financing” assumes a persistence parameter
of public debt of ρB = 0.93. HA-one cannot match the level of aggregate assets of our quantitative environment.

economy was assumed to be entirely closed; openness should reduce multipliers somewhat as it
dampens the feedback between consumption and income (see Aggarwal et al. 2023). Second, the
empirical literature typically characterizes a single type of “multiplier”; according to our model,
however, the degree of deficit financing matters greatly for multipliers. This heavy dependence of
cumulative multipliers on deficit financing constitutes a new testable prediction for the empirical
literature. Third, we have mostly restricted our attention to fiscal policies which adjust income
taxes to raise tax revenues, without altering tax progressivity. However, as we discuss in sec-
tion 5.1, the precise tax instruments used can be crucial, with less progressive taxation reducing
multipliers.

8 Conclusion

In this paper, we derive an intertemporal version of the static Keynesian cross and use it to analyze
the general equilibrium effects of fiscal policy. In the intertemporal Keynesian cross (IKC), the in-
teraction between deficit financing and intertemporal marginal propensities to consume (iMPCs)
determines fiscal multipliers. This holds exactly in the environment of section 2, and numerically
in a more quantitative environment, provided that we also match the response of consumption to
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capital gains in the data. We provide empirical estimates of intertemporal MPCs and find that,
within a set of commonly used models, only a heterogeneous-agent model with two accounts
can match these estimates. Quantitatively, this model suggests that fiscal multipliers with deficit
financing are strictly above 1.

Our paper provides a new approach to studying models with heterogeneity through the use of
sequence-space Jacobians. Moving beyond the literature on sufficient statistics in partial equilib-
rium, we reduce the complexity of general equilibrium to a matrix of sufficient statistics, intertem-
poral MPCs, that can be disciplined empirically. This approach might be fruitfully extended to
many other areas in macroeconomics, since the key insight—that agents interact in general equi-
librium through a limited set of aggregates—applies to a wide variety of models.

Data availability

Data and code replicating all the tables, figures, and other results in this paper can be found in
Auclert, Rognlie and Straub (2024a), available in the Harvard Dataverse at https://doi.org/10.
7910/DVN/AKICUR.
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The Intertemporal Keynesian Cross
Online Appendix

Adrien Auclert, Matthew Rognlie and Ludwig Straub

A Appendix to section 2

A.1 Primitives of the consumption function

In this section, we formally describe the class of models of consumption and saving behavior con-
sidered in section 2.2. Household have a potentially multidimensional exogenous discrete state s,
which follows a Markov process Π (s), and whose initial distribution π (s) across households is a
stationary distribution of Π. Households’ units of effective labor e (s) depend on s, so the Markov
process can represent both permanent differences in income as well as income shocks. The utility
function can also depend on s, representing preference shocks. Constraints on asset trade can also
depend on s.

At date t, households i choose their continuous state ωit = (cit, a1
it, . . . aL

it, ωL+1
it , . . . , ωK

it ), a
K-dimensional vector that includes consumption today, cit, asset holdings a1

it, . . . , aL
it between t

and t + 1 in L ≥ 1 different accounts, and potentially other continuous states ωL+1
it , . . . , ωK

it , with
K ≥ L+ 1. They do so to maximize utility u (sit, ωit−1, ωit, Xt), subject to a budget constraint across
all assets and an arbitrary additional constraint ωit ∈ Γ (sit, ωit−1, Xt). Utility u and the constraint
G also take in the current exogenous state sit, the lagged endogenous state ωit−1, and a vector Xt

of relevant aggregate variables, which includes (Yt, Tt, rt−1) and possibly other aggregates.
The resulting Bellman equation at t is therefore:

Vt (sit, ωit−1) = max
ωit

u (sit, ωit−1, ωit, Xt) + βE [Vt+1 (sit+1, ωit) |sit]

s.t. cit +
L

∑
l=1

al
it = (1 + r (Xt))

L

∑
l=1

al
it−1 + zit (sit, Xt) (A.1)

ωit ∈ Γ (sit, ωit−1, Xt)

where zit (st, Xt) is after-tax income for the individual in state sit at time t.
Note that the budget constraint across all assets in (A.1) can be rewritten as (9) from the main

text,
cit + ait = (1 + r (Xt)) ait−1 + zit (st, Xt)

given the substitution ait ≡ ∑L
l=1 al

it.
The solution to (A.1) involves a time-dependent policy function ωt (s, ω−), and associated

consumption policy ct (s, ω−). Denote by µt (s, ω−) the distribution of agents across states (s, ω−)

at the beginning of period t. The law of motion of the distribution is given by
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µt+1
(
s′, Ω

)
= ∑

s
Π
(
s, s′

) ∫
1{ωt(s,ω−)∈Ω}dµt (s, ω−) (A.2)

for all s′ and all sets Ω to which ω can belong. We denote by ait ≡ ∑L
l=1 al

it the aggregate asset
position of agents. Then, the budget constraint in (A.1) is just (9), which is the key restriction
across the models in this section.

We are interested in the time path of J ≥ 2 aggregate outcomes {Yt} ≡ {Ct, At, Y3t . . . , YJt}. For
each j = 1 . . . J, we define the individual outcome yj (s, ω−, ω, X) as some function of individual
states, policies, and inputs, that has a bounded derivative. The aggregate outcome Yjt is then
defined as the aggregated individual outcome,

Yjt ≡
∫

yj (s, ω−, ωt (s, ω−) , Xt) dµt (s, ω−) (A.3)

The two outcomes that we always keep track of are individual consumption ct (s, ω−) and individ-
ual assets at (s, ω−) = ∑L

l=1 al
t (s, ω−) (recall that ct and al

t are part of ωt). Aggregate consumption
and aggregate assets defined as:

Ct ≡
∫

ct (s, ω−) dµt (s, ω−)

At ≡
∫

at (s, ω−) dµt (s, ω−)

Steady-state and transition given aggregate inputs {Xt} and outcomes {Yt}.

In a steady state, Xt is a constant X, the policy is a constant ω (s, ω−), and Yt is also a constant Y.
We assume a unique stationary measure µ (s, ω−), solving (A.2) given the steady state ω (s, ω−).

Given a perfect-foresight sequence {Xt}, we define a transition as:

a) the time-dependent policies ωt (s, ω−) and value function Vt (s, ω−) that solve the Bellman
equation (A.1)

b) the time-varying measure µt (s, ω−) that solves (A.2), starting from the initial measure µ0 (s, ω−) =

µ (s, ω−)

Finally, we define the aggregate outcome functions Yjt ({Xt}) as

Yjt ({Xt}) ≡
∫

yj (s, ω−, ωt (s, ω−) , Xt) dµt (s, ω−) (A.4)

through the dependence of ωt (s, ω−), µt (s, ω−) and Xt on {Xt} in a transition.
In particular, we define the consumption function Ct ({Xt}) and the aggregate asset function

At ({Xt}) as in (A.4), through the dependence of ct (s, ω−), at (s, ω−) and µt (s, ω−) on {Xt}. Note
that the budget constraint (9) implies that we must have for all t:

Ct ({Xt}) +At ({Xt}) = (1 + r (Xt))At−1 ({Xt}) + Yt − Tt (A.5)
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since aggregate taxes are defined as
∫

zit (st, Xt) di = Yt − Tt by the definition of taxes.

Consumption function for the special case of section 2.2. In the environment described in sec-
tion 2.2, Xt = Zt is single dimensional, and only enters the Bellman (A.1) through zit (st, Zt) =

e (sit)
1−θ / ∑s̃ π (s̃) e (s̃)1−θ Zt. This delivers Ct ({Zs}), ie equation (10). In this environment, (A.5)

reads simply:
Ct ({Zs}) +At ({Zs}) = (1 + r)At−1 ({Zs}) + Zt (A.6)

A.2 Implementing a constant-real interest rate rule

This section describes in more detail how monetary policy operates in our model.
Nominal one-period bonds in zero net supply (or “reserves”), with nominal return it, can be

traded by the central bank and financial market arbitrageurs, but they cannot be held by agents
directly. Financial market arbitrageurs can freely invest in nominal bonds Bt and real bonds bt.
Their nominal profits in period t are given by

Πt = (1 + it−1) Bt−1 + (1 + rt−1) Ptbt−1 − Bt − Ptbt

Arbitrageurs maximize the present discounted value of Πt at the sequence of nominal interest
rates it. Optimization immediately implies the Fisher equation:

1 + rt =
1 + it

1 + πt+1
(A.7)

for all t ≥ 0. Since nominal bonds are in zero supply, market clearing imposes Bt = 0 for all
arbitrageurs. We also assume that they start with zero assets, so they have bt = 0 at all times.
Hence, arbitrageur profits are zero at all times and we can omit them from the model.

The central bank directly sets the interest rate it on reserves. Given a sequence rexo
t , it does so

according to the rule
1 + it = (1 + rexo

t ) (1 + πt+1) (A.8)

Combining (A.7) and (A.8) immediately implies rt = rexo
t for all t ≥ 0. In section 2.2, we further

assume that rexo
t = r, the steady state real interest rate; and then consider an arbitrary exogenous

path for rexo
t in section 2.5.

An alternative to this setup with arbitrageurs would be to let agents trade both nominal and
real bonds, and assume that initial portfolios are such all agents only hold real bonds. This route
implies a more complex formulation of the household problem, so we do not pursue it here. Ap-
pendix B.2 considers a modification of the model where all agents hold only nominal bonds in-
stead, as in Auclert (2019), Angeletos et al. (2023) and Kaplan, Nikolakoudis and Violante (2023).
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A.3 Wage Phillips curve

In this section, we derive a wage Phillips curve for our environment by adapting the standard
microfoundation in the New Keynesian sticky-wage literature (Erceg et al. 2000, Schmitt-Grohé
and Uribe 2005) to a heterogeneous-agent environment.

We assume that labor hours nit are determined by union labor demand. Every worker i belongs
to a union k. There are a continuum of such unions, and they each hire a fully representative
sample of the population. Each union k aggregates the efficient units of work of its members into
a union-specific task Nkt =

∫
eitniktdi. A competitive labor packer then packages these tasks into

aggregate employment services using the constant-elasticity-of-substitution technology

Nt =

(∫
k

N
ε−1

ε

kt dk
) ε

ε−1

and sells these services to final goods firms at price Wt.
We assume that there are quadratic utility costs of adjusting the nominal wage Wkt set by

union k, by allowing for an extra additive disutility term ψ
2

∫
k

(
Wkt

Wkt−1
− 1
)2

dk in the household
flow utility term of the Bellman equation (A.1). In every period t, we restrict each union k to set
a common wage Wkt per efficient unit for each of its members, and to call upon its members to
supply hours according to a uniform rule, so that nikt = Nkt. Given these two restrictions, the
union sets Wkt to maximize the average utility of its members.

In this setup, all unions choose to set the same wage Wkt = Wt at time t and all households
work the same number of hours, equal to nit = Nt, so efficiency-weighted hours worked

∫
eitnitdi

are also equal to aggregate labor demand Nt. Hence, this delivers the labor market setup of section
2.2.

At any time t, union k sets its wage Wkt to maximize, on behalf of all the workers it employs,

∑
τ≥0

βt+τ

(∫
{u (cit+τ)− v (nit+τ)} dΨit+τ −

ψ

2

(
Wk,t+τ

Wk,t+τ−1
− 1
)2
)

taking as given the initial distribution of households over idiosyncratic states Ψit as well as the
demand curve for tasks emanating from the labor packers, which is

Nkt =

(
Wkt

Wt

)−ε

Nt (A.9)

where Wt =
(∫

W1−ε
kt dk

) 1
1−ε

is the price index for aggregate employment services.
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Consider household i, working for union k. By (8), their total real earnings are

zit = τt

(
Wkt

Pt
eitNkt

)1−θ

= τt

(
eit

Pt
Wkt

(
Wkt

Wt

)−ε

Nt

)1−θ

The envelope theorem applied to the problem in (A.1) implies that we can evaluate indirect utility
as if all income from the union wage change is consumed. In that case, ∂cit

∂Wkt
= ∂zit

∂Wkt
, where,

exploiting the fact that in equilibrium Wkt = Wt, we have:

∂zit

∂Wkt
= (1− θ) τt

(
Wkt

Pt
eitNkt

)−θ eit

Pt

{
Nkt −Wktε

(
1

Wt

)−ε

NtW−ε−1
kt

}
= (1−MTRit)

eit

Pt
Nkt (1− ε)

where MTRit ≡ 1− (1− θ) τt

(
Wkt
Pt

eitNkt

)−θ
is household i’s marginal tax rate at time t. On the

other hand, household i’s total hours worked nit are given by (A.9), so they satisfy

∂nit

∂Wkt
= −ε

Nkt

Wkt

The first-order condition of the union with respect to Wkt is therefore

∫
Nkt

{
(1− ε)

eit

Pt
u′ (cit) (1−MTRit) +

ε

Wkt
v′ (nit)

}
dΨit

−ψ

(
Wk,t

Wk,t−1
− 1
)

1
Wk,t−1

+ βψ

(
Wk,t+1

Wk,t
− 1
)(

Wk,t+1

Wk,t

)
1

Wk,t
= 0 (A.10)

In equilibrium all unions set the same wage, so Wkt = Wt and Nkt = Nt. Define wage inflation
πw ≡ Wt

Wt−1
− 1. After multiplying (A.10) by Wt, and noting that

∂zit

∂nit
= (1−MTRit) eit

Wt

Pt

we find that aggregate nominal wage inflation 1 + πw
t ≡ Wt

Wt−1
is described by the following non-

linear New Keynesian Phillips Curve:

πw
t (1 + πw

t ) =
ε

ψ

∫
Nt

(
v′ (nit)−

ε− 1
ε

∂zit

∂nit
u′ (cit)

)
di + βπw

t+1 (1 + πw
t+1) (A.11)

According to (A.11), conditional on future wage inflation, unions set higher nominal wages when
an average of marginal rates of substitution between hours and consumption for households
v′ (nit) /u′ (cit) exceeds a marked-down average of marginal after-tax income from extra hours
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∂zit
∂nit

.A-1

Note that in equilibrium, enforcing nit = Nkt = Nt, we further have that

∂zit

∂nit
= (1− θ) τte1−θ

it

(
Wt

Pt

)1−θ

N−θ
t = (1− θ)

e1−θ
it∫

e1−θ
it di

Zt

Nt

where Zt is average after-tax income. Hence equation (A.11) can be written in terms of aggregates
πw

t , Zt, Nt together with a “virtual aggregate consumption” term C∗t

πw
t (1 + πw

t ) =
ε

ψ

{
Ntv′ (Nt)−

ε− 1
ε

(1− θ) Ztu′ (C∗t )
}
+ βπw

t+1(1 + πw
t+1)

where we have defined C∗t such

u′ (C∗t ) =
∫

i

e1−θ
it u′ (cit)∫

e1−θ
it di

di

Hence, in this setting, the distribution matters for inflation dynamics only through its effects on
the dynamics of C∗t . Linearizing this expression around the zero inflation steady state yields a
standard wage Phillips Curve

πw
t = κw

{
1
φ

dNt

N
+

1
σ

dC∗t
C∗
−
(

dZt

Z
− dNt

N

)}
+ βπw

t+1 (A.12)

where κw ≡ ε
ψ Nv′ (N), φ is the Frisch elasticity of labor supply, and σ the elasticity of intertem-

poral substitution in consumption.A-2 The term dZt
Z − dNt

N captures the distortionary effects of
taxation.

A.4 Infinite matrix representation of the derivative of the consumption function

We first define what it means for a linear operator on a sequence space `p to be represented by an
infinite matrix.

Definition 1 (Operator represented by matrix). We say that a linear operator M on `p, with 1 ≤
p ≤ ∞, can be represented by the infinite matrix [Mts]∞t,s=0 if for all x = (x0, x1, . . .) ∈ `p , defining

A-1This term includes the distortions from labor income taxes, which are important for fiscal multipliers (Uhlig 2010).
A-2To see where (A.12) comes from, assume for simplicity that v and u have constant elasticities, so that v′ (N) = N

1
φ

and u′ (C∗) = (C∗)−
1
σ . Then, linearizing the term in brackets, we obtain(

1 +
1
φ

)
N1+ 1

φ dNt −
ε− 1

ε
(1− θ)

(
dZt (C∗)

−σ − 1
σ

Z (C∗)−σ−1 dC∗t

)
=

(
1 +

1
φ

)
N1+ 1

φ
dNt
N
− ε− 1

ε
(1− θ) Z (C∗)−σ

(
dZt
Z
− 1

σ

dC∗t
C∗

)
= Nv′ (N)

{(
1 +

1
φ

)
dNt
N
−
(

dZt
Z
− 1

σ

dC∗t
C∗

)}
where we have exploited the fact that, in the zero inflation steady state, N1+ 1

φ = ε−1
ε (1− θ) Z (C∗)−σ.
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y = Mx = (y0, y1, . . .) ∈ `p, we have for all t = 0 . . . ∞

yt =
∞

∑
s=0

Mtsxs (A.13)

This definition extends the standard notion, in finite dimensions, of a matrix representing a
linear transformation (see e.g. Horn and Johnson 2012), by taking an infinite rather than a finite
sum. For general `p, a discussion is available in Böttcher and Grudsky (2005). For `2 specifically,
and Hilbert spaces more generally, see e.g. Halmos (1982) and Conway (2007).A-3

It is simple to show that for any bounded linear M : `p → `p, as long as 1 ≤ p < ∞, there
is a unique matrix representation.A-4 For an arbitrary bounded linear M : `∞ → `∞, however,
existence of a matrix representation in the sense of definition 1 is not guaranteed. We discuss a
non-economic counterexample at the end of this section.

Even so, we are able to verify that, for all the economic models introduced in section 4, M
does have a matrix representation. For our analytical models, we do so by explicitly constructing
the matrix. For our heterogenous-agent quantitative models, we numerically verify the sufficient
condition described below, and also the stronger stationarity condition in Auclert et al. (2023b),
which implies a matrix representation with a specific “quasi-Toeplitz” structure.

Sufficient condition for infinite matrix representation.

Lemma 2. Consider a bounded linear operator M : `∞ → `∞. Suppose that there are two constants K > 0
and γ ∈ (0, 1), such that for any xτ ∈ `∞ that has entries of 0 before the τth entry, we have

|(Mxτ)t| < Kγτ−t‖xτ‖ (A.14)

Then the infinite matrix [Mts]∞t,s=0 defined by Mts ≡ (Mes)t represents M.

Proof. For arbitrary x = {xt}∞
t=0 ∈ `∞ and any index τ, we can write

x = x0e0 + x1e1 + . . . + xτ−1eτ−1 + xτ

where et ∈ `∞ is the sequence with 0s everywhere except a 1 at t, and xτ ∈ `∞ is the sequence with
0s prior to τ and the same entries xτ, xτ+1, . . . as x from τ on. By linearity we can write

Mx = M(x0e0) + M(x1e1) + . . . + M(xτ−1eτ−1) + Mxτ

A-3Depending on their point of view, authors in these references may talk about matrices “representing” operators, a
“correspondence” between matrices and operators, or operators “induced by” matrices.

A-4The argument is as follows: for any x ∈ `p with 1 ≤ p < ∞, we can write x = ∑∞
s=0 xses, with convergence

following from
∥∥∥x−∑T

s=0 xses

∥∥∥ =
(
∑∞

s=T+1 |xs|p
)1/p → 0 as T → ∞. Defining Mts ≡ (Mes)t, for any x we can write

(Mx)t = (M ∑∞
s=0 xses)t = ∑∞

s=0 xs(Mes)t = ∑∞
s=0 Mtsxs, verifying (A.13). Note that interchanging M and the infinite

sum is possible because M is bounded and linear, and uniqueness follows from applying (A.13) to x = es.

A-7



Then, defining Mts ≡ (Mes)t and using the inequality (A.14), we can write

|(Mx)t − (Mt0x0 + . . . + Mtτ−1xτ−1)| = |(Mxτ)t| < Kγτ−t‖xτ‖ ≤ Kγτ−t‖x‖

and taking the limit as τ → ∞, γτ−t → 0, implying that ∑∞
s=0 Mtsxs converges to yt = (Mx)t, as

required by definition 1.

For our application, where M is the derivative of the consumption function, condition (A.14)
is intuitive. It says that the effect of a bounded perturbation to aggregate after-tax income—a
perturbation that begins at some future date τ—on aggregate consumption at an earlier date t
must eventually go to zero as the horizon τ − t increases, at some rate γ < 1.A-5

One illustration of condition (A.14) is the following. Note that the present value of the absolute
value of xτ at date τ is bounded by 1+r

r ‖xτ‖ (given our assumption in this paper that r > 0).
Suppose that the effect of any xτ on consumption at an earlier date t is bounded by some arbitrarily
large constant multiple K0 of the present value in date-t terms.A-6 Then (A.14) holds with K =

K0
1+r

r and γ = 1
1+r .

We can verify that this condition holds for all our analytical models directly: for instance, in the
TA consumption function (A.61), the impact of a shock to future income on consumption today is
exactly the present value of the shock times (1− µ) r

1+r . In appendix D, we go further and derive
the exact infinite matrix representations of all these analytical models.

Sufficient condition for matrix representation in quantitative models. On the computer, a dis-
cretized representation of the quantitative model will be used. Following Auclert et al. (2021a) and
Auclert et al. (2023b), we use the following notation to represent the equations of the household
problem described in section A.1:

vt = v(vt+1, Zt) (A.15)

Dt+1 = Λ(vt+1, Zt)
′Dt (A.16)

Ct = c(vt+1, Zt)
′Dt (A.17)

Equation (A.15) is a discretized representation of the value function, equation (A.16) a discretized
representation of the law of motion of the distribution, and equation (A.17) a discretized repre-
sentation of the aggregate consumption function defined in (A.4). We then have the following

A-5In fact, it is possible to generalize the lemma slightly, replacing γτ−t by an arbitrary sequence kτ−t → 0 .
A-6This is a weak condition: it says that if aggregate income is perturbed in the future, that cannot cause consumption

today at t to increase by more than some multiple of the present value at t of the absolute perturbation to income.
Indeed, if consumption never responds negatively at any date to a positive income perturbation, the condition holds
with K = 1: intertemporal budget balance is violated if consumption at t increases by more than the date-t present
value of the income increase, unless there is some offsetting negative response to the income increase elsewhere. To
allow for the (unusual) more general case where consumption can respond negatively to income increases, we relax to
arbitrarily large K > 1.
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representation result.A-7

Proposition 9. Assume that v, Λ, and c are continuously differentiable around the steady state and that

a) The derivative vv of v wrt its first argument around the steady state has spectral radius strictly less
than 1, which we denote by β

b) The steady state transition matrix Λ has spectral radius of at most 1

Then, the Frechet derivative of Ct with respect to Zt, M, satisfies the condition of lemma 2. M can therefore
be represented by the infinite matrix with elements Mts ≡ (Mes)t.

Proof. The proof has four main steps.
Step 1.
We first argue that (A.15) implies a Frechet differentiable mapping V from (Z0, Z1, . . .) to

(v0, v1, . . .) defined on a neighborhood around the steady state. To do so, we use the implicit func-
tion theorem for Banach spaces (with the sup norm, as always in this paper) on the map V̄ from
(Z0, Z1, . . .)× (v0, v1, . . .) to (v0− v(v1, Z0), v1− v(v2, Z1), . . .). This requires continuous differen-
tiability of V̄ , which follows from the continuous differentiability of v, and also that the derivative
of V̄ with respect to (v0, v1, . . .), which is the linear map (dv0, dv1, . . .) → (dv0 − vvdv1, dv1 −
vvdv2, . . .), is a Banach space isomorphism. Given the bounded inverse theorem, this follows
from bijectivity of the linear map, which is straightforward to show.A-8

Step 2.
It follows from differentiability of V that if there is a perturbation dZτ = xτ starting at τ like

that defined in lemma 2, then we have ‖dvτ‖ ≤ K1‖xτ‖ for some bound K1 independent of τ.
Further, picking any γ such that β < γ < 1, we have some bound K2 > 0 such that ‖dvt‖ ≤

K2γτ−t‖dvτ‖.A-9 The differentiability of Λ and c further implies that ‖dΛt‖ ≤ K3‖dvt+1‖ and
‖dct‖ ≤ K4‖dvt+1‖ for some bounds K3, K4 > 0 (assuming that t < τ). Combining all these
bounds, we have ‖dΛt‖ ≤ K5γτ−t‖xτ‖ and ‖dct‖ ≤ K6γτ−t‖xτ‖ for K5 = K1K2K3/γ and K6 =

K1K2K4/γ.
Step 3.
Iterating equation (A.16), we have that

dDt =
t−1

∑
s=0

(Λt−s−1)dΛs

A-7For instance, if we discretize the value function and the distribution on a grid with N points, vt, Dt, v(vt+1, Zt) and
c(vt+1, Zt) are N × 1 and Λ(vt+1, Zt) is an N × N transition matrix.

A-8To show injectivity of (dv0, dv1, . . .)→ (dv0 − vvdv1, dv1 − vvdv2, . . .), note that if the output is zero, then we have
dvt = (vv)sdvt+s for any t, s > 0. Therefore ‖dvt‖ ≤ ‖vs

v‖‖dvt+s‖ ≤ ‖vs
v‖‖dv‖, and taking the limit as s → 0 the

right side of this inequality becomes 0 (because (vv)s → 0, as follows from spectral radius ρ(vv) < 1), so that dv must
be zero as well. To show surjectivity, given a desired output (dw0, dw1, . . .) we can construct dvt = ∑∞

s=0(vv)sdwt+s,
where we note similarly that ‖dv‖ ≤ ‖dw‖∑∞

s=0 ‖vs
v‖, where the infinite sum converges because ρ(vv) < 1.

A-9To see this, note that ‖dvt‖ ≤ ‖vτ−t
v ‖‖dvτ‖, so that ‖dvt/δτ−t‖ ≤ ‖(vv/δ)τ−t‖‖dvτ‖, and that (vv/δ)τ−t → 0 as

τ → ∞ since its spectral radius β/δ is less than 1.
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where Λ is the steady-state transition matrix. Since the spectral radius of Λ is at most 1, if we
pick any λ such that 1 < λ < γ−1, analogously to above we have ‖Λt−s−1‖ ≤ K7λt−s−1 for some
K7 > 0. Combining this with our previous bound, we have

‖dDt‖ ≤
t−1

∑
s=0
‖Λt−s−1‖‖dΛs‖

≤ ‖xτ‖
t−1

∑
s=0

K7λt−s−1K5γτ−s = ‖xτ‖K5K7

t−1

∑
s=0

(λγ)t−sγτ−t

<
K5K7

1− δλ
γτ−t‖xτ‖ ≡ K8γτ−t‖xτ‖

Step 4.
Finally (letting D and c denote the steady-state distribution and individual consumption):

|dCt| ≤ ‖dct‖‖D‖+ ‖dDt‖‖c‖
≤ (K6‖D‖+ K8‖c‖)γτ−t‖xτ‖

which clearly satisfies condition (A.14) with the arbitrary γ ∈ (β, 1) chosen above and K ≡
K6‖D‖+ K8‖c‖.

We verify numerically that all of our quantitative models used in the paper satisfy the two
conditions of proposition 9, and therefore that they have a matrix representation.

Counterexample: when does an operator on `∞ not have an infinite matrix representation?
Now that we have demonstrated the existence of an infinite matrix representation of M under
mild conditions on our economic problem, it is worth asking what a counterexample might look
like.

Consider a operator M : c → c, where c ⊂ `∞ is the space of convergent sequences, endowed
with the sup norm. Suppose that this is defined for any x ∈ c by

(Mx)0 ≡ lim
t→∞

xt

(Mx)1 ≡ (1 + r)
(
q′x− (Mx)0

)
(Mx)t ≡ 0 ∀t > 1

Observe that this M satisfies our present value condition q′M = q′.
Any infinite matrix [Mts]∞t,s=0 representing M would need to have all zeros in the 0th row,

because we have (Mes)0 = 0 for any s. But then for, for instance, the sequence of all ones x =

(1, 1, 1, . . .), we have (Mx)0 = 1, which is inconsistent with multiplication by a row of all zeros. We
conclude that an infinite matrix representation [Mts]∞t,s=0 of this operator, in the sense of definition
1, is impossible.A-10 Although this counterexample is for c rather than `∞, it can be extended to `∞

A-10If an additional row and column are added to the infinite matrix to represent (1, 1, . . .), then an infinite matrix
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using the Hahn-Banach theorem.A-11

This counterexample illustrates what it might mean to violate (A.14), such that an infinite ma-
trix representation is not possible: the indefinitely far future—in this case literally the limit of
income at infinity—must matter for present consumption. This seems implausible for any eco-
nomic example, especially when r > 0, so that the present value of income in the infinite future is
zero.

A.5 Proof of proposition 1

We are now ready to prove proposition 1.

Proof of proposition 1. Given any {Gt, Tt} satisfying the intertemporal budget constraint ∑∞
t=0

Gt
(1+r)t =

∑∞
t=0

Tt
(1+r)t , the path of output must satisfy (11). Consider a bounded shock dG, dT satisfying

q′dG = q′dT. Differentiating (11), we find that the impulse response of output dY = {dYt} must
satisfy

dYt = dGt +
∞

∑
s=0

∂Ct

∂Zs
(dYs − dTs) = dGt −

∞

∑
s=0

MtsdTs +
∞

∑
s=0

MtsdYs (A.18)

and (13) follows by stacking (A.18).
Starting from the aggregated budget constraint (A.5), and applying repeated substitution, us-

ing that At ({Zs}) = A−1 is a predetermined variable and that the boundedness of At implies
limt→∞

At({Zs})
(1+r)t = 0, we obtain:

∞

∑
t=0

Ct ({Zs})
(1 + r)t = (1 + r) A−1 +

∞

∑
t=0

Zt

(1 + r)t

Taking derivatives of this equation respect to Zs, we arrive at:

∞

∑
t=0

1

(1 + r)t Mts =
1

(1 + r)s ∀s

A.6 Proof of proposition 2

On any sequence space `p, we define the lag operator L as the operator {x0, x1, . . .} → {0, x0 . . .},
and the lead (or forward) operator F as the operator {x0, x1, . . .} → {x1, x2 . . .}. Note that these

representation is possible, but this is not the notion of infinite matrix we use in definition 1, where the sth row or
column is always es. This reflects the fact when (1, 1, . . .) is added to the usual es, they form a Schauder basis for c. `∞

does not have a Schauder basis, and one can construct even more complex counterexamples that are specific to `∞.
A-11In more detail: treating (Mx)0 as a linear functional on x ∈ c, and noting that (Mx)0 ≤ ‖x‖, we apply the Hahn-
Banach theorem to extend it to a linear functional on x ∈ `∞, which continues to satisfy (Mx)0 ≤ ‖x‖ and coincides
with the original functional on c. We then define (Mx)1 as before, and the same argument goes through: the infinite
matrix needs to have all zeros in the 0th row, but that gives the wrong answer for x = (1, 1, 1, . . .).
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satisfy
FL = I and LF = I− e0e′0 6= I

where e0 is the vector with all entries equal to 0 except the first entry equal to 1, so that the first
row and first column of LF are both zero. Hence, F is a left but not a right inverse of L. Moreover,
L is injective but not surjective; while F is surjective but not injective.

Lemma 3. The asset Jacobian A, with elements Ats =
∂At
∂Zs

, and the consumption Jacobian M, with elements
Mts =

∂Ct
∂Zs

, are related by the formula:

I−M = (I− (1 + r)L)A (A.19)

Proof. Differentiating (A.5) at t with respect to any Zs, we obtain

Mts + Ats = (1 + r) At−1,s + 1t=s

stacking these terms and using the definition of L, we obtain (A.19).

Lemma 4. The operator K, defined as K ≡ −∑∞
t=1(1 + r)−tFt (see proposition 2), satisfies:

K(I− (1 + r)L) = I and (I− (1 + r)L)K = I− e0q′

Proof. Since FL = I, we have:

KL = −
∞

∑
t=1

(1 + r)−tFtL

= −
∞

∑
t=1

(1 + r)−tFt−1

= −(1 + r)−1
∞

∑
t=0

(1 + r)−tFt

= (1 + r)−1(K− I)

This implies that K(I − (1 + r)L) = K − (1 + r)KL = K − (K − I) = I. Similarly, since LF =

I− e0e′0 we have:

LK = −
∞

∑
t=1

(1 + r)−tLFt

=
(
I− e0e′0

)
(1 + r)−1(K− I)

so that (I − (1 + r)L)K = K − (I− e0e′0) (K − I) = I − e0e′0(I − K) = I − e0q′, where the last
equality follows from the fact that the first row of I−K is equal to q′.

We can now turn to the proof of the proposition.
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Proof of proposition 2. Lemmas 3 and 4 together imply that, with the choice of K in the proposition,

K(I−M) = K(I− (1 + r)L)A = A

Suppose first that A is invertible. We can write the IKC (13) as (I−M)dY = dG−MdT. Multi-
plying by K on both sides, we obtain

AdY = K(dG−MdT) (A.20)

This has a unique solution dY = A−1K(dG−MdT), so this is the unique solution to the IKC for
any dG, dT ∈ `∞. In this case, we defineM ≡ A−1K. This is obviously a linear operator, and is
bounded since A−1 is bounded by the bounded inverse theorem, and K is bounded.

Now suppose that A is not invertible. By the bounded inverse theorem, this can only happen
if it fails to be injective or surjective.

Suppose A is not injective, i.e. Av = 0 for some v. Since I−M = (I− (1 + r)L)A, it imme-
diately follows that (I−M)v = 0, so that if dY is a solution to the IKC, then dY + vdλ is also a
solution for any dλ ∈ R. Hence, if A is not injective, any solution to the IKC is non unique.

Suppose instead that A is not surjective. This implies that there is some x such that we cannot
find any v such that x = Av. Hence, there is no v such that x = K(I−M)v. Now, K is Toeplitz and
has winding number of−1, which means that it has a one-dimensional kernel and is surjective.A-12

This kernel is spanned by the vector {1, 0, 0, . . .}. Since K is surjective, there is some y such that
x = Ky, and by adding and subtracting {1, 0, 0, . . .} we can choose y so that it satisfies q′y = 0.
Let dG = y. This shows that there is no v such that dG = (I−M)v, and therefore that, for this
shock satisfying q′dG = 0, the IKC does not have a solution. Hence, if A is not surjective, I−M is
not surjective on the space of zero-NPV vectors, in other words, there exists shocks such that the
IKC does not have a solution.

This completes the proof that there exists a unique solution to the IKC for any shock if, and
only if, A = K(I−M) is invertible.

In the case where A is invertible, we further have:

M (I−M) = A−1K(I− (1 + r)L)A = A−1A = I

where we have used the definition of M, lemma 3 and lemma 4. Hence, M is a left inverse of
A-12Böttcher and Grudsky (2005), Theorem 1.9, shows that the Fredholm index equals minus the winding number in
any `p, 1 ≤ p ≤ ∞. This implies that the difference between the dimension of the kernel and cokernel of K is 1. Since it
is immediate that {1, 0, 0, . . .} is the only element of the kernel of K, this means that K has cokernel dimension zero, so
that K is surjective.
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I−M on `∞. Moreover, we have:

(I−M)M = (I− (1 + r)L)AA−1K

= (I− (1 + r)L)K

= I− e0q′

so, in particular, for any x such that q′x = 0, we have (I−M)Mx = x.

A.7 Numerically solving the IKC

In practice, on the computer, we calculate Jacobians by following the method in Auclert et al.
(2021a), truncating to a horizon of T, so that M is a T × T matrix, and dG, dT are T × 1 vectors.
Truncating M generally implies that q′ (I−M) 6= 0, since the “tents” corresponding to the final
columns of M (see figure 3) are incomplete.

A first approach is to directly solve for the multiplier matrixM, numerically computingM =

A−1K, where A is the asset Jacobian, whose elements are given by Ats = ∂At
∂Zs

. We obtain A
either directly using the methods from Auclert et al. (2021a), or indirectly from M using A =

K (I−M).A-13 Then, givenM, we form

dY =M (dG−MdT) (A.21)

Second, we can solve the model in the asset space. Recall from the proof of proposition 2 that
any solution to the IKC (13) must also solve

A (dY− dT) = dB (A.22)

We obtain dB from the present-value budget constraint, using dB = K (dG− dT). We then solve
the matrix equation (A.22) numerically.

Note that this is closely related to the first approach, since (A.22) gives

dY = A−1dB + dT = A−1K (dG− dT) + dT =M (dG− dT) + dT

while (A.21) delivers

dY =M (dG−MdT) =M (dG− dT) +M (I−M) dT

and we can check thatM (I−M) = I holds numerically except for truncation error.

A-13Calculating a T × T matrix A in this way requires first calculating T × T matrices K and I−M, with T sufficiently
larger than T, and then keeping the first T × T entries. Otherwise, truncation error appears. For instance, since the
last row of K is zero, the last row of A is also zero, making A non-invertible. This is closely related to the numerical
problems that we find when solving the IKC in the goods space.
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Figure A.1: Five ways of solving the IKC numerically
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A third approach is to instead solve numerically the goods-space matrix equation

(I−M) dY = dG−MdT (A.23)

which is the rearranged IKC. Recall that generally, with truncation, we have q′ (I−M) 6= 0, so I−
M is numerically invertible. For large T, however, this becomes numerically close to degenerate,
and this goods-space approach is subject to greater numerical error than the asset-space approach.

A fourth approach is similar to the first, directly obtaining M = (K(I −M))−1K and then
dY = M(dG −MdY), but replaces the K we defined earlier with the forward operator F. In
practice, this approach can be implemented by deleting the first row and last column of I −M,
inverting it, and then applying this inverse to dG−MdY with the first entry deleted.

This approach delivers similar accuracy to the first two approaches and, in the absence of an
asset Jacobian A, can be slightly easier to implement. Intuitively, the approach works because the
IKC has a redundancy: assuming that q′dG = q′dT, the present value of both sides is always
equal, for any dY. To deal with this redundancy, we drop a single equation. Mathematically, this
approach can be motivated for stationary models by Auclert et al. (2023b): the forward operator
F has the same winding number, -1, as the K we defined earlier, and composing it with I −M
(which has winding number 1) again gives an invertible operator with winding number 0.

Finally, a fifth approach is to implement an analog of the iterative solution (7) to the static
Keynesian cross. To do this, we first form the sequence dY(k)

dY(k) = dG−MdT + MdY(k−1) (A.24)

by repeated iterations. This sequence converges numerically to a certain dY∞ = ∑∞
s=0 Ms(dG −

MdT). For some of the applications in this paper, such as our calibrated BU and TABU models,
dY∞ equal to the unique bounded solution dY, which we obtain via one of the methods discussed
above. For other applications, such as our calibrated HA-one model, however, dY∞ differs from
dY; instead, it is explosive. Interestingly, however, we find that dY∞ differs from dY by a constant
multiple of the the eigenvector v corresponding to the highest eigenvalue of M; that is, we have
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dY = dY∞ + dλv. In practice, therefore, to obtain dY from dY∞, we can find the eigenvalue v and
look for the unique dλ such that dYs = 0 for some sufficiently large s.A-14

For our one-account HA model solved with a sequence of government spending dGt = 0.8t

and dBt = 0.5 · (dBt−1 + dGt), figure A.1(a) shows that these four alternatives deliver the same
solution, up to some small error. Figure A.1(b) shows the outcome of the iteration process in
equation (A.24), and figure A.1(c) displays the leading eigenvector v of the M matrix. The se-
quence dYk

0 converges slowly and to a limit very different from the true solution dY, but we obtain
the right solution after correcting for a multiple of v.

A.8 Alternative allocation rules and other shocks

Consider now the case with a general allocation rule, nit = N (eit, Nt), subject to
∫
N (eit, Nt)di =

Nt, a general retention function zit = Zt (eitnit, Tt, Yt), time-varying real interest rates rt, and a
general shifter Θ to the household consumption problem. Production is still linear in effective
labor, so Yt = Nt, and prices are still flexible, so the real wage is wt = 1. Hence, total taxes
Tt = wtNt −

∫
zitdi are now given by

Tt = Yt −
∫
Zt (eitN (eit, Yt), Tt, Yt) di

This equation implicitly defines Zt (·, Tt, Yt) as a function of Yt and Tt. Hence, the aggregates that
matter for household devisions are now Xt = {Yt, Tt, rt, Θ} as given when making their decisions.
Applying the result from section A.1, the consumption function is now:

Ct = Ct ({Ys, Ts, rs, Θ}) (A.25)

and there is also an aggregate asset function At ({Ys, Ts, rs, Θ}), related to Ct via

Ct ({Ys, Ts, rs, Θ}) +At ({Ys, Ts, rs, Θ}) = (1 + rt−1)At−1 ({Ys, Ts, rs, Θ}) + Yt − Tt (A.26)

Any path {Yt} that is part of an equilibrium must satisfy

Ct ({Ys, Ts, rs, Θ}) + Gt = Yt

A-14Intuitively, provided that M > 0, which is the case in our applications, then the operator M̃ defined as M̃ts =(
1

1+r

)t−s
Mts is a Markov chain on the natural numbers N. Then M̃ can either be transient or recurrent. When M̃ is

transient, as in our calibrated TABU model, the Markov chain does not admit a stationary measure and the IKC rounds
converge. When M̃ is recurrent, as in our HA-one model, the Markov chain admits a stationary measure ṽ, which is

such that M̃ṽ = ṽ, ie ṽt = ∑∞
s=0 M̃ts ṽs =

(
1

1+r

)t−s
Mts ṽs. Then, we have that the sequence v defined by vt ≡ (1 + r)t ṽt

satisfies Mv = v: this looks like a vector of self-sustaining demand, but it is unbounded. When we truncate M, we find
that the largest eigenvalue is close to but not exactly equal to 1, and that the eigenvector, satisfying Mv ' v, is close
to the v from the recurrent chain. Since there is a unique bounded solution to the IKC, it must differ from the one we
obtain from iterated rounds dY∞ by some multiple of v that is just enough to keep dY bounded.
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which is equation (17), the new non-linear fixed point equation for output, which we seek to solve
for any path {Gt, Tt, rt} that satisfies the government budget constraint,

∞

∑
t=0

Tt

Πt−1
s=0 (1 + rs)

=
∞

∑
t=0

Gt

Πt−1
s=0 (1 + rs)

+ (1 + r−1) B−1 (A.27)

Consider a perturbation to {dG, dT, dr} that respects (A.27), starting from the steady state (recall
that we define the vector dr to have elements d log (1 + rt) =

drt
1+r ). Totally differentiating (A.27),

we have
∞

∑
t=0

dTt

(1 + r)t −
∞

∑
t=0

drt

1 + r

∞

∑
s=t

T
(1 + r)s =

∞

∑
t=0

dGt

(1 + r)t −
∞

∑
t=0

drt

1 + r

∞

∑
s=t

G
(1 + r)s

and since B = ∑∞
t=0

T−G
(1+r)t , is also

∞

∑
t=0

dTt

(1 + r)t =
∞

∑
t=0

dGt

(1 + r)t + B
∞

∑
t=0

1

(1 + r)t
drt

1 + r

or in vector notation, q′dT = q′dG + Bq′dr. Then, totally differentiating (17) we have:

∞

∑
t=0

∂Ct

∂Ys
dYs +

∞

∑
t=0

∂Ct

∂Ts
dTs +

∞

∑
t=0

∂Ct

∂ log (1 + rs)

drs

1 + r
+

∂Ct

∂Θ
dΘ + dGt = dYt

and writing Mt,s ≡ ∂Ct
∂Ys

, MT
t,s ≡ − ∂Ct

∂Ts
, Mr

t,s ≡ ∂Ct
∂ log(1+rs)

and ∂Ct ≡ ∂Ct
∂Θ dΘ, this is

∞

∑
t=0

MtsdYs −
∞

∑
t=0

MT
t,sdTs +

∞

∑
t=0

Mr
t,s

drs

1 + r
+ ∂Ct + dGt = dYt

which now, in stacked form, is equation (18).
Next, integrating (A.26), we have that

∞

∑
t=0

Ct ({Ys, Ts, rs, Θ})
Πt−1

s=0 (1 + rs)
= (1 + r) A−1 +

∞

∑
t=0

Yt − Tt

Πt−1
s=0 (1 + rs)

Totally differentiating with respect to Ys and Ts, we see that q′M = q′MT = q′. Totally differen-
tiating with respect to Θ, we see that q′∂C = 0, that is, shifters to consumption reshuffle the path
of consumption without altering its present value. Finally, totally differentiating with respect to
log (1 + rs), we see that

∞

∑
t=0

Mr
ts

(1 + r)t
drs

1 + r
= − drs

1 + r

∞

∑
u=s

Y− T − C
(1 + r)s = A

1
(1 + r)s

drs

1 + r

which shows that q′Mr = Aq′, that is, the income effect of a change in the real interest rate must
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Figure A.2: Partial and general equilibrium impulses
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Note: The figure shows, in our calibrated HA-one model, the partial equilibrium effect ∂Y and the general equilibrium effect dY =
MdY of three shocks. The deficit-financed government spending shock dG, dT, has dGt = 0.8tdG0, dG0 equal to 1% of GDP, and gives
rise to a path of debt dBt = 0.5tdG0. The monetary policy shock dr has drt = 0.8t, with a government running a balanced budget
and adjusting taxes at the margin in response to changes in interest rate expenses. The deleveraging shock is a shock da = 0.8t to the
minimal assets of agents.

aggregate, in present value terms, to the value of household assets. Taken together, we have that

q′
(

Mrdr + ∂C + dG−MTdT
)
= q′Mrdr + 0 + q′dG− q′dT = Aq′dr− Bq′dr = 0

That is, the partial equilibrium impulse to spending has zero present value, including for shocks
to real interest rates, since the positive income effects to the household sector are offset by negative
income effects to the government sector that require an increase in taxes. Hence, (18) has exactly
the same form as (13), and can be solved similarly if and only if the asset Jacobian A with elements
Ats =

∂At
∂Ys

is invertible, in which case, definingM = A−1K, the unique solution is given by (19).

Applications: fiscal policy, monetary policy and deleveraging. We use our calibrated HA-one
model to illustrate these concepts in figure A.2. We consider three shocks: a deficit-financed G
shock, a monetary policy shock, and a deleveraging shock. We provide a fourth application, to
lump-sum taxation, in appendix E.1.

Our first shock is a deficit-financed government spending shock dG, dT, with dGt = 0.8tdG0,
dG0 equal to 1% of GDP, and that gives rise to a path of debt dBt = 0.5tdG0. The partial equilib-
rium impulse, ∂Y = dG−MdT, is displayed on the solid line in panel (a), and clearly has present
value 0. Initially, partial equilibrium output is boosted by government spending, and later, it is de-
pressed by the lower consumption due to higher taxes. The general equilibrium output response
is displayed in panel (b), and we can verify that dY =M∂Y. Note that this is positive everywhere,
and much larger in magnitude than the impact ∂Y.

Our second shock is a monetary policy shock dr, with drt
1+r = 0.8t. We assume that the gov-

ernment runs a balanced budget, with all changes in interest rate expenses resulting in a contem-
poraneous tax adjustment. Let JT,r be the resulting Jacobian of taxes to interest rates: then, the
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partial equilibrium impulse is ∂Y =
(
Mr −MJT,r) dr, which has zero present value, q′∂Y = 0 and

is displayed in the dashed line of panel (a). This is a “contractionary” shock, so it lowers output
initially, but in partial equilibrium it also raises it later on. In general equilibrium, again, after
adjustment of incomes, we obtain a contraction of output at every date, as panel (b) shows. Since
the monetary ∂Y is roughly flipped and double the size of the fiscal ∂Y in this example, the general
equilibrium monetary dY is also roughly flipped and double the size of the fiscal dY. This makes
sense since it is the sameM that translates partial to general equilibrium outcomes in both cases.

Our third shock is a deleveraging shock, da = 0.8t, which tightens the borrowing constraint
and then progressively relaxes it.A-15 As the dash-dotted lines in panel (c) show, this leads to
an immediate contraction in partial equilibrium spending followed by an expansion later on, as
agents are forced to save and can then spend down their excess savings as the constraint is relaxed.
Again, the shock has a zero NPV effect on partial equilibrium output, q′∂Y = 0, but in general
equilibrium, after adjustment of incomes, this shock leads to a recession that is not followed by a
boom. Here also, we can see the same multiplierM translating partial equilibrium impulses to
general equilibrium outcomes, amplifying the initial shock.

B Beyond the intertemporal Keynesian cross

This section shows how additional macroeconomic channels can be incorporated into the analy-
sis while maintaining a generalized intertemporal Keynesian cross that still has the form in (18),
namely:

dY = ∂Y + M̃dY (A.28)

for some exogenous ∂Y satisfying q′∂Y = 0, and some M̃ satisfying q′M̃ = q′. In each case,
constructing M̃ requires knowledge of structural parameters beyond just iMPCs out of income.

B.1 Monetary policy rule

Suppose that we are interested in the effects of fiscal policy shocks dG, dT, but that monetary
policy follows a Taylor rule rather than a real interest rate rule.

Real interest rate rule. We first assume that the real interest rate rt responds to output directly,
via the rule

drt = φydYt (A.29)

This could capture the response of monetary policy to the inflationary effects of government
spending, as we will discuss further momentarily.

A-15Strictly speaking, since the initial calibration of the borrowing constraint a = 0, this is a shock that forces agents to
save a minimal amount for a temporary amount of time. Shocking a positive borrowing constraint would deliver the
same effects, but would require recalibrating the steady state of the model.
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We maintain our assumptions of equal incidence of income and taxes, so the consumption
function in (A.25) specializes to Ct = Ct ({Zs, rs}), whose derivative in the sequence space is
dC = Mrdr + MdZ. Using the definition of post-tax income dZ = dY− dT, the market clearing
condition dY = dC + dG, and the rule dr = φYdY from equation (A.29), we obtain:

dY = dG−MdT +
(
φyMr + M

)
dY

Recall from section A.8 that any government plan dG, dT must satisfy q′dT = q′dG + Bq′dr,
where here dr is endogenous to output. Because the change in real interest rates affects the gov-
ernment budget, the government cannot have a fully exogenous tax and spending plan: it must
specify how it will endogenously raise taxes when interest rates increase. We therefore break the
tax plan into two components, dT = dTexo + dTendo, where the endogenous component of taxes
satisfies dTendo = JT,rdr, with JT,r a Jacobian specifying how these taxes are levied, and satisfying
q′JT,r = Bq′, so that the response of endogenous taxes is always sufficient to cover the present
value of additional interest on the public debt due to the change in rt.

In this new setting, the output response dY to an exogenous change in fiscal policy dTexo, dG
satisfying q′dTexo = q′dG is therefore given by:

dY = dG−MdTexo + M̃dY (A.30)

where M̃ ≡ φy
(
Mr −MJT,r)+ M. Note that we still have

q′M̃ = φy

(
q′Mr − q′MJT,r

)
+ q′M = φy

(
Aq′ − q′JT,r

)
+ q′ = φy (A− B) q′ + q′ = q′

To conclude, equation (A.30) takes the form in (A.28), with the partial equilibrium spending im-
pulse ∂Y ≡ dG −MdTexo and the modified M matrix M̃ reflecting, in addition to the spending
response to income, the spending response to the higher interest rates generated by the endoge-
nous response of monetary policy.

Nominal interest rate rule with a simple Phillips curve. We next assume that monetary pol-
icy follows a nominal interest rate rule that responds to inflation, as in a standard Taylor rule
specification,

dit = φπdπt (A.31)

Now, the response of real interest rates drt is given by drt = dit − dπt+1, or in vector form

dr = (φπI− F) dπ (A.32)

where F is the lead operator. We also assume that the Phillips curve is given by (A.12), except for
the fact that C∗t is replaced by aggregate consumption Ct.A-16 After substituting the equilibrium
A-16Intuitively, in this case, the union treats all its members as if they had the average level of consumption Ct from the
perspective of evaluating the wealth effect on labor supply. We assume this here for convenience in order to avoid an
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relations Yt = Nt, Ct = Yt − Gt and Zt
Nt

= 1− Tt
Yt

, we therefore have:

dπw
t = κw

(
1

φY
dYt +

1
σC

(dYt − dGt) +
1
Y

1
1− T/Y

(
dTt −

T
Y

dYt

))
+ βdπw

t+1

This can further be written as:

dπw
t = κw 1

φY

((
1 +

φY
σC
− φ

T/Y
1− T/Y

)
dYt −

φY
σC

dGt + φ
dTt

1− T/Y

)
+ βdπw

t+1

= κ̃w (dYt − dYn
t ) + βdπw

t+1 (A.33)

where κ̃w ≡ κw 1+ φY
σC−φ

T
Y

1−T/Y
φY is the slope of the wage Phillips curve in terms of output, and dYn

t , the
natural level of output, is defined as:

dYn
t ≡

φY
σC

1 + φY
σC − φ

T
Y

1−T/Y

dGt −
φ

1−T/Y

1 + φY
σC − φ

T
Y

1−T/Y

dTt (A.34)

In this case, the natural level of output only depends on contemporaneous government spending
and taxes. This reflects the standard neoclassical forces (Aiyagari et al. 1992, Baxter and King
1993): there is a multiplier on government spending due to the standard wealth effect on labor
supply, and a negative force from higher taxes due to the distortionary effects of taxation. Given
(A.34), the natural level of output dYn is exogenously determined by {dG, dT}. Since productivity
is constant, price and wage inflation are equal, πt = πw

t , so that (A.33) reads, in vector form,
dπ = κ̃w (dY− dYn) + βFdπ. Since the operator norm ‖βF‖ is equal to β < 1, I− βF is invertible
with inverse ∑k≥0 βkFk, and (A.33) reads simply

dπ = Kw (dY− dYn) (A.35)

where

Kw ≡ κ̃w

(
∑
k≥0

βkFk

)
= κ̃w


1 β β2 . . .

0 1 β
. . .

0 0 1
. . .

. . . . . . . . .


is the standard expression for the Calvo–Rotemberg Phillips curve Jacobian (see e.g. Auclert,
Rigato, Rognlie and Straub 2024b).

Combining (A.32) and (A.35) gives the endogenous response of the real interest rate under a
nominal interest rate rule,

dr = (φπI− F)Kw (dY− dYn)

This is similar to (A.29), but takes into account the direct effect of government spending and dis-

additional fixed point with an endogenous real interest rate that would otherwise be required to solve for C∗t .
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tortionary taxation on inflation via the natural level of output. The rest of the analysis is therefore
similar, leading to a fixed point in output as in (A.28), with ∂Y including an additional effect from
the changing natural level of output dYn.

B.2 Nominal bonds

Suppose that, instead of trading real bonds, we modify the model so that households trade nomi-
nal one-period bonds instead, as in Auclert (2019), Angeletos et al. (2023) and Kaplan et al. (2023).
Monetary policy continues to implement the constant-real interest rate rule rt = r for t ≥ 0 on-
ward, but now at time 0 the real return on existing bond positions is 1+rss

1+π0
, reflecting the erosion

of returns from inflation relative to its expected steady state value of 0. This implies two main
changes to the equations of the model.

First, fiscal policy shocks {dT, dG} now satisfy q′dT + Bdπ0 = q′dG: unexpected inflation
acts as a tax and relaxes the government budget constraint. As in section B.1, the fiscal rule needs
to specify how the government’s tax and spending plan will respond to any change in inflation.
Again, we do this by assuming that the response would fall on transfers, and split dT = dTexo +

dTendo, where dTendo = −jT,πdπ0 with q′jT,π = B, so that the response of endogenous transfers is
sufficient to exhaust the present-value gain from unexpected inflation.

Second, households experience a capital loss from unexpected inflation that affects their con-
sumption according to the vector of MPCs out of capital gains mcap (see section 6). In particular,
consumption is now given by

dC = MdZ−mcapBdπ0

The rest of the environemnt is as in section 2.2. This implies in particular dZ = dY − dT and
dY = dC + dG.

In this environment, the impact response of inflation is needed to characterize the effect of the
fiscal shocks {dT, dG}. Given (A.35), and setting φ = 0 for simplicity so that we assume away the
neoclassical forces discussed in section B.1, we obtain

dπ0 = e′0Kw (dY− dYn) = kw′dY (A.36)

where kw′ ≡ e′0Kw = κ̃w
(

1 β β2 · · ·
)

is the impact response of inflation of an increase in
the path of output dY via the Phillips curve. Combining these equations, we obtain the following
modification of the intertemporal Keynesian Cross under nominal bonds. First, we have:

dY = M
(

dY− dTexo + jT,πdπ0

)
− Bmcapdπ0 + dG

= M (dY− dTexo) +
(

MjT,π − Bmcap
)

dπ0 + dG (A.37)

The first and third term are standard. The second term in (A.37) reflects what happens to out-
put when inflation rises: on the one hand, it leads to fiscal transfers with time path jT,π, which
raise demand according to M; on the other it directly lowers households’ real wealth and low-
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ers demand according to mcap. Overall, we have q′
(
MjT,π − Bmcap) = 0, so the present value

of spending is unaffected by inflation, but, provided the fiscal response to inflation embedded in
jT,π is sufficiently frontloaded, this term will generally be positive early on and negative later on.
Combining (A.37) with (A.36) we obtain

dY =
(

M +
(

MjT,π − Bmcap
)

kw′
)

︸ ︷︷ ︸
≡M̃

dY + dG−MdTexo︸ ︷︷ ︸
≡∂Y

which has the form in (A.28), with q′M̃ = q′. On balance, nominal bonds therefore just alter
the M matrix by reflecting the influence of unexpected inflation on demand via the direct impact
of eroding nominal wealth and the indirect impact through the fiscal response. Constructing M̃
requires knowledge of the MPC out of capital gains mcap, as well as the endogenous response of
transfers to inflation jT,π. This is a larger informational requirement than in the case of real bonds.

B.3 Sticky prices

To explore the role of sticky prices, we take the limit of the model where unions reset wages
perfectly flexibly, that is κw = ∞ in (A.11), so that we have:

∫
Nt

{
v′ (nit)−

ε− 1
ε

∂zit

∂nit
u′ (cit)

}
di = 0 (A.38)

Instead, assume that the nominal rigidity is in prices, with inflation following a standard Calvo
Phillips curve,

πt = κpwt +
1

1 + r
πt+1

Faced with demand Yt, firms hire labor Nt = Yt and earn profits

Πt = Yt − wtNt

Suppose that profits are distributed according to a rule: an agent with idiosyncratic ability e re-
ceives share Π(e) of profits, so that agent i’s date-t pretax income is now given byA-17

yit = eitwtNt + Π(eit)Πt

Rewriting this equation and using our assumptions so far, we find that

yit = Yt
(
wteit + (1− wt)Π(eit)

)
In the sticky-wage, flexible-price model, the real wage is always equal to 1 and the share of ag-
gregate income Yt going to agent type i depends linearly on eit, i.e. yit = Yteit. Here, with flexible

A-17The other common way to attribute profits to households is by allowing households to trade firms’ shares. We
make this assumption in sections (6) and (7).
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wage but sticky price instead, the real wage fluctuates, and this affects the way in which income
is distributed. In booms, when the real wage is large, income is split more according to ability eit,
while in busts the distribution of profits Π(eit) matters more.

A useful benchmark case is the one where the distribution of profits is also linear in ability,

Π(e) = e (A.39)

In this case, pretax income is exactly the same as in the sticky wage model,

yit = Yteit

Thus, for the constant-r case, one may reinterpret our sticky wage model as a model with sticky
prices together with the distribution rule for profits in (A.39). In particular, individual post-tax
income zit ≡ τt (yit)

1−θ is still given by equation (8), and so solely dependent on {Yt − Tt}, and
the IKC from the main text (13) still characterizes the equilibrium response {dYt} to a change in
fiscal policy {dGt, dTt}. Given a solution for these real quantities, we can then solve for the path
for the real wage {wt} that guarantees that (A.38) holds at every t. This is analogous to how we
solve for the path for the nominal wage {Wt} after solving for real quantities in the sticky-wage,
flexible-price model of section 2.

B.4 Endogenous labor supply with GHH preferences

To explore the role of endogenous labor supply, we maintain our assumption of sticky prices
from section B.3, but we now assume that agents choose hours flexibly and that they have GHH
preferences as in Greenwood, Hercowitz and Huffman (1988).A-18 We focus, for simplicity of the
argument, of the case of the one-account model; other models of the general class introduced in
section A.1 can be treated similarly. In addition to a rule Π (eit) for the distribution of aggregate
profits Πt by ability, we assume a rule T (eit) for the distribution of aggregate taxes Tt by ability.
The Bellman equation for this model is then:

Vt (eit, ait−1) = max
cit,nit

u (cit − v (nit)) + βE [Vt+1 (eit+1, ait) |eit]

s.t. cit + ait = (1 + rt−1) ait−1 + eitwtnit − TtT (eit) + ΠtΠ (eit) (A.40)

ait ≥ 0

The first order condition for hours is:

v′ (nit) = eitwt

A-18Away from GHH preferences, with general preferences U (c, n) over consumption and labor, we can no longer
reduce to a single fixed point in output. Instead, the model generates an aggregate labor supply functionNt in addition
to an aggregate consumption function Ct. See Auclert et al. (2023a) for a treatment of this case.
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which leads to an hours choice nit = (v′)−1 (eitwt). Substituting this in the the Bellman equation,
we obtain:

Vt (eit, ait−1) = max
cit

u
(

cit − v
((

v′
)−1

(eitwt)
))

+ βE [Vt+1 (eit+1, ait) |eit]

s.t. cit + ait = (1 + rt−1) ait−1 + eitwt
(
v′
)−1

(eitwt)− TtT (eit) + ΠtΠ (eit)

ait ≥ 0

This has the form described in section A.1, with an ability- and time- varying utility function,
and aggregate inputs Xt ≡ {wt, Πt, Tt}. Applying the arguments of that section, we find that the
model generates an aggregate consumption function Ct ({wt, Πt, Tt}).

As in section B.3, profits are given by Πt = Yt − wtNt = (1− wt)Yt, and price inflation by
πt = κpwt +

1
1+r πt+1. Moreover, the labor market clearing condition is:

∑
eit

π (eit)
(
v′
)−1

(eitwt) = Yt

which gives wt (Yt) as a static function of Yt. Substituting in these relations, we can define an
aggregate consumption C̃t (Yt, Tt) ≡ Ct ({wt (Yt) , (1− wt (Yt))Yt, Tt}). The goods market clearing
condition reads

C̃t ({Yt, Tt}) + Gt = Yt

Differentiating and defining M and MT via Mts ≡ ∂C̃t
∂Ys

and MT
ts ≡ ∂C̃t

∂Ts
, we obtain the generalized

intertemporal Keynesian cross
dY = dG−MTdT + MdY

which takes the form in (A.28) with ∂Y ≡ dG−MTdT.

B.5 Durable goods

Here, we amend our framework to include durable spending. We then show that the model
generates an intertemporal Keynesian cross provided the consumption function includes both
nondurable and durable expenditure, as claimed in section 3.1.

Model with durable goods. We introduce durables in the simplest possible way, by assuming
homothetic durable demand and perfect collateralizability. Considering the one-account model
for ease of notation, and anticipating a constant-r monetary policy rule, the household problem is
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now:

max E

[
∑
t≥0

βt {u (cit) + κu (dit)}
]

cit + dit − (1− δD) dit−1 + ait = zit + (1 + r) ait−1

ait +
1− δD

1 + r
dit ≥ 0

where zit is still taken as given and determined by labor demand in general equilibrium.
Observe that households can borrow against the non-depreciated component of the next pe-

riod durable stock. Redefining the overall asset position as:

wit ≡ ait +
1− δD

1 + r
dit

the problem rewrites as

max E

[
∑
t≥0

βt {u (cit) + κu (dit)}
]

cit +
r + δD

1 + r
dit + wit = zit + (1 + r)wit−1

wit ≥ 0

where the user cost of durables r+δD
1+r appears. In this formulation, no matter whether the constraint

on wit is binding or not, there is a unique first order condition for the stock of durables dit relative
to consumption cit that applies to every consumer, namely

κu′ (dit) = u′ (cit)

(
r + δD

1 + r

)
(A.41)

Equation (A.41) implies that the durable stock is a constant fraction of nondurable consumption
at all times and for every consumer: dit = υcit where υ = (u′)−1

(
r+δD
1+r

1
κ

)
. Further, given an ini-

tial level of wealth w−1 and a stochastic process for zit, if we let cND
it be the path for nondurable

consumption generated by our main model without durables, then the path for nondurable con-
sumption in the model with durables is given, in every state and date, by cit =

cND
it

1+ r+δ
1+r υ

. Total

expenditures xit ≡ cit + dit − (1− δD) dit−1 in the enlarged model are therefore a simple lagged
transformation of nondurable expenditures in the baseline model:

xit =
1 + υ

1 + r+δD
1+r υ

cND
it −

(1− δD) υ

1 + r+δD
1+r υ

cND
it−1

Following the argument in section A.1, in the aggregate this behavior defines an expenditure
function Xt ({Zs}). Further, we have that the impact marginal propensity for expenditure (MPX)
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M00 = ∂X0
∂Z0

, is given by
(

1− s + s 1+r
r+δD

)
∂CND

0
∂Z0

, where 1− s ≡ 1
1+ r+δD

1+r υ
is the share cit/cND

it of non-

durable spending in total notional consumption. This is the Laibson, Maxted and Moll (2022)
formula to convert the impact “notional MPCs” from a model with only nondurables, ∂CND

0
∂Z0

, to the
impact MPX.

Intertemporal Keynesian cross with durable goods. On the production side, we maintain our
assumption that firms produce a unique good out of labor. The resource constraint for the econ-
omy is now:

Gt +Xt ({Ys − Ts}) = Yt (A.42)

Totally differentiating (A.42), we obtain the intertemporal Keynesian cross from the main text
(13), which has the form (A.28) with ∂Y ≡ dG −MdY, and where M now has elements Mt,s ≡
∂Xt
∂Zs

, so that it includes total expenditures on both nondurables and durable goods, as claimed in
section 3.1.A-19

B.6 Investment

We now consider how the presence of investment with constant a constant real interest rate r
alters the intertemporal Keynesian cross. We first derive the existence of an aggregate investment
function It ({Ys}) and then discuss how this setting modifies the aggregate consumption function
Ct ({Ys; Ts}).

Investment function. We introduce a standard supply side with investment in appendix G.1
below. Here, we focus on the setting in section 2, in which prices are flexible, κp = ∞ and there
are no markups µ = 1. In that case, the economy’s capital stock is determined as solution to the
following fixed point. Given a path for real wages {wt}, the economy’s capital stock Kt and labor
supply Nt solve

Jt(Kt−1) = max
Kt,Nt

{
F(Kt−1, Nt)− wtNt − ζ

(
Kt

Kt−1

)
Kt−1 +

1
1 + r

Jt+1(Kt)

}
(A.43)

In turn, given a path for output {Yt}, the equilibrium path for real wages {wt}must ensure that

F(Kt−1, Nt) = Kα
t−1N1−α

t = Yt (A.44)

For given Kt−1, denote by N (Kt−1, Yt) = Y1/(1−α)
t K−α/(1−α)

t−1 the level of labor compatible with
(A.44). We assume that there exists a unique equilibrium path for the capital stock {Kt−1}. We
characterize this path as follows:

A-19In an earlier version of this paper (Auclert, Rognlie and Straub 2018), we calibrated this enlarged model to match the
Norwegian evidence on Mt0, and used this model to extrapolate to other columns of the M matrix. This extrapolation
gives an outcome very similar to the one from our one-account model. The main difference is that spending is not as
elevated in the year immediately after the income receipt, as households decumulate some of their durables.
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Lemma 5. {Kt} is the equilibrium path of capital if and only if {Kt} solves the following problem, in which
the real wage does not appear:

Jt(Kt−1) = max
Kt

{
F (Kt−1, Yt)− ζ

(
Kt

Kt−1

)
Kt−1 +

1
1 + r

Jt+1(Kt)

}
(A.45)

where we define
F (K, Y) ≡ αY log K

Proof. The only difference between (A.43) and (A.45) are the terms F(Kt−1, Nt)−wtNt andF (Kt−1, Yt).
The derivative of the former with respect to capital, evaluated on the equilibrium path, is

FK(Kt−1,N (Kt−1, Yt)) = αYt/Kt−1

which is equal to FK(Kt−1, Yt). Thus, any equilibrium path satisfies the first order conditions of
(A.45), and any solution to (A.45) satisfies the first order conditions of (A.43). Since there is a
unique equilibrium path, this also implies that there can only be a single solution to (A.45).

Lemma 5 is helpful since it immediately implies that there is a capital function Kt ({Ys}) map-
ping paths {Ys} to the equilibrium path of capital {Kt}, and therefore also an investment function
It({Ys}) ≡ Kt ({Ys})− (1− δ)Kt−1 ({Ys}).

Modified consumption function. Given the presence of investment, shocks induce valuation
effects as discussed in section 6.1. At date 0, the new value of shares in firms, including dividends,
is p0 + d0 = J0(K−1). Substituting the capital function Kt ({Ys}) and the labor function Nt ({Ys})
into (A.43), we see that J0(K−1) is a function J ({Ys}). Observing that aggregate labor income
wsNs is simply (1− α)Ys, and substituting these relations into the consumption function inclusive
of valuation in (33), we now have

Ct = Ct ({(1− α)Ys − Ts},J ({Ys})) ≡ C̃t ({Ys; Ts}) .

where the dependence of C̃ on Ys is both through the effect that Ys has on labor income wsNs, and
through the effect it has on the initial value of capital J .

Intertemporal Keynesian cross with investment. Having derived the investment function as
well as the modified consumption function, the goods market clearing condition now reads

Yt = Gt + C̃t ({Ys; Ts}) + It ({Ys})

Differentiating this equation, we find an intertemporal Keynesian cross equation (A.28) where
∂Y ≡ dG −MTdT with the elements of MT being given by MT

t,s = ∂C̃t
∂Ts

and the elements of M̃

being given by M̃t,s =
∂C̃t
∂Ys

+ ∂It
∂Ys

.
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C Appendix to section 3

C.1 Proof of Lemma 1

Define
Et

c (s, ω−; {Zs}) ≡ E0 [ct|(s0, ω−1) = (s, ω−)]

as the expectation at date 0 of consumption at time t for an agent that is in state (s, ω−) at date
0 and follows the policy induced by the sequence {Zs}. Since, by perfect foresight, the average
date-0 expectation of date-t consumption will equal actual aggregate consumption at date t, we
have:

Ct =
∫

Et
c (s, ω−) dµ (s, ω−)

where µ is the steady-state distribution. It follows that:

Mt0 =
∂Ct

∂Z0
=
∫

∂Et
c (s, ω−)
∂Z0

dµ (s, ω−)

Replacing with more familiar notation for Et
c, and using the fact that Z0 only enters agent i’s

problem through its zi0, with ∂zi0
∂Z0

= zi0
Z0

= zi0∫
zι0dι

, we obtain:

Mt0 =
∫

∂E0 [cit]

∂Z0
di =

∫
∂E0 [cit]

∂z0i

∂zi0

∂Z0
di =

∫ zi0∫
zι0dι

∂E0 [cit]

∂z0i
di

This delivers Lemma 1.

C.2 Evidence from Norwegian administrative data

Our estimates on Norwegian iMPCs were generously provided to us by Andreas Fagereng, Mar-
tin Holm and Gisle Natvik. In Fagereng et al. (2021), they combine individual-level administra-
tive income data and household-level wealth data from the Norwegian population, and residu-
ally impute a household-level consumption measure using a budget constraint approach. This
is therefore a comprehensive measure of household expenditure, including durable and housing
expenditures. However, the authors drop from their sample all households who record a housing
market transaction, so that their iMPC estimates can be interpreted as including consumption and
non-housing durable expenditures only.

The paper provides convincing evidence that the sample of gamblers is not selected: 70 percent
of the population gambles, the population of winners is not significantly different from the rest of
the population on observable characteristics including their consumption-income covariance over
time, and gambling prizes are not predictable by prior household characteristics (Tables 1 and 2).
To further limit the concern that iMPC estimates reflect the behavior of serial gamblers, the sample
is limited to households who win only once.

The authors provided us with income-weighted estimates of regression (21). The regression

A-29



Figure C.1: Income-weighted MPC distributions: data and HA-one model
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(a) Income-weighted MPC distribution, data
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(b) MPCt distribution weighted by date-0 income, HA-one
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includes all lottery wins below $150,000, and most prizes are below $20,000. As we discuss in
footnote 21, their MPC estimates for a sample restricted to small gains are much larger than the
full sample estimates, imprecisely estimated, and do not sum to one, so we prefer to use these
full-sample estimates.

C.3 Evidence from the Italian Survey of Household Income and Wealth

The Italian Survey of Household Income and Wealth (SHIW) is a biannual survey, publicly avail-
able on the Bank of Italy website. In 2016, survey respondents were asked:

“Imagine you unexpectedly receive a refund equal to the household’s monthly income.
How much of the sum would you save and how much would you spend? Indicate the
percentage saved and the percentage spent.”

In 2010, the same question was asked, except that the survey mentioned a “reimbursement” rather
than a “refund”. The distribution of answers to this question is similar to that of the the 2012
survey which specified a timeframe “over the next 12 months” with a slightly different wording.
As a result, these answers are typically interpreted as annual MPCs. (The 2014 survey instead
included a retrospective question about spending of the 2014 “Renzi bonus”.)

We drop observations with zero or negative income, and are left with 7,936 observations in the
2010 survey and 7,367 observations in the 2016 survey.

Distributions of MPCs. Panel (a) of figure C.1 displays the cumulative density functions of the
income-weighted distribution of MPCs in the 2010 and 2016 SHIW. As is apparent, these distri-
butions are quite similar, despite being measured six years apart, which we take to support our
choice of treating the 2016 distribution as corresponding to the steady state.A-20

A-20The similarity in these distributions over time also suggests that one possible source of aggregate state-
dependence—different MPC distributions in different macroeconomic conditions—is not present.
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Construction of a lower bound. From the 2016 survey, we have a distribution of self-reported
MPCs MPCi as well as income net of taxes zi. We can therefore construct M00 = EI

[
zi

EI [zi ]
MPCi

]
directly from the data.

Next, we make further assumptions on the primitives in appendix A.1. In particular, we as-
sume that there is only a single account, i.e. L = 1, and that both income zit and lagged assets
ait−1 only appear in the date-t optimization problem (A.1) in the budget constraint cit + ait =

(1 + r)ait−1 + zit.A-21 These assumptions hold for all models in section 4 except the two-account
model.

Because (1 + r)ait−1 and zit enter the problem interchangeably, the derivatives of both the
consumption cit and asset ait choices with respect to (1+ r)ait−1 and zit must be the same. Defining
these (potentially time-varying and state-contingent) derivatives in the aggregate steady state to
be MPCti and MPSti ≡ 1− MPCti, respectively, it follows that if an individual i receives a unit
income shock at date 0, then his assets at date 0 will increase by MPS0i. Going into date 1, he will
have (1 + r)MPS0i more resources, leading to higher savings in assets of (1 + r)MPC0i · MPS1i,
and so on. In general, his asset balance at date t, conditional on the same sequence of shocks, will
increase by

dait = (1 + r)t MPS0i ·MPS1i · · ·MPSti

Aggregating across all individuals i, who each receive income shocks zi0∫
zι0dι

in response to an
aggregate unit income shock, and taking expectations to aggregate over all realizations of shocks,
we have

dAt = (1 + r)t
∫ zi0∫

zι0dι
E0[MPS0i ·MPS1i · · ·MPSti]di (A.46)

We would like to bound (A.46) from above, to obtain a lower bound on cumulative consumption.
To do so, we make the following intuitive assumption: the date-0 marginal propensity to save,

MPS0i, is more closely positively related to after tax income at date 0, zi0, than the marginal
propensity to save at a later date, MPSti. Formally, the date-0-income-weighted distribution of
MPS0i first order stochastically dominates the income-weighted distribution of MPSti, or for any
t > 0 and m > 0,

PI

(
zi0∫
zι0dι

MPS0i > m
)
> PI

(
zi0∫
zι0dι

MPSti > m
)

(A.47)

Panel (b) of figure C.1 shows that this assumption is clearly satisfied in our HA-one model. The
following result shows that this assumption is sufficient to establish a simple upper bound on dAt.

Proposition 10. Assume that (A.47) holds. Define dAt as

dAt ≡ (1 + r)t
∫ zi∫

zιdι
(MPSi)

t+1 di (A.48)

A-21This latter condition rules out, for instance, that lagged assets ait−1 are complements to consumption in the utility
function, or that they appear separately in another constraint on choices.
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then, for t = 0, dA0 = dA0, and for t > 0, dAt ≤ dAt, where dAt is as in (A.46).

Note that the key object
∫ zi∫

zιdι
(MPSi)

t+1 di in (A.48) is the income-weighted cross-sectional

average of (MPSi)
t+1 in the aggregate steady state. We formally prove proposition 10 below.

The intuition behind proposition 10 is that if the cross-sectional distribution of MPSti across
individuals i, weighted by income at date 0, is the same at all dates t, then savings will be the
highest if MPSti remains the same for everyone—i.e. if the same households with a high marginal
propensity to save at date 0 also have a high marginal propensity to save at dates 1, 2, . . .. (In-
versely, savings are low if MPSit switches between households: if savers yesterday are spenders
today, and vice versa, then little or no savings will persist past today.)

Generally, it will not be true that the distribution of MPSit weighted by income at date 0 is the
same over time, but it is reasonable to assume that the distribution shifts to the left as t increases
(and so the MPCit distribution shifts to the right, as depicted in figure C.1(b)). Therefore, the
upper bound for savings computed by using the zi0-weighted distribution of MPSi0 remains an
upper bound, as the proposition shows.

Proposition 10 implies the following key corollary, which is the source of our lower bound on
intertemporal MPCs.

Corollary 2 (Bound on cumulative iMPCs). Define dC0 ≡ 1− dA0 and dCt ≡ (1 + r)dAt−1 − dAt

for t > 0. Then dC0 = dC0, dC1 ≥ dC1, and for t > 1:

t

∑
t′=0

(1 + r)−t′dCt′ ≥
t

∑
t′=0

(1 + r)−t′dCt′ (A.49)

Proof of corollary 2. dC0 = dC0 follows immediately from dC0 = 1− dA0 and dA0 = dA0 in propo-
sition 10. Similarly, dC1 ≥ dC1 follows from dC1 = (1 + r)dA0 − dA1 = (1 + r)dA0 − dA1 ≥
(1 + r)dA0 − dA1 = dC1.

For t > 1, we can sum the dC0 = 1− dA0 and the discounted dCt = (1 + r)dAt−1 − dAt to
obtain ∑t

t′=0(1+ r)−t′dCt′ = 1− (1+ r)−tdAt, and similarly ∑t
t′=0(1+ r)−t′dCt′ = 1− (1+ r)−tdAt.

Combining these with dAt ≤ dAt gives (A.49), as desired.

Note that when t > 1, (A.49) allows for dCt to be less than dCt, but only when dCt′ commensu-
rately exceeded dCt′ for some earlier t′. (Our focus in the main text is on the t = 1 case, where this
is not an issue.)

Since dCt are lower bounds on the cumulative consumption response out of a unit date-0 shock
to aggregate income, they are lower bounds on cumulative iMPCs Mt0, and in the main text we
denote them by Mt0. Figure 1 reports Mt0, which we compute using our the value r = 5% from
our calibration.

Proof of proposition 10. The proposition requires a generalized version, proved in lemma 6 below,
of what is sometimes known as the “rearrangement inequality”.A-22

A-22The basic form of the discrete rearrangement inequality states that for any real numbers x1 ≤ · · · ≤ xn and y1 ≤
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Define the random variables in lemma 6 to be Xj = MPSij−1 and Y = MPSi0, where the
probability measure µ is defined over all individuals i and their histories, weighting by date-0
income. Under this measure, using (A.47), we have that Xi � Y, and therefore can apply lemma 6
to obtain E[MPSi0 · · ·MPSit] ≤ E[MPSt+1

i0 ] for all t. This implies that for a measure unweighted
by income, we have E[ zi0∫

zι0dι
MPSi0 · · ·MPSit] ≤ E[ zi0∫

zι0dι
MPSt+1

i0 ], where E takes both expectations
for each individual and the cross-sectional average across them. Given (A.46) and (A.48), this is in
turn equivalent to the bound in proposition 10, where we drop the 0 time subscript in zi0∫

zι0dι
MPSt+1

i0

since its average is the same in all dates in the aggregate steady state.

Lemma 6. If X1, . . . , Xn, Y are nonnegative random variables on some arbitrary probability space (Ω,A, µ),
and Xi � Y in the sense of first-order stochastic dominance, then

E[X1 · · ·Xn] ≤ E[Yn] (A.50)

Proof. To prove this lemma, first consider the case where the random variables all take values only
in some finite set a1, . . . , am, which we put in strictly increasing order. Then for any Xi we can write

Xi =
m

∑
j=1

aj1Xi=aj =
m

∑
j=1

αj1Xi≥aj

where α1 ≡ a1, α2 ≡ a2 − a1, . . . , αm ≡ am − am−1 (and similarly for Y).A-23 We can then write

E[X1 · · ·Xn] = E

[
n

∏
i=1

(
m

∑
j=1

αj1Xi≥aj

)]

=
m

∑
j1=1

m

∑
j2=1
· · ·

m

∑
jn=1

(αj1 · · · αjn)E[1X1≥aj1
· · · 1Xn≥ajn

]

=
m

∑
j1=1

m

∑
j2=1
· · ·

m

∑
jn=1

(αj1 · · · αjn)µ
(
{X1 ≥ aj1} ∩ · · · ∩ {Xn ≥ ajn}

)
≤

m

∑
j1=1

m

∑
j2=1
· · ·

m

∑
jn=1

(αj1 · · · αjn)µ

(
{Y ≥ max

i
ji}
)

=
m

∑
j1=1

m

∑
j2=1
· · ·

m

∑
jn=1

(αj1 · · · αjn)E[1Y≥aj1
· · · 1Y≥ajn

]

= E

[
n

∏
i=1

(
m

∑
j=1

αj1Y≥aj

)]
= E[Yn]

Here, the key inequality step is µ
(
{X1 ≥ aj1} ∩ · · · ∩ {Xn ≥ ajn}

)
≤ µ ({Y ≥ maxi ji}). This fol-

lows because trivially µ
(
{X1 ≥ aj1} ∩ · · · ∩ {Xn ≥ ajn}

)
≤ µ({Xi ≥ aji}) for any i; and then by

· · · ≤ yn, we have xσ(1)y1 + · · · + xσ(n)yn ≤ x1y1 + · · · + xnyn for any permutation σ of 1, . . . , n. A special case is
where we have the same sequence: xσ(1)x1 + · · · xσ(n)xn ≤ x2

1 + · · ·+ x2
n. Lemma 6 applies this idea to the case of many

random variables defined on a probability space, all dominated in distribution by a common random variable.
A-23This is sometimes called the “layer-cake representation” of a function.
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the first-order stochastic dominance assumption, µ({Xi ≥ aji}) ≤ µ({Y ≥ aji}), also for any i.
This proves (A.50) for the case of random variables that take finitely many values. For the

general case, where Xi and Y can take any nonnegative values, let us define

X(N)
i (ω) ≡

 k
N if k

N ≤ Xi(ω) < k+1
N for k ∈ {0, 1, . . . , N2 − 1}

N if Xi(ω) ≥ N

It is clear that X(N)
i ≤ Xi for all N, and that X(N)

i → Xi almost everywhere as N → ∞. Defining
YN similarly, we also have Y(N) ≤ Y and Y(N) → Y.

Given our result for random variables with finitely many values, we have

E[X(N)
1 · · ·X(N)

n ] ≤ E[(Y(N))n]

for any N, and taking the limit as N → ∞ and applying the dominated convergence theorem, we
obtain (A.50).

C.4 Literature on the consumption response to anticipated income shocks

The existing evidence points to the presence of some, albeit modest, anticipation effects. For exam-
ple, in their survey, Fuster et al. (2021) find that a few households would cut spending immediately
in response to the news of a $500 loss one quarter ahead. Agarwal and Qian (2014) find evidence
of a spending response between the announcement of a cash payout in Singapore and its disburse-
ment two months afterward. Di Maggio et al. (2017) find some evidence of one-quarter-ahead new
car spending in expectation of a predictable reduction in mortgage payments. By contrast, Kueng
(2018) finds limited evidence of anticipation effects from the Alaska Permanent Fund news. The
bulk of this evidence is for quarterly rather than yearly spending, and is too imprecise for us to
confidently use as a model input.

D Appendix to section 4

D.1 Marginal value function propagation via policy derivative

We first prove a result about the propagation of shocks in heterogeneous-agent models that will
be useful for the proofs that follow.

Consider a model with a single continuous endogenous state denoted by a (for assets), and an
exogenous state s following a discrete Markov chain Πss′ . Assume that the Bellman equation can
be represented as:

Vt(s, a−) = max
a

Ft(s, a−, a) + βE
[
Vt+1(s′, a)|s

]
(A.51)

for a certain function Ft. Let at (s, a−) denote the policy function. In the steady state, the flow
objective is Ft = F, the value function is Vt = V, and the policy is a (s, a−).
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Consider a perturbation to the steady state that leads to a new set of policies {dVs(s, a−)} but
does not affect the value of F at time t. Then, by the envelope theorem, we that:

dVt(s, a−) = βE
[
dVt+1(s′, a (s, a−))|s

]
where the steady state policy a (s, a−) is used. Differentiating both sides with respect to a−, de-
noting V ′t ≡ ∂Vt

∂a− and a′ ≡ ∂a
∂a− , and using the chain rule and the symmetry of mixed partials, we

obtain:A-24

dV ′t (s, a−) = βa′ (s, a−)E
[
dV ′t+1(s

′, a (s, a−))|s
]

∀ (s, a−) (A.52)

Equation (A.52) shows that future shocks to the marginal value function propagate to earlier pe-
riods through discounting β and the derivative of the steady-state policy a′ (s, a−). This result has
important implications for the structure of sequence-space Jacobians under rational expectations.
Two special cases are particularly useful.

First, consider a model without idiosyncratic shocks. Let a = a (a) denote the steady-state
value of a. Then (A.52) implies

dV ′t (a) = βλdV ′t+1(a) (A.53)

where the scalar λ ≡ a′ (a) is the derivative of the steady-state policy at the steady-state level of
assets.

Consider next a model with idiosyncratic shocks, but for which the steady-state is such that
a (s, a) = a for all s. This is the case, for instance, in the zero-liquidity model considered in section
D.4, in which all agents are at the borrowing constraint in equilibrium. Then (A.52) implies that

dV ′t (s, a) = βλsE
[
dV ′t+1(s

′, a)|s
]

∀s (A.54)

where, for each s, the scalar λs ≡ a′ (s, a) is the derivative of the steady-state policy evaluated at
the steady-state level of assets in state s.

D.2 Analytical models: RA, BU, TA and TABU

The intertemporal first-order condition for the unconstrained agent solving problem (22) is given
by:

u′ (cu
t ) = β (1 + r) u′ (cu

t+1) + χ′ (au
t ) (A.55)

In a steady state, we must have

u′ (cu) (1− β (1 + r)) = χ′ (au) (A.56)

A-24Letting θ be the perturbation to the steady state, we have dVt(s, a−) ≡ ∂Vt(s,a−)
∂θ dθ, and here we use

the fact that ∂
∂a−

∂Vt(s,a−)
∂θ dθ = ∂

∂θ
∂Vt(s,a−)

∂a−
dθ = ∂

∂θ
∂

∂a− (Vt+1(s, a (s, a−))) dθ = a′ (s, a−) ∂
∂θ

∂Vt+1(s,a(s,a−))
∂a−

dθ =

a′ (s, a−) ∂
∂a−

∂Vt+1(s,a(s,a−))
∂θ dθ.
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as well as
cu = Z + rau (A.57)

Away from steady state, starting at an asset position of au
−1, the intertemporal budget constraint

corresponding to (22) reads

∞

∑
t=0

(
1

1 + r

)t

cu
t =

∞

∑
t=0

1

(1 + r)t Zt + (1 + r) au
−1 (A.58)

RA model. In the RA model, χ′ = 0 implies β (1 + r) = 1 from (A.55), and cu
t = cu from (A.55).

µ = 0 then implies that ct = cu. Plugging into (A.58), we obtain the level of cu and therefore the
consumption function,

CRA
t ({Zs}) =

r
1 + r

∞

∑
s=0

1
(1 + r)s Zs + ra−1 = (1− β)

∞

∑
s=0

βsZs + ra−1 (A.59)

This implies the matrix of iMPCs MRA in the main text, (23). Each column is constant, since the
agent is a permanent-income consumer and thus consumes the constant annuity value of any
increase in after-tax income. The asset function of the RA model solves can be derived by iterating
forward on the relation (A.6), which gives:

ARA
t ({Zs}) =

∞

∑
u=t+1

βu−t {Cu({Zs})− Zu} =
β

1− β
C({Zs})−

∞

∑
u=t+1

βu−tZu

= β

(
∞

∑
s=0

βsZs −
∞

∑
s=t+1

βs−(t+1)Zs +
β

1− β
ra−1

)

This equation the asset Jacobian, ARA
t,s = β · βs for t ≥ s and ARA

t,s = βs+1− βs−t = −β · βs−(t+1)
(
1− βt+1)

for s ≥ t + 1. In matrix form, this reads

ARA = β



1 − (1− β) − (1− β) β − (1− β) β2 · · ·
1 β −

(
1− β2) −

(
1− β2) β · · ·

1 β β2 −
(
1− β3) . . .

...
...

... β3 . . .


(A.60)

This verifies (I− (1 + r) L)ARA = I−MRA, or alternatively, ARA = K
(
I−MRA), with K defined

as in proposition 1.
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TA model. In the TA model, we still have β (1 + r) = 1 from (A.55), and cu
t = cu from (A.55).

Now, ct = (1− µ) cu + µcc
t with cc

t = Yt − Tt. This implies the consumption function:

CTA
t ({Zs}) = (1− µ)

{
r

1 + r

∞

∑
s=0

1
(1 + r)s Zs + ra−1

}
+ µZt (A.61)

The iMPC matrix M is therefore a convex combination of MRA, and the identity matrix I, which
captures the consumption response of the hand-to-mouth agents. This gives the expression for
MTA in the main text, (24).

For the asset Jacobian, we note that at = (1− µ) au
t , which implies the asset function

ATA
t ({Zs}) = β (1− µ)

(
∞

∑
s=0

βsZs −
∞

∑
s=t+1

βs−(t+1)Zs +
β

1− β
ra−1

)

and therefore ATA = (1− µ)ARA.

BU model steady state. In the steady state of the BU model, we have au = a and cu = c. Then,
(A.56) implies

β (1 + r) = 1− χ′ (a)
u′ (c)

(A.62)

since we have assumed that u′ (cu) > 0, we therefore

β (1 + r) < 1 ⇔ χ′ (a) > 0

In other words, β (1 + r) can be on either side of 1, depending on χ′ (a), as claimed in the main
text.

Combining (A.56) and (A.57), we obtained an equation that implicitly defines the model’s
steady-state asset demand curve, a (Z),

u′ (Z + ra) (1− β (1 + r)) = χ′ (a)

Starting from steady state and totally differentiating this equation, we obtain(
χ′′ (a)
u′′ (c)

− r (1− β (1 + r))
)

da = (1− β (1 + r)) dZ

and substituting (A.62), we find(
χ′′ (a)
u′′ (c)

− r
χ′ (a)
u′ (c)

)
da = (1− β (1 + r)) dZ
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We assume the stability condition:
χ′′ (a)
u′′ (c)

≥ r
χ′ (a)
u′ (c)

(A.63)

this ensures, in particular, that β (1 + r) < 1⇔ da
dZ > 0.

BU model Jacobians. Totally differentiating the Euler equation (A.55) and the budget constraint
(22) around the steady state dZt, we find

u′′ (c) dct = β (1 + r) u′′ (c) dct+1 + χ′′ (a) dat

dct + dat = (1 + r) dat−1 + dZt

Combining, we obtain the second-order difference equation

1
β

dat−1 −
(

1
β (1 + r)

+
1

β (1 + r)
χ′′ (a)
u′′ (c)

+ (1 + r)
)

dat + dat+1 = dZt+1 −
1

β (1 + r)
dZt (A.64)

which characterizes the dynamics of this system. Consider the roots of the polynomial

P (X) =
1
β
−
(

1
β (1 + r)

+
1

β (1 + r)
χ′′ (a)
u′′ (c)

+ (1 + r)
)

X + X2 (A.65)

We have P(0) = 1
β > 0 and

P (1) = − 1
β (1 + r)

χ′′ (a)
u′′ (c)

+ r
(

1
β (1 + r)

− 1
)

this is negative since χ′′(a)
u′′(c) − r (1− β (1 + r)) = χ′′(a)

u′′(c) − r χ′(a)
u′(c) ≥ 0 by the stability condition (A.63).

Hence, there is a single root 0 < λ ≤ 1, and the other root is 1
βλ > 1. By standard results, this

implies that the solution to the difference equation (A.64) is:

dat = λdat−1 +
∞

∑
s=0

(βλ)s+1
{(

1
β (1 + r)

)
dZt+s − dZt+s+1

}
which we can reorganize as

dat = λdat−1 +
λ

1 + r
dZt −

(
1− λ

1 + r

) ∞

∑
s=0

(βλ)s dZt+s (A.66)

This shows that the three parameters β, r and λ fully characterize the model’s response to shocks.
The root λ represents the rate of decay of assets. Note that in the limit case where χ′ = χ′′ = 0, we
have β (1 + r) = 1 and P (1) = 0, so λ = 1 and we recover the RA model.

Using equation (A.66), we see that the asset Jacobian, Ats =
∂at
∂Zs

, is given by:
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Figure D.1: A matrix for the eight standard models from figure 3
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Notes: All models are calibrated to match r = 0.05. RA does not have any other free parameter. The single free
parameter in BU, TA, HA-one and HA-two is calibrated to match M00 = 0.51. The additional free parameter in TABU
and ZL is calibrated to match M10 = 0.16 (its value in the HA-one model).

ABU =


1 0 0 · · ·
λ 1 0 · · ·
λ2 λ 1 · · ·
...

...
...

. . .




λ
1+r −

(
1− λ

1+r

)
· βλ −

(
1− λ

1+r

)
· (βλ)2 · · ·

0 λ
1+r −

(
1− λ

1+r

)
· βλ · · ·

0 0 λ
1+r · · ·

...
...

...
. . .

 (A.67)

The interpretation is as follows. When income is received immediately, agents save a fraction
1−m = λ

1+r , and then spend down this fraction at rate λ. When income is expected to be received
s periods in the future, agents dissave a fraction m (βλ)s in anticipation of that income. In addition,
any past dissaving reduces current assets and therefore current consumption as agents aim to
return their asset position to steady state at rate λ. The matrix product in (A.67) gives an analytical
expression for the resulting asset dynamics.

Finally, applying equation (A.19), we obtain the M matrix of the BU model,

MBU = I− (I− (1 + r) L)ABU (A.68)

Manipulating this expression, we find that the first column of MBU is MBU
t0 = m · λt, where

m ≡ 1− λ
1+r is the MPC. This can also be obtained directly from (A.66). First, when the shock is

only to dZ0, we have for t = 0 that dc0 = dZ0 − da0 =
(
1− λ

1+r

)
dZ0 = mdZ0, and for t > 0 that

dct = (1 + r) dat−1 − dat =
( 1+r

λ − 1
)

dat =
(
1− λ

1+r

)
λt = mλt. We also find that the first row of
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MBU is MBU
0s = m · (βλ)s. Here, since for s > 0 we have that dc0 = −da0 = m (βλ)s.

This discussion makes clear that, given r, we can calibrate the model’s λ to hit a certain target
for M00 = m, by taking λ = (1 + r) (1−m).

Representative-agent special case. In the representative-agent model, we have χ′ (a) = χ′′ (a) =
0. By (A.62), we have β (1 + r) = 1. The polynomial P(X) in (A.65) is then P (X) = 1

β −(
1 + 1

β

)
X + X2, with roots λ = 1 and 1

β > 1. Plugging 1
1+r = β and λ = 1 into (A.67), we

recover (A.60).

Alternative derivation via policy functions. We now derive the asset Jacobian (A.67) of the BU
model through an alternative route, which will be helpful in connecting to our other results below.
The value function of the BU model given a path of post-tax income {Zs}s≥0 is

Vt (a−) = max
c,a

u (c) + χ (a) + βVt+1 (a)

c + a = Zt + (1 + r) a− (A.69)

Denote by ct (a−), at (a−) the resulting policy functions. In a steady state with constant Z, let
c (a−) , a (a−) denote the steady-state policy functions, a the steady-state level of assets (satisfying
a = a (a)), and λ ≡ a′ (a) denote the slope of the steady-state asset policy at a.

The budget constraint implies that, at all t and for all states a−,

ct (a−) + at (a−) = Zt + (1 + r) a− (A.70)

Equation (A.70) implies, in particular, that c′ (a) + λ = 1 + r, and that, given any shock sequence
{dZs}, we have also dct (a) + dat (a) = dZt.

In this model, the distribution µt has a point mass at yesterday’s aggregate assets At−1. Hence,
aggregate assets are At = at (At−1) and consumption is Ct = ct (At−1). Differentiating these
relations, we obtain:

dAt = dat (a) + a′ (a) dAt−1 = dZt − dct (a) + λdAt−1 (A.71)

dCt = dct (a) + c′ (a) dAt−1 = dct (a) + (1 + r− λ) dAt−1 (A.72)

To obtain aggregate dynamics, it remains to determine the change in policy dct (a). To do this,
we consider the effects of each shock {dZs} on the policy in isolation, and then use linearity of
the total derivative to add up the effects. For s < t, the policy is unaffected. For s = t, the
value function Vt+1 is the steady-state V, and it follows from (A.70) that dct (a) = mdZt, where
m = c′(a)

1+r = 1− λ
1+r . Finally, for s > t, the envelope condition V ′t (a−) = (1 + r) u′ (ct (a−)) implies

dV ′t (a) = (1 + r)u′′(c)dct (a) (A.73)
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Since we can rewrite (A.69) in the form (A.51), with F (a) ≡ u (Z + (1 + r) a− − a) + χ (a) a con-
stant function, we can apply the result from (A.53), which gives us dV ′t (a) = βλdV ′t+1(a). Combin-
ing with (A.73), we obtain dct (a) = βλdct+1 (a) whenever the shock dZs is at s > t. To conclude,
we have, for an individual shock to dZs,

dct (a) =

m (βλ)s−t dZs s ≥ t

0 s < t

and adding up across all shocks {dZs}∞
s=0, this implies

dct (a) = m
∞

∑
s=t

(βλ)s−tdZs (A.74)

Equations (A.71) and (A.74) can be immediately combined to give the asset Jacobian A. Recursing
on (A.71), we have:

dAt =
t

∑
u=0

λt−u (dZu − dcu (a)) (A.75)

while (A.74) implies

dat (a) = dZt − dct (a) = (1−m)dZt −m
∞

∑
s=t+1

(βλ)s−tdZs (A.76)

In matrix form, combining (A.75) and (A.76), we obtain:

dA =


1 0 0 · · ·
λ 1 0 · · ·
λ2 λ 1 · · ·
...

...
...

. . .




1−m −m(βλ) −m(βλ)2 · · ·
0 1−m −m(βλ) · · ·
0 0 1−m · · ·
...

...
...

. . .

 dZ (A.77)

where, as shown above, m = 1− λ
1+r . This gives the same equation for A as (A.67). Finally, to

obtain the M matrix, we use (A.72), which can for instance be expressed as dCt = (1 + r) dAt−1 −
dAt + dZt, and give equation (A.68).

Note that this derivation does not directly give us the root λ. To obtain this, we use the func-
tional Euler equation

u′ (c (a−)) = χ′ (a (a−)) + β (1 + r) u′ (c (a (a−)))

differentiating and evaluating at the steady-state level a, c, we find

u′′ (c) (1 + r− λ) = χ′′ (a) λ + β (1 + r) u′′ (c) (1 + r− λ) λ

which can be verified to give the equation P(λ) = 0 where P is defined in (A.65).
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TABU model. The TABU model has

MTABU = (1− µ)MBU + µI = I− (1− µ) (I− (1 + r) L)ABU (A.78)

therefore,
ATABU = (1− µ)ABU (A.79)

Hence, this model has four parameters, β, r, λ and µ. Given β, r, we can therefore solve for µ, λ in
terms of M00 and M10, with M00 = µ + (1− µ)

(
1− λ

1+r

)
and M10 = (1− µ)

(
1− λ

1+r

)
λ.

Quasi-Toeplitz structure of MTABU and ATABU . Putting together (A.79), and (A.67), we see that
ATABU is the product of two Toeplitz matrices, ATABU = T (a+)T (a−). By standard results (eg
Böttcher and Grudsky 2005), ATABU is therefore the sum of the Toeplitz matrix T (a−a+) and a
compact matrix E which satisfies Et,s → 0 as t, s → ∞. Hence, ATABU

t,s → aTABU
t−s for t, s → ∞. We

say that ATABU is quasi-Toeplitz: as shown in Auclert et al. (2023b), this is a general property of the
Jacobians of stationary heterogeneous-agent models. Since we have an exact analytical expression
for the A of the TABU model, we now directly calculate its asymptotic Toeplitz form.

From (A.67) and (A.79), we can directly calculate the symbols:

a+ (z) =
1− µ

1− λz
(A.80)

a− (z) = 1− 1− λ
1+r

1− βλz−1 =
λ

1+r − βλz−1

1− βλz−1 =
λ

1 + r
1− β(1 + r)z−1

1− βλz−1 (A.81)

and decomposing aTABU (z) = a+ (z) a− (z) into partial fractions, we find

aTABU (z) = (1− µ)
λ

1 + r
1

1− βλ2

(
1− βλ (1 + r)

1− λz
− β (1 + r)

(
1− λ

1+r

)
1− βλz−1 z−1

)

=
1− µ

1− βλ2

(
λ

1 + r
(1− βλ (1 + r))

∞

∑
k=0

λkzk −
(

1− λ

1 + r

) ∞

∑
k=1

(βλ)k z−k

)

Hence, the asymptotic Toeplitz column for ATABU has a simple double-exponential form with rate
of decay λ on the right and βλ on the left:

aTABU
k =

1− µ

1− βλ2

−
(
1− λ

1+r

)
(βλ)−k k < 0

λ
1+r (1− βλ (1 + r)) λk k ≥ 0

(A.82)

Similarly, MTABU is the sum of products of Toeplitz matrices, so satisfies MTABU
t,s → mTABU

t−s for
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t, s→ ∞, and we can obtain:

mTABU (z) = µ + (1− µ)

(
1− (1− (1 + r) z)

aTABU (z)
1− µ

)
= µ + (1− µ)

(
1− λ

1+r

)
(1− βλ (1 + r))

(1− λz) (1− βλz−1)

again decomposing mTABU (z) into partial fractions, we find

mTABU (z) = µ + (1− µ)

(
1− λ

1 + r

)
(1− βλ (1 + r))

1
1− βλ2

(
1

1− λz
+

βλz−1

1− βλz−1

)
= µ + (1− µ)

(
1− λ

1 + r

)
(1− βλ (1 + r))

1
1− βλ2

(
∞

∑
k=0

λkzk +
∞

∑
k=1

(βλ)k z−k

)

Hence, the asymptotic Toeplitz column for MTABU also has the simple double-exponential form:

mTABU
k = µ1k=0 + (1− µ)

(
1− λ

1 + r

)
1− βλ (1 + r)

1− βλ2

(βλ)−k k < 0

λk k ≥ 0
(A.83)

Equation (A.83) that, in the limit, the rate of decay of consumption after income is received is
exactly λ, and the rate of anticipation of future income is exactly βλ.

This limit is attained quickly in practice, as is visible in figures 3 and D.1 for s ' 10.

D.3 One-account HA model

The one-account model is the special case of the model of section A.1 where assets can only be
invested in a single, liquid account. Defining ε ≡ e1−θ

E[e1−θ ]
for simplicity (ε follows a Markov process

with the same Markov transition matrix as e), and rt for the interest on the bond between time t
and time t + 1, the Bellman equation for this model is:

Vt (ε, a−) = max
c,a

u (c) + βE
[
Vt+1

(
ε′, a
)
|ε
]

c + a = εZt + (1 + rt−1) a− (A.84)

a ≥ 0

The first-order condition for this problem is:

u′ (ct (ε, a−)) ≥ β ∑
ε′

Πεε′
∂Vt+1

∂a−

(
ε′, a′

)
(A.85)

where a strict inequality implies a binding borrowing constraint ct (ε, a−) = εZt + (1 + r) a−. The
envelope condition is:

∂Vt

∂a−
(ε, a−) = (1 + rt−1) u′ (ct (ε, a−)) (A.86)
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Figure D.2: Steady-state policies and distribution in HA-hi-liq and HA-one
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(a) Asset policy (HA-hi-liq)
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(b) Asset policy (HA-one)
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(c) Wealth distributions
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Note: Panels (a) and (b) report the asset policy a (ε, a−) as a function of the level of cash-on-hand εZ + (1 + r) a−. Calibration parame-
ters are in Table 2, and distributional statistics are in Table D.1. A low income consumer has ε = 0.07, a medium income consumer has
ε = 0.75, and a high income consumer has ε = 8.2. Panel (c) reports the wealth distributions in these two calibrations for a ∈ (0, 5), as
well as the mass below and above these two end points.

Combining these two conditions, we get the standard Euler equation

u′ (ct (ε, a−)) ≥ β (1 + rt)E
[
u′
(
ct+1

(
ε′, a
))
|ε
]

(A.87)

We discretize the AR(1) process for e on an 11 point grid, using the Rouwenhorst method, from
which we obtain ε by rescaling the grid. We solve for ∂Vt

∂a− (ε, a−) and ct (ε, a) on this grid for ε and
200-point, double-exponentially-spaced grid for assets a; using the method of endogenous grid
points to obtain ∂Vt

∂a− (ε, a−) from ∂Vt+1
∂a− (ε, a−). We then solve for the dynamics of the distribution

Dt (ε, a) using non-stochastic simulation. Aggregating policies with distributions, we obtain the
consumption and asset functions Ct ({Zs}) and At ({Zs}). To obtain the Jacobians of these func-
tions M and A, we build up from their “fake-news matrices”, following the method in Auclert et
al. (2021a).

As described in the main text, we consider two calibrations of this model. In our first calibra-
tion (HA-hi-liq), we pick β is chosen to hit a target for aggregate assets A =

∫
aitdi, such that A/Z

has the same value 6.29 as in our quantitative model. Table 2 shows that this results in β = 0.94,
just slightly below 1/ (1 + r). In our second calibration (HA-one), we pick β to hit a target for M00,
such that M00 is the same as the point estimate 0.51 from the Norwegian data. Table 2 shows that
this results in a much lower β = 0.87, well below 1/ (1 + r).

Figure D.2, panels (a) and (b) display the steady-state asset policy functions in these two cal-
ibrations. We report the asset policy a (ε, a−) as a function of the level of cash-on-hand εZ +

(1 + r) a−, for a low income consumer (ε = 0.07), medium income consumer (ε = 0.75) and high
income consumer (ε = 8.2). Since c + a = εZ + (1 + r) a−, the distance to the 45 degree line is the
consumption policy. In the HA-hi-liq calibration, agents leave themselves with no assets, a = 0,
only for very low values of cash on hand, and save aggressively for higher values of cash-on-
hand. As a consequence, the stationary asset distribution only has 7% of agents at the borrowing
constraint, and the distribution is quite spread out (see figure D.2, panel (c)). By contrast, in the
HA-one calibration, agents are much more impatient: they leave themselves with no assets for a
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Parameter Data HA-hi-liq HA-one HA-two

Share of HtM (aliq = 0) 0.04 0.58 0.58
Share with liquid assets aliq ≤ 0.1 0.14 0.80 0.78
Share of WHtM (aliq = 0, ailliq > 0) — — 0.28
Share of income accruing to HtM 0.01 0.30 0.36
Share of income accruing to aliq ≤ 0.1 0.05 0.57 0.61
Share of income accruing to WHtM — — 0.22
Gini for total wealth 0.83 0.60 0.90 0.94
Top 10% wealth share 0.71 0.40 0.83 0.89
Aggregate post-tax income Z 0.47 0.61 0.47

Note: Source for data: World Inequality Database, https://wid.world/country/usa/. U.S. values are for 2021.

Table D.1: Distributional statistics for calibrated models

much broader range of values of cash on hand, and the slope of the asset policy is much lower. As
a consequence, the stationary asset distribution is much more concentrated around 0, with 67% of
agents at the constraint.A-25

Table D.1 reports distributional statistics for these two calibrations. The share of income accru-
ing to hand-to-mouth agents is 1% in the HA-hi-liq calibration and 30% in the HA-one calibration:
these numbers are more relevant to understand iMPCs than the pure share of constrained agents,
since our iMPCs are income-weighted. The Gini coefficient is 0.6 in HA-hi-liq and 0.90 in HA-
one; the top 10% wealth shares are 40% and 83% respectively. These numbers lie between the
corresponding numbers in the U.S. data (source: World Inequality Database, 2021 number).

We construct two pairs of Jacobians (M, A) for our two calibrations. We report columns of
these Jacobians in figures 2 and D.1, panel (a) for HA-hi-liq and panel (d) for HA-one.

D.4 Zero liquidity model and relation to TABU

Suppose that we start from a calibration with given (Π, e, r) and then keep recalibrating the model
by changing β as we take the limit A → 0. In this “zero-liquidity limit” steady state, households
consume exactly their after-tax labor incomes. Equilibrium r is such that the intertemporal Euler
equation holds with equality for whatever income state ē has the highest incentive to save, i.e.
1+ r = mine

1
β u′
(
e1−θ

)
/ ∑e Πeeu′

(
e1−θ

)
, where we assume that ē is unique. In every other income

state e 6= e, the borrowing constraint is strictly binding, as agents would like to borrow but cannot.
This zero-liquidity limit—which we will abbreviate as the ZL model—has been widely applied

in the literature, since the degenerate asset distribution at zero radically simplifies the steady state
and makes the model more analytically tractable. Here, we show that this tractability extends to
intertemporal MPCs as well.

A-25Table D.1 reports the share of agents who choose a = 0 for the following period in these two calibrations. The
number is 4% and 58% for HA-one. These are close to, but not equal, to the number of agents with a = 0 in the
stationary distribution, since some agents that pick assets close to 0 end up exactly at 0 after they are reallocated to the
grid in our non-stochastic simulation.
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Derivation. Let us define ε ≡ e1−θ

E[e1−θ ]
. ε follows a Markov process with the same Markov transi-

tion matrix as e. Substituting cit = ε itZt into the first-order conditions (A.85)–(A.86) of the one-

account HA model and using the CES form u (c) = c1− 1
σ

1− 1
σ

, we have that for all ε,

(ε)−
1
σ ≥ β (1 + r)∑

ε′
Πεε′

(
ε′Zt+1

)− 1
σ

Defining ρ (ε) ≡ ∑ε′ Πεε′
(

ε′
ε

)− 1
σ
, this equation reads (Zt)

− 1
σ ≥ β (1 + r) ρ (ε) (Zt+1)

− 1
σ for all ε. We

assume that there is a unique ε achieving ε = arg maxε ρ (ε). In the zero liquidity limit, we have at
every t

(Zt)
− 1

σ = β (1 + r) ρ (ε) (Zt+1)
− 1

σ

and in particular, considering the steady state with Zt ≡ Z, we have β (1 + r) ρ (ε) = 1. This
equation determines the equilibrium r in steady state.

Policies. We next derive the policy functions in the zero liquidity model. This section closely
parallels the section “Alternative derivation via policy functions” for the BU model in section D.2.

Let ct (ε, a−), at (ε, a−) the policy functions when the time path of income is {Zt}, with c (ε, a−),
a (ε, a−) the steady-state policies. We know that the steady state level of assets is a = 0, with
c (ε, 0) = εZ and a (ε, 0) = 0. Moreover, let λε ≡ ∂a(ε,0)

∂a− denote the slope of the asset policy in state
e. From the budget constraint,

ct (ε, a−) + at (ε, a−) = εZt + (1 + r) a−

we have that ∂c
∂a− (e, 0) + λε = 1 + r. Moreover, given any shock sequence {dZs}, we also have

dct (ε, 0) + dat (ε, 0) = εdZt.
We again consider the effects of each shock {dZs} on the policy in isolation, and then use

linearity of the total derivative to add up the effects. For s < t, the policy is unaffected. For s = t,
the value function Vt+1 is the steady state V, and it follows from (A.70) that dct (ε, 0) = mεεdZt,
where mε ≡ 1

1+r
∂c

∂a− (ε, 0) = 1− λε
1+r is the marginal propensity to consume of an agent in state

ε with zero assets. Moreover, for ε 6= ε̄, the borrowing constraint is binding, at (ε, a−) = 0, so it
immediately follows λε = 0 and mε = 1. In other words, the marginal propensity to consume of
agents in all but the top state is 1.

Then, for t < s, we apply the result from section D.1, which here shows that that for all ε, we
have

dV ′t (ε, 0) = βλε ∑
ε′

Πεε′dV ′t+1(ε
′, 0)

Using (A.86), which defines V ′t (ε, a−) = (1 + r) u′ (ct (ε, a−)), we have at all t and ε,

dV ′t (ε, 0) = (1 + r) u′′ (εZ) dct (ε, 0)
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and so, using the fact that u′′(ε′Z)
u′′(εZ) =

(
ε′
ε

)−( 1
σ+1)

, we obtain for every t and ε:

dct (ε, 0) = βλε ∑
ε′

Πεε′

(
ε′

ε

)−( 1
σ+1)

dct+1
(
ε′, 0

)
(A.88)

Given that λε = 0 for all ε 6= ε, we can solve equation (A.88) forward. When the shock is at

s = t + 1, we have dct (ε, 0) = βλε

(
∑ε′ 6=ε Πεε′

(
ε′
ε

)−( 1
σ+1) · ε + Πεε ·mεε

)
dZt+1, and when is the

shock is at s > t + 1, we have dct (ε, 0) = (βλεΠεε) dct+1 (ε, 0). In summary, we have:

dct (ε, 0) =


(βλεΠεε)

s−t
(

∑ε′ 6=ε
Πεε′
Πεε

(
ε′
ε

)−( 1
σ+1) · ε′ + mεε

)
dZs s > t, ε = ε

mεεdZt s = t, ε 6= ε

0 s < t

and adding up across all shocks {dZs}∞
s=0, this implies dct (ε, 0) = εdZt for all ε 6= ε, and for ε = ε,

dct (ε, 0) = mεεdZt +

(
∑
ε′ 6=ε

Πεε′

Πεε

(
ε′

ε

)−( 1
σ+1)

· ε′ + mεε

)
∞

∑
s>t

(βλεΠεε)
s−t dZs

Combining with dct (ε, 0) + dat (ε, 0) = εdZt, we finally obtain: dat (ε, 0) = 0 for all all ε 6= ε, and
for ε = ε,

dat (ε, 0) = ε (1−mε) dZt − ε

(
∑
e′ 6=e

Πεε′

Πεε

(
ε′

ε

)− 1
σ

+ mε

)
∞

∑
s>t

(βλεΠεε)
s−t dZs (A.89)

Aggregation. Since the borrowing constraint is binding, at (ε, a−) = 0, for all agents except those
with ε = ε, the only agents that ever have any assets after a shock are those in state ε. Moreover, all
agents that have spent the same number i of continuous periods in state ε have the same behavior,
so they have the same level of assets ait, described by:

ait = at (ε, ai−1,t−1) ∀t ≥ 1, i ≥ 0 (A.90)

where we define a−1,t = 0. At each t, there is a fraction πε (1−Πεε)Πi
εε of agents in state i, where

πε is the number of agents in sate ε overall and Πεε the probability that agents stay in that state.
Aggregate assets are therefore

At =
∞

∑
i=0

πε (1−Πεε)Πi
εεait (A.91)

Differentiating (A.90) around the steady state and using λε =
∂at
∂a− (ε, 0), we have, for all t ≥ 1, i ≥

0,
dai,t = dat (ε, 0) + λεdai−1,t−1
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where da−1,t = 0. Aggregating with weights πε (1−Πεε)Πi
εε and using (A.91) the left-hand side is

dAt. For the left-hand side, we using the fact that ∑∞
i=0 πε (1−Πεε)Πi

εε = πε and, given da−1,t−1 =

0,
∞

∑
i=0

πε (1−Πεε)Πi
εεdai−1,t−1 = Πεε

∞

∑
i=0

πε (1−Πεε)Πi
εεdai,t−1 = ΠεεdAt−1

Hence, we obtain the law of motion for aggregate assets:

dAt = dat (0, ε)πε + λεΠεεdAt−1 (A.92)

The asset Jacobian follows from combining (A.89) with (A.92). Let λ ≡ λεΠεε. Since mε =

1− λε
1+r , we have 1−mε =

λε
1+r = 1

Πεε

λ
1+r . This implies:

AZL =
πεε

Πεε


1 0 0 · · ·
λ 1 0 · · ·
λ2 λ 1 · · ·
...

...
...

. . .




λ
1+r −Πεε (mε + K) (βλ) −Πεε (mε + K) (βλ)2 · · ·
0 λ

1+r −Πεε (mε + K) (βλ) · · ·
0 0 λ

1+r · · ·
...

...
...

. . .



where K ≡ ∑ε′ 6=ε
Πεε′
Πεε

(
ε′
ε

)− 1
σ
. But

Πεε (mε + K) = Πεε −
λ

1 + r
+ ΠεεK

= Πεε (K + 1)− λ

1 + r

Now, since K = ∑ε′ 6=ε
Πεε′
Πεε

(
ε′
ε

)− 1
σ
, we have Πεε (K + 1) = ∑ε′ Πεε′

(
ε′
ε

)− 1
σ
= ρ (ε) = 1

β(1+r) at
steady state. So, we have simply

Πεε (me + K) =
1

β (1 + r)
− λ

1 + r

We conclude that the asset Jacobian of the ZL model is

AZL = (1− µ)


1 0 0 · · ·
λ 1 0 · · ·
λ2 λ 1 · · ·
...

...
...

. . .




λ
1+r −

(
1

β(1+r) − λ
1+r

)
(βλ) −

(
1

β(1+r) − λ
1+r

)
(βλ)2 · · ·

0 λ
1+r −

(
1

β(1+r) − λ
1+r

)
(βλ) · · ·

0 0 λ
1+r · · ·

...
...

...
. . .


(A.93)

where the effective hand-to-mouth share is 1−µ ≡ πεε
Πεε

= πe
Πee

e1−θ

E[e1−θ ]
. This has almost the same form

as (A.79), except for the fact that there is a factor 1
β(1+r) − λ

1+r > 1− λ
1+r governing anticipation.
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Deriving the rate of decay of assets λ from primitives. We finally solve for mε, which allows us
to obtain λ from primitives. Consider the Euler equation at steady state, for the agent ε,

c (ε, a−)
− 1

σ = β (1 + r)∑
ε′

Πεε′
(
c
(
ε′, a (ε, a−)

))− 1
σ

We have mε ≡ 1
1+r

∂c
∂a− (ε, 0) = 1− λε

1+r . Differentiating the above with respect to a− and evaluating
at a− = 0, we have:

u′′ (ε)
∂c

∂a−
(ε, 0) = β (1 + r)∑

ε′
Πεε′u′′

(
ε′
) ∂c

∂a−

(
ε′, 0

)
· ∂a

∂a−
(ε, 0)

but, by definition, ∂c
∂a− (ε, 0) = (1 + r)mε, and also ∂a

∂a− (ε, 0) = (1 + r) (1−mε).This implies:

u′′ (ε)mε = β (1 + r)2 ∑
ε′

Πεε′u′′
(
ε′
)

mε′ · (1−mε)

Using the functional form for u, u′′(ε′)
u′′(ε) =

(
ε′
ε

)−( 1
σ+1)

, and the fact that mε′ = 0 for all ε′ 6= ε, this is:

mε

1−mε
= β (1 + r)2

(
∑
ε′ 6=ε

Πεε′

(
ε′

ε

)−( 1
σ+1)

+ Πεεmε

)

Finally, using β (1 + r) = 1
ρ(ε)

, we can also rewrite this expression as

mε

1−mε
=

1 + r
ρ (ε)

(
∑
ε′ 6=ε

Πεε′

(
ε′

ε

)−( 1
σ+1)

+ Πεεmε

)
(A.94)

This is a quadratic equation that determines the MPC mε of the agent in state ε from primitives,
from which we obtain λ = Πεε (1−mε) (1 + r).

Implication for the M matrix of the ZL model. Hence, MZL = I− (I− (1 + r) L)AZL is a func-
tion of the same four parameters as MTABU : β, r, effective rate of decay of assets λ = Πee (1−me) (1 + r),

and effective hand-to-mouth share µ = 1− πe
Πee

(e)1−θ

E[e1−θ ]
. MZL is almost—but not exactly—identical

to MTABU ; in particular:

MZL
t0 = MTABU

t0 t ≥ 0; MZL
0s = ζ ·MTABU

0s s ≥ 1

with ζ ≡
1

β(1+r)− λ
1+r

1− λ
1+r

> 1, since β(1 + r) < 1. As the first equation shows, an unanticipated income

shock is spent down in exactly the same way in the ZL and TABU models. While the HA-one
model is not identical to ZL, this does suggest that the first columns, including further-out spend-
ing behavior, of the HA-one and TABU models are inherently related.

The key difference between MZL and MTABU comes from the spending response to anticipated
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income shocks, where the ZL model implies a stronger spending response. This can be explained
as follows. In both ZL and TABU, only the savers today respond to anticipated income tomorrow.
But in ZL, unlike in TABU, some of this anticipated income will be received after switching to
a different income state, with higher expected marginal utility. This has a larger effect on the
savers’ Euler equation and therefore their consumption today. This feature of ZL is also present in
HA-one, and can be seen in figure 3(d) for anticipated shocks.

Quasi-Toeplitz structure of MZL and AZL. Since A and M have the same structure for the ZL
model as they do for the TABU model, we can follow the same arguments as in section D.2 to
show that AZL

t,s → aZL
t−s and MZL

t,s → mZL
t−s for t, s → ∞, and obtain exact expressions for aZL

k and
mZL

k . In particular AZL is quasi-Toeplitz with symbol aZL (z) = aZL
+ (z) aZL

− (z), where from (A.93),
we calculate the symbols

aZL
+ (z) =

1− µ

1− λz
(A.95)

aZL
− (z) =

1
1− βλz−1

(
λ

1 + r
− βλz−1

β(1 + r)

)
=

1
1− βλz−1

λ(1− z−1)

1 + r
(A.96)

and decomposing aZL (z) into partial fractions, we find

aZL = (1− µ)
λ

1 + r
1

1− βλ2

(
1− λ

1− λz
− 1− βλ

1− βλz−1 z−1
)

= (1− µ)
λ

1 + r
1

1− βλ2

(
(1− λ)

∞

∑
k=0

λkzk −
(

1
βλ
− 1
) ∞

∑
k=1

(βλ)k z−k

)

Hence, just like ATABU , the asymptotic Toeplitz column for AZL has a simple double-exponential
form with rate of decay λ on the right and βλ on the left:

aZL
k = (1− µ)

λ

1 + r
1

1− βλ2

−
(

1
βλ − 1

)
(βλ)−k k < 0

(1− λ) λk k ≥ 0
(A.97)

Similarly, we derive mZL
k by calculating the symbol

mZL (z) = µ +

(
1− (1− (1 + r) z)

aZL (z)
1− µ

)
= µ + (1− µ)

1 + λ
(

βλ− 1− 1
1+r

)
+ λ

( 1
1+r − β

)
z−1

(1− λz) (1− βλz−1)
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again decomposing mZL (z) into partial fractions, we find

mZL (z) = µ +
1− µ

1− βλ2

(
(1− λ)

(
1− λ

1 + r

)
1

1− λz
+ λ

(
1

βλ
− 1
)(

1
1 + r

− βλ

)
βλz−1

1− βλz−1

)
= µ +

1− µ

1− βλ2

(
(1− λ)

(
1− λ

1 + r

) ∞

∑
k=0

λkzk + λ

(
1

βλ
− 1
)(

1
1 + r

− βλ

) ∞

∑
k=1

(βλ)k z−k

)

Hence, just like for MTABU , the asymptotic Toeplitz column for MZL has the simple double-
exponential form:

mZL
k = µ1k=0 +

1− µ

1− βλ2

λ
(

1
βλ − 1

) ( 1
1+r − βλ

)
(βλ)−k k < 0

(1− λ)
(
1− λ

1+r

)
λk k ≥ 0

(A.98)

While the constants are slightly different from mTABU
k in (A.83), reflecting the greater degree of

anticipation of income in ZL, the rate of decay of consumption after income is received is still
exactly λ, and the rate of anticipation of future income is still exactly βλ. The limit is again attained
quickly in practice, as is visible in figures 3 and D.1.

D.5 Two-account HA model

The two-account model has the following Bellman equation. Denote ε ≡ e1−θ

E[e1−θ ]
for simplicity;

this has the same Markov chain as e. Let Vt

(
adj, ε, aliq

− , ailliq
−
)

be the value function for an agent
coming into the period with adjustment opportunity adj ∈ {0, 1}, income shock realization ε, and
amounts

(
aliq
− , ailliq

−
)

in liquid and illiquid accounts. For an adjuster, adj = 1, we have:

Vt

(
1, ε, aliq

− , ailliq
−
)

= max
c̃,aliq,ailliq

u (c̃) + βE
[
Vt+1

(
adj′, ε′, aliq, ailliq

)
|ε
]

c̃ + aliq + ailliq = εZt + (1 + rt−1) (1− ζ) aliq
− + (1 + rt−1) ailliq

− (A.99)

aliq ≥ 0, ailliq ≥ 0

with adj′ distributed i.i.d with Pr (adj′ = 1) = ν. For a non-adjuster, adj = 0, we have:

Vt

(
0, ε, aliq

− , ailliq
−
)

= max
c̃,a

u (c̃) + βE
[
Vt+1

(
adj′, ε′, aliq, (1 + rt) ailliq

−
)
|ε
]

c̃ + aliq = εZt + (1 + rt−1) (1− ζ) aliq
− (A.100)

aliq ≥ 0

where again adj′ is i.i.d with Pr (adj′ = 1) = ν. We solve this problem for policy functions
c̃t

(
adj, ε, aliq

− , ailliq
−
)

, aliq
t

(
adj, ε, aliq

− , ailliq
−
)

, and ailliq
t

(
adj, ε, aliq

− , ailliq
−
)

. The first-order and envelope
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conditions of this problem are:

u′ (c̃it) ≥ βE
[
Valiq,i,t+1

]
(A.101)

u′ (c̃it) ≥ βE
[
Vailliq,i,t+1

]
if adjit = 1 (A.102)

Valiq,i,t = (1 + rt−1) (1− ζ) u′ (c̃i,t) (A.103)

Vailliq,i,t = (1 + rt−1) u′ (c̃i,t) if adjit = 1 (A.104)

Vailliq,i,t = β (1 + rt)E
[
Vailliq,i,t+1

]
if adjit = 0 (A.105)

where, in the first, there is strict inequality when aliq = 0 and, in the second, there is strict inequal-
ity if ailliq = 0. Combining (A.101) and (A.103), we see that a consumer that is not at a borrowing
constraint is always on an Euler equation for consumption between t and t + 1 with the liquid
rate (1 + rt)(1− ζ). Additionally, combining (A.102) with (A.104) and (A.105), we see that a con-
sumer with an opportunity to rebalance their assets is also on an Euler equation for consumption
between t and the next time he might adjust in the future at the higher rate 1 + rt.

We solve the model as follows. We discretize ε using an 11 point Markov chain, and aliq and
ailliq using two doubly-exponentially spaced grids with 200 points each. We recursively solve
for the marginal value functions Valiq,t

(
adj, ε, aliq

− , ailliq
−
)

and Vailliq,t

(
adj, ε, aliq

− , ailliq
−
)

, as well as

the policies c̃t

(
adj, ε, aliq

− , ailliq
−
)

, aliq
t

(
adj, ε, aliq

− , ailliq
−
)

, and ailliq
t

(
adj, ε, aliq

− , ailliq
−
)

on this grid for(
adj, ε, aliq

− , ailliq
−
)

. Aggregating these policies by following the law of motion of the distribution,

we obtain the the consumption and asset functions C̃t ({Zs}) and Aliq
t ({Zs}) and Ailliq

t ({Zs}),
from which we form Ct ({Zs}) ≡ C̃t ({Zs}) + (1 + rt)ζAliq

t−1 ({Zs}) and At ({Zs}) ≡ Aliq
t ({Zs}) +

Ailliq
t ({Zs}). We build up the Jacobians of these functions, and therefore M and A, from from their

“fake-news matrices”, following the method in Auclert et al. (2021a).
Figure D.3 illustrates the steady-state policies and distributions for our calibrated HA-two

model. The top panels report the policies for savings in the illiquid account ailliq, liquid account
aliq, and consumption c̃ as a function of liquid cash-on-hand, εZ + (1 + r) (1− ζ) aliq

− , for an agent
with no assets in their illiquid account, ailliq

− = 0, and different idiosyncratic states ε, for both
adjusters adj = 1 and non-adjusters adj = 0. Low-income non-adjusters (in blue) have policies
that are very similar to those in the high-liquidity one-account model HA-hi-liq in figure D.2: their
consumption policy is concave, but they save quite aggressively—for them, the liquid account is
the only option—with a policy that has a high slope. Low-income adjusters (in orange), have a
very similar consumption policy, but start allocating around 40% of their savings to their illiquid
account even at very low levels of cash on hand, as they are incentivized to do so by the high
returns. By the same logic, higher-income agents allocate 100% of their savings to the illiquid
account at low levels of cash on hand, leaving nothing in the liquid account and so allowing
themselves to be “wealth hand-to-mouth” in the following periods. At higher levels of cash-on-
hand, they are converting liquid assets into illiquid assets.

The bottom panels show the illiquid account choice policies for agents with no assets in their
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Figure D.3: Steady-state policies and distributions in HA-two model
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(d) Illiquid policy (aliq
− = 0)
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(e) Liquid policy (aliq

− = 0)
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Note: Panels (a)–(d) report policies as a function of the level of liquid cash-on-hand εZ + (1 + r) (1− ζ) aliq
− for an agent with no

illiquid assets ailliq
− = 0. Panels (d)–(e) report policies as a function of the amount invested in the illiquid asset ailliq

− for an agent with

no liquid assets aliq
− = 0. Panel (f) reports the stationary distributions of liquid and illiquid assets for a ∈ (0, 5), as well as the mass

below and above these two end points. A low income consumer has ε = 0.07, and a high income consumer has ε = 8.2. Calibration
parameters are in Table 2, and distributional statistics are in Table D.1.

liquid account, aliq
− = 0, as a function of the assets in their illiquid account ailliq

− . Non-adjusters, of
course, have to let their illiquid accounts grow at the illiquid account rate 1+ r. Since withdrawals
only occur with probability ν = 0.08, this implies a natural tendency of illiquid account balances to
grow. Adjusters rebalance their assets: at high levels of income they increase their illiquid account
holdings if their illiquid balances are low, consistent with panels (a) & (b); and decrease them if
their balances are high, consistent with maintaining a target level of illiquid assets. Here, agents
with very high balances in their illiquid asset account convert about 30% of these balances to the
liquid account.

Panel (e) show the resulting distribution of assets in the illiquid and the liquid account. Be-
cause of the high returns in the illiquid account and low probability of withdrawing once assets
end up there, the distribution of assets in illiquid accounts is highly skewed to the right. Because
about 30% of this is converted to liquid by adjusters, the distribution of liquid accounts is more
concentrated towards 0 but still has some very large balances.

Table D.1 reports distributional statistics for this model. The share of agents that have no
liquid assets is 57%, with 76% of agents having liquid assets below 0.1 (relative to average post-
tax income of 0.61). 28% of agents, or about half of HtM agents, are “wealthy hand-to-mouth”
(WHtM), with zero liquid assets but a positive amount of illiquid assets; this ratio is consistent
with empirical estimates from the classification by Kaplan et al. (2014), but the levels are quite
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Figure E.1: Comparing two ways to finance government spending: progressive vs. lump-sum taxation.

0 2 4 6 8 10
Year t

−0.2

−0.1

0.0

0.1

0.2

%
of

Y s
s

(a) Output: partial equilibrium

Benchmark
Lump-sum
Redistribution

0 2 4 6 8 10
Year t

−0.5

0.0

0.5

1.0

%
of

Y s
s

(b) Output: general equilibrium

Benchmark
Lump-sum
Redistribution

high. However, what matters to understand iMPCs is the distribution weighted by income. The
table shows that 36% of income accrues to income that are HtM, and 22% to agents that are WHtM,
these numbers are consistent with typical calibrations of two-account models (for instance Kaplan
and Violante (2022), Table 5, column 2, report 39% of HtM agents and 26% of agents that are
WHtM). This model has a very skewed wealth distribution, owing to the tendency of illiquid
accounts to grow a lot before agents withdraw from them.

E Appendix to section 5

E.1 Proof of proposition 3

Proof of proposition 3. If dG = dT, then dY = dG solves equation (13), since with that guess we do
have

dG−MdT + MdY = dG = dY

Lump-sum taxation. To illustrate the importance of the assumption of equal incidence of taxes
and income for this result, we now solve two versions of the HA-one model: one with our bench-
mark tax rule, and one where all taxes are financed entirely lump-sum at the margin.A-26

Figure E.1 illustrates the effect of using lump-sum taxes. The solid line shows the benchmark
effect on output of our benchmark AR(1) government spending shock, both in partial equilibrium
on the left panel (where the effect on output is that of government spending net of the offsetting
effect from the contemporaneous tax, ie (I−M) dG), and in general equilibrium on the right panel
(where, after incomes have increased as a result of the increase in partial equilibrium demand, the

A-26This change in financing is only at the margin. To make sure that steady states are comparable, we retain our
benchmark progressive fiscal rule otherwise.
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remaining effect is just dG, consistent with proposition 3). The dashed line shows the effect when
lump-sum taxes are used to finance government spending instead. This dramatically lowers the
impact on output, both in partial equilibrium (from 0.23 to 0.04), and in general equilibrium (from
1 to 0.14).

We can use the generalized IKC to understand this result. Conceptually, the lump-sum tax
experiment is equivalent to combining our benchmark government spending shock with an addi-
tional redistribution shock from low-productivity to high-productivity households in the periods
of taxation. To see this, note that, manipulating the generalized IKC equation (19) and using
proposition 3, we have:

dY =M
(

dG−MTdG
)
=M (dG−MdG) +M

(
M−MT

)
dG = dG +M

(
M−MT

)
dG

Hence, the general equilibrium output effect is the sum of our benchmark effect dG, and the
general equilibrium effect of a partial equilibrium redistribution shock that levies a lump-sum
tax of dGt in each period and uses the proceeds to lower proportional taxes in the same period.
The effect of that redistribution shock alone is plotted in the dash-dot line. Because the iMPCs
for lump-sum transfers are substantially above those for progressive transfers in our calibration
(the static MPC is 0.72 for a lump-sum transfer vs 0.51 for a progressive transfer), a difference
in tax incidence translates into substantially different partial equilibrium and therefore general
equilibrium multipliers.A-27

E.2 Proof of proposition 4

Proof of proposition 4. Rewriting equation (13) as

dY− dG = M (dG− dT) + M (dY− dG)

and applying proposition 1 implies that the solution for dY− dG must be given by

dY− dG =MM (dG− dT)

This delivers equation (30). Since dY− dG = dC, we have that dC =MM (dG− dT).

E.3 Determinacy and multipliers for analytical models

Proof of proposition 5. In the RA model, the A matrix is given by (A.60), which is ARA = K
(
I−MRA) =

K
(

I− 1q′
q′1

)
. Note that A · 1 = K (1− 1) = 0, so A is not injective since the vector 1 is in its kernel.

For any (dG, dT) satisfying q′dG = q′dT, we have MRA (dG− dT) = 1
q′1 1q′ (dG− dT) = 0,

so the IKC (13) rewrites
dY− dG = MRA (dY− dG)

A-27Note that the present value of all partial equilibrium impulses is zero, consistent with the general result proved in
section A.8.
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Hence, the entire set of solutions to (13) is given by dY = dG + Ker
(
I−MRA). Consider any

element v ∈ Ker
(
I−MRA): it must satisfy v = q′v

q′1 1. Hence, v is proportional to the vector 1. It
follows that Ker

(
I−MRA) has dimension 1 and that all solutions to the IKC (13) are

dY = dG + λ1, λ ∈ R

Now, recall that we are restricted to consider shocks satisfying limt→∞ dGt = 0. Then, the solution
with λ = 0 is the unique solution satisfying limt→∞ dYt = 0, which is the solution with λ = 0.
This proves that dY = dG is the unique solution with this equilibrium selection imposed.

Proof of proposition 6. In the TA model, the A matrix is given by ATA = (1− µ)ARA + µI, so
ATA1 = 0 and ATA is not injective.

For any (dG, dT) satisfying q′dG = q′dT, using MTA = (1− µ)MRA + µI, so I −MTA =

(1− µ)
(
MRA − I

)
, we can rewrite the IKC

(
I−MTA) dY = dG−MTAdT as:

(
I−MRA

)
dY =

1
1− µ

(dG− µdT)−MRAdT

Hence, this equation has the same set of solutions as the IKC for the RA model, with dG replaced
by 1

1−µ (dG− µdT). It follows that the set of solutions is

dY =
1

1− µ
(dG− µdT) + λ1, λ ∈ R

and that, for shocks satisfying limt→∞ dGt = limt→∞ dTt = 0, the unique solution satisfying
limt→∞ dYt = 0 features λ = 0.

Proof of proposition 7. By proposition 2, the set of solutions to the IKC (13) is the set of solutions to
A (dY− dT) = dB.

As shown in appendix D.2, ATABU can be written as the product of a lower and an upper
triangular Toeplitz operators, ATABU = T (a+)T (a−). If both T (a+) and T (a−) are invertible,
then ATABU is invertible and equal to T

(
a−1
−
)

T
(

a−1
+

)
. Since this the product of an upper and a

lower triangular Toeplitz matrix, by standard results (eg Böttcher and Grudsky 2005),
(
ATABU)−1

is therefore itself Toeplitz and equal to T
(

a−1
− a−1

+

)
.A-28 Furthermore, the symbols of T (a+) and

T (a−) are given by equations (A.80) and (A.81).
We know that T (a+) and T (a−) are invertible if and only if their symbols have no zero on the

unit circle and their winding number is zero; where the winding number is the difference between
zeros and poles inside the unit circle. Given (A.80), a+ (z) has a single pole 1

λ outside the unit circle
and no zero, it is always invertible. Next, given (A.81), a− (z) has one pole βλ inside the unit circle,
and its zero is β (1 + r), which is strictly inside the unit circle provided β (1 + r) < 1. Combining,

A-28On the other hand, as discussed in appendix D.2, ATABU is not Toeplitz. Instead, it is quasi-Toeplitz, ie equal to the
sum of a Toeplitz matrix with symbol a+a− and a compact matrix.
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we find that ATABU is invertible if and only if β (1 + r) < 1. In that case, its inverse is the Toeplitz
matrix with symbol a−1

− (z) a−1
+ (z), where

a−1
− (z) a−1

+ (z) =
1

1− µ

1 + r
λ

(1− λz)
(
1− βλz−1)

1− β(1 + r)z−1

Since ( 1+r
λ

)
(1− λz)

(
1− βλz−1)

1− β(1 + r)z−1 − (1− (1 + r) z) = (1 + r)

(
1− λ

1+r

) ( 1
λ − β (1 + r)

)
1− β(1 + r)z−1

we have that

a−1
− (z) a−1

+ (z) =
1

1− µ

(1 + r)(1− λ
1+r )(

1
λ − β(1 + r))

1− β(1 + r)z−1 +
1

1− µ
(1− (1 + r) z)

=
1 + r
1− µ

(1− λ

1 + r
)(

1
λ
− β(1 + r)) ∑

k≥0
βk(1 + r)kz−k +

1− (1 + r) z
1− µ

so that we have the explicit expression

(
ATABU

)−1
=

1 + r
1− µ

(1− λ

1 + r
)(

1
λ
− β(1 + r)) ∑

k≥0
βk(1 + r)kFk +

(I− (1 + r) L)
1− µ

The solution to the IKC is dY =
(
ATABU)−1 dB + dT, which gives:

dY =
(1− (1 + r) L)

1− µ
dB + dT +

1 + r
1− µ

(1− λ

1 + r
)(

1
λ
− β(1 + r)) ∑

k≥0
βk(1 + r)kFkdB

however, since (1− (1 + r) L) dB + dT = dG, we have that

(1− (1 + r) L)
1− µ

dB + dT =
dG− dT

1− µ
+ dT = dG +

µ

1− µ
(dG− dT)

so we also have

dY = dG +
µ

1− µ
(dG− dT) +

1 + r
1− µ

(1− λ

1 + r
)

(
1
λ
− β(1 + r)

)
∑
k≥0

βk(1 + r)kFkdB (A.106)

which is the expression in the text. In the TA case with λ = 1 and β = 1
1+r , we have 1

λ − β(1+ r) =
0 and recover proposition 6.

Proof of corollary 1. Fix β, r, and a calibration for M00 = µ + (1− µ)
(
1− λ

1+r

)
. Recall that M10 =

(1− µ)
(
1− λ

1+r

)
λ. This implies in particular that

M10 = (1 + r) (1−M00)

(
1− λ

1 + r

)
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which says that the MPC of the BU agent 1 − λ
1+r can be recovered by taking the ratio of the

amount spent in period 1, M10, to the incoming assets in period 1, (1 + r) (1−M00). Given this,
we can solve for λ and µ as follows:

λ = 1 + r− M10

1−M00
(A.107)

µ = M00 −
M10

λ
(A.108)

Hence, conditional on r and M00 < 1, raising M10 lowers λ and lowers µ.
Now, since q′ (dG− dT) = 0, the cumulative multiplier implied by (A.106) is

q′dY
q′dG

= 1 + (1 + r)

(
1− λ

1+r

1− µ

)(
1
λ
− β(1 + r)

)
∑k≥0 βk(1 + r)kq′FkdB

q′dG

When dB ≥ 0 and dBt > 0 for some t, this is a strictly increasing function of

f ≡ 1
1− µ

(1− λ

1 + r
)(

1
λ
− β(1 + r))

Given (A.107) and (A.108), we have:

1− µ = 1−M00 +
M10

λ
= (1−M00)

(
1 +

1 + r
λ
− 1
)
= (1−M00)

1 + r
λ

(A.109)

so that

f (λ) =
1

1−M00

λ

1 + r
(1− λ

1 + r
)(

1
λ
− β(1 + r))

=
1

1−M00

(
1− λ

1 + r

)(
1

1 + r
− βλ

)
=

β/ (1 + r)
1−M00

(λ− (1 + r))
(

λ− 1
β (1 + r)

)
Hence f (λ) is a convex quadratic in λ. Provided that r > 0 (which is assumed throughout) and
β (1 + r) ≤ 1 (which is required for determinacy), the two roots of f are 1 + r > 1 and 1

β(1+r) ≥ 1,
so f is decreasing for λ ∈ [0, 1].

To conclude, conditional on r > 0 (with β (1 + r) < 1) and M00 < 1, raising M10 lowers λ and
raises f , so raises the cumulative multiplier for any dB ≥ 0 and dBt > 0 for some t, as we set out
to prove.

In addition, we state and prove the following equivalent of proposition 7 for the ZL model.

Proposition 11 (Fiscal policy in the ZL model). Consider a ZL model with parameters λ, µ, β and
r. Then, for given fiscal policy {dGt, dTt} generating a path of debt dBt = ∑s≤t (1 + r)s (dGs − dTs),
there exists a unique solution {dYt} to the IKC (13) with the property that limt→0 dYt = 0 whenever
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limt→0 dGt = limt→0 dTt = 0, and it is given by

dYt = dGt +
µ

1− µ
(dGt − dTt)−

1− β (1 + r)
1− µ

dBt + (1 + r)
1− βλ

1− µ

(
1
λ
− 1
) ∞

∑
s=0

dBt+s (A.110)

Note that the formula for output in the ZL model is very similar to that in (31), but future
debt is undiscounted rather than discounted at rate β(1 + r). This results from the slightly larger
anticipatory effects in the ZL model, as discussed in section D.4.

Proof of proposition 11. We proceed analogously to the proof for the TABU model. Since AZL is the
product of a lower and an upper diagonal Toeplitz matrix T (a+)T (a−), its inverse

(
AZL)−1 is

exactly Toeplitz. From (A.93), we calculate the symbols

a+ (z) =
1− µ

1− λz

a− (z) =
1

1− βλz−1

(
λ

1 + r
− βλz−1

β(1 + r)

)
=

1
1− βλz−1

λ(1− z−1)

1 + r

Since a+ (z) has a single pole 1
λ outside the unit circle and no zero, T (a+) is invertible. Since a+ (z)

has a pole βλ inside the unit circle and a zero (equal to 1) on the unit circle, it is on the border of
invertibility. The inverse limit has Toeplitz symbol:

a−1
− (z) a−1

+ (z) =
1

1− µ
(1− λz)(1− βλz−1)

1 + r
λ

1
1− z−1

Since

(1− λz)(1− βλz−1)
1 + r

λ

1
1− z−1 − (1− (1 + r) z)

=
1+r

λ (1− βλz−1 − λz + βλ2)−
(
1− (1 + r) z− z−1 + 1 + r

)
1− z−1

=
1+r

λ (1 + βλ2)− (1 + r) (1 + β)

1− z−1 − (1− β (1 + r))

=
(1 + r)

( 1
λ − 1

)
(1− βλ)

1− z−1 − (1− β (1 + r))

we have that

a−1
− (z) a−1

+ (z) = (1 + r)
1− βλ

1− µ

(
1
λ
− 1
)

∑
k≥0

z−k − 1− β (1 + r)
1− µ

+
(1− (1 + r) z)

1− µ

Hence, the inverse limit is(
AZL

)−1
= (1 + r)

1− βλ

1− µ

(
1
λ
− 1
)

∑
k≥0

Fk − 1− β (1 + r)
1− µ

I +
(I− (1 + r) L)

1− µ
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The solution to the IKC with the property that limt→0 dYt = 0 whenever limt→0 dGt = limt→0 dTt =

0 is dY = dT +
(
AZL)−1 dB. Using the fact that dT + (1−(1+r)L)

1−µ dB = dG + µ
1−µ (dG− dT), we also

have:

dY = dG +
µ

1− µ
(dG− dT)− 1− β (1 + r)

1− µ
dB + (1 + r)

1− βλ

1− µ

(
1
λ
− 1
) ∞

∑
s=0

FkdB

which is the expression in (A.110).

We also have the following equivalent of corollary 1 for this model:

Corollary 3. Holding β, r, and M00 fixed in the ZL model, with β (1 + r) ≤ 1, a higher M10 increases the
cumulative multiplier whenever dB ≥ 0 and dBt > 0 for some t.

Proof. This follows the same steps as the proof of corollary 1. The relationship between (M00, M10)

and (µ, λ) is the same as in the TABU model, and given by (A.107)–(A.108), and so we still have
(A.109). The cumulative multiplier implied by (A.110) is

q′dY
q′dG

= 1− 1− β (1 + r)
1− µ

q′dB
q′dG

+ (1 + r)
1− βλ

1− µ

(
1
λ
− 1
)

∑k≥0 q′FkdB
q′dG

When dB ≥ 0 and dBt > 0 for some t, the first term is

−1− β (1 + r)
1− µ

= −1− β (1 + r)
1−M00

λ

1 + r

which is strictly decreasing in λ when β (1 + r) ≤ 1, and the second term is a strictly increasing
function of

f (λ) ≡ (1 + r)
1− βλ

1− µ

(
1
λ
− 1
)
=

1
1−M00

(1− βλ) (1− λ)

which is a convex quadratic in λ with roots at 1 and 1
β ≥ 1 + r > 1, and so is decreasing for

λ ∈ [0, 1]. To conclude, conditional on r > 0, β (1 + r) ≤ 1, and M00 < 1, raising M10 lowers λ and
raises the cumulative multiplier for any dB ≥ 0 and dBt > 0 for some t, as we set out to prove.

E.4 Numerical multipliers across all models

In figure E.2 we show the impact and cumulative multipliers of all eight IKC models introduced
in section 4. We see that ZL is very similar to TABU; BU is more extreme than TABU since it
has an even greater iMPC M10; and HA-hi-liq is very close to the RA model due to approximate
aggregation.

E.5 Nonlinearities and state dependence in fiscal multipliers

In this section, we examine nonlinearities and state dependence in the effects of fiscal policy in our
benchmark models.
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Figure E.2: Multipliers across all eight models in the IKC environment
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To investigate nonlinearities, we solve for the perfect-foresight transition in response to shocks
to fiscal policy of different sizes. Our benchmark fiscal policy shock assumes a path Gt − Gss =

σ · ρt, and Bt − Bss = σ (ρB (Bt − Bss) + Gt − Gss). The limit σ → 0 is the linear impulse response
that we solve for in the main text. We do this in different models and for different values of σ.

Figure E.3 summarizes the results by reporting the impact effect on output Y0−Yss against the
initial effect on government spending relative to GDP G0−Gss = ε. Since the results in proposition
5 and 6 hold nonlinearly, RA and TA do not have any nonlinearity.

Figure E.3 shows the impact effect on output Y0 − Yss for an unanticipated MIT shock to gov-
ernment spending G0 − Gss of different sizes relative to GDP, using the same calibration ρG =

ρB = 0.76 for persistence as in figure 6. In BU and TABU, when calibrated with quadratic utility
for holding bonds χ, the effects of government spending are convex in size: larger positive shocks
have larger multipliers, and large negative shocks have smaller multipliers. The dashed line is
the linear approximation, whose slope is the model’s fiscal multiplier reported in the third row
of table 4. In HA-one and HA-two, the opposite is true: the effects of government spending are
concave in size. Observe, however, that the nonlinearities are slight in all cases: for instance, in the
HA-two model, a decline of government spending of 4% of GDP has an impact of 19% on output,
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Figure E.3: Nonlinearity in the effect of government spending in our models
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relative to the value of 14% predicted by the multiplier of 3.5 (see table 4), a difference of 25%.
Next, we investigate the extent of state dependence in impulse responses. Since this is most

natural to do in models in which the state is a full distribution, we restrict our attention to the
HA-one and HA-two models.

We consider the following experiment. In year t = −1, a negative demand shock of size ε

hits the economy and a recession begins. In year t = 0, government spending unexpectedly in-
creases by a small amount. We evaluate the impact and cumulative multiplier on that government
spending as a function of the size of the recession in period 1. The demand shock is a shock to
household’s discount factors β. Formally, we solve a perfect-foresight transition to the first shock
at t = −1 and obtain an impulse response for output as well as a distribution over state variables
D0

(
ε, aliq
− , ailliq

−
)

. Then, starting from this distribution, we solve for a second perfect-foresight
transition in which the initial shock continues, but there is also a shock to government spending
and taxes of the usual shape, scaled so that its impact effect on government spending is 0.1% of
output. We report multipliers as the effect on output relative to the baseline transition.

Figure E.4 displays impact and cumulative multipliers as a function of the size of the recession
induced by the demand shock. In the HA-one model, there is a modest amount of state depen-
dence, and fiscal multipliers are smaller in recessions than in booms. When initial output is 10%
below normal, the impact multiplier is 10% smaller (6.9 rather than 7.6), and the cumulative multi-
plier is 3% smaller (16.4 rather than 16.9) than when the economy is at steady state. In the HA-two
model, by contrast, there is a small amount of state dependence, and fiscal multipliers are larger
in recessions than in booms. When initial output is 10% below normal, both initial and cumulative
multipliers are 2% larger than when the economy is at steady state.
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Figure E.4: State dependence in the effects of government spending in HA-one and HA-two
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E.6 Cognitive discounting

To implement cognitive discounting in our model, we follow the procedure discussed in Auclert,
Rognlie and Straub (2020) for obtaining the solution to a model with informational rigidities, start-
ing from the full-information solution. For Gabaix (2020)’s cognitive discounting model, that pa-
per shows that, starting from the full-information Jacobian J, cognitive discounting implies a new
Jacobian Jδ given by

Jδ
t,s =

δs Jt,s t = 0, s ≥ 0

δs (Jt,s − Jt−1,s−1) + Jδ
t−1,s−1 t > 0, s > 0

(A.111)

(see formula in Auclert et al. 2020, appendix D.3). This keeps the first column of the Jacobian J
constant and discounts the first row at rate δ. An alternative is to express this in terms of the fake
news matrix, defined as Ft,s = Jt,s for t = 0 or s = 0 and Ft,s ≡ Jt,s − Jt−1,s−1 for t ≥ 1, s ≥ 1 (see
Auclert et al. 2021a). Then, we simply have

Fδ
t,s = δsFt,s ∀t, s (A.112)

and we can then build the Jacobian Jδ from the recursion Jδ
t,s = ∑

min{s,t}
k=0 Fδ

t−k,s−k.A-29

We generate figure 6 by applying cognitive discounting to the M matrix of each of our models,
delivering Mδ, and then solving for

(
I−Mδ

)
dY = dG −MδdT. Figure E.5 applies cognitive

discounting separately to the part of M that comes from income and taxes. Panel (a) solves for
(I−M) dY = dG−MδdT: agents cognitively discount taxes but understand the boom perfectly.
Panel (b)

(
I−Mδ

)
dY = dG−MdT: agents anticipate taxes perfectly, but cognitively discount the

endogenous boom. We see that the former effect is expansionary, while the latter is contractionary,
as claimed in the main text.
A-29Intuitively, F·,s is the impulse response to knowledge at date 0 that a shock will take place at date s, and cognitive
discounting discounts this at rate δ with the horizon s.
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Figure E.5: Cumulative multiplier with cognitive discounting separately applied to taxes and income
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Note: calibration as in panel (a) of figure 6. Panel (a) only applies cognitive discounting to taxes, solving (I−M) dY =

dG−MδdT. Panel (b) only applies cognitive discounting to output, solving
(

I−Mδ
)

dY = dG−MdT.

F Appendix to section 6

F.1 Allowing for valuation effects

In the environment of section 6.1, households receive post-tax labor income zit = τt (wteitNt)
1−θ =

Zte1−θ
it /

∫
e1−θ

it di at time t, where Zt = wtNt − Tt, and can purchase two types of assets at time t:
real government bonds, which promise deliver the real interest rate rt+1 in period t + 1, and firm
shares, price pt and dividends dt at time t. These assets can be purchased in any of the accounts
that they have. To economize on notation, we spell out the cases of the structural models we use
in the paper.

Single-account models. In the analytical models of section 4.1 (RA, TA, BU, TABU) and the
one-account models of section 4.2 (HA-one, HA-hi-liq, ZL), unconstrained households have share
holdings vit−1 and bond holdings bit−1 in their single account coming into period t. They maximize
their utility function (26) subject to budget constraint and borrowing constraint,

cit + ptvit + bit = zit + (pt + dt) vit−1 + (1 + rt−1) bi,t−1 (A.113)

ptvit + bit ≥ 0

Because at least some agents can freely trade bonds for shares, the no arbitrage condition (32) must
hold at all t ≥ 0. Let us consolidate their holdings into an overall asset position, ait ≡ ptvit + bit.
Given the no arbitrage condition, at t ≥ 1 we have pt + dt = (1 + rt−1) pt−1, so this requires simply

cit + ait = zit + (1 + rt−1) ait−1

ait ≥ 0
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which is the standard borrowing constraint and budget constraint (9) of the one-account model.
At date 0, instead, we have only:

ci0 + ai0 = zi0 + (p0 + d0) vi−1 + (1 + r−1) bi,−1

We define vi,−1 ≡ p−1vi−1
ai−1

as the fraction of date-−1 assets held in stocks. This then rewrites as:

ci0 + ai0 = zi0 +

((
p0 + d0

p−1

)
vi,−1 + (1 + r−1) (1−vi,−1)

)
ai−1 (A.114)

Note that since there a unit mass of shares outstanding, market clearing for shares in period −1
implies that

∫
vi,−1ai−1di = p−1

∫
vi−1di = p−1, as stated in the main text. The Euler equation for

this problem is (A.87).

Two-account model. In the two account model of section 4.3 (HA-two), households hold shares
vliq

it−1, villiq
it−1 in their liquid and illiquid account, and bonds bliq

it−1, billiq
it−1 in these accounts. Their bud-

get and borrowing constraints are now:

c̃it + ptv
liq
it + bliq

it = zit + (1− ζ)
{
(pt + dt) vliq

it−1 + (1 + rt−1) bliq
it−1

}
− dit · 1{adjit=1}

ptv
illiq
it + billiq

it = (pt + dt) villiq
it−1 + (1 + rt−1) billiq

it−1 + dit · 1{adjit=1} (A.115)

ptv
liq
it + bliq

it ≥ 0, ptv
illiq
it + billiq

it ≥ 0

This says the following: when assets are in the liquid account, the bank levies an intermediation
fee ζ proportional to the value of the assets in that account every period. Having paid the in-
termediation fee, households are free to exchange assets within this account. When assets are in
the illiquid account, there is no intermediation fee, and trading is free. The borrowing constraints
on each account depend on the value of the account. However, trading in and out of the illiquid
account requires getting the opportunity to rebalance adjit, which occurs iid with probability ν.

Following the same steps as above, we consolidate aliq
it = ptv

liq
it + bliq

it and ailliq
it = ptv

illiq
it + billiq

it .
For all t ≥ 0, this gives:

c̃it + aliq
it = zit + (1− ζ) (1 + rt−1) aliq

it−1 − dit · 1{adjit=1} (A.116)

ailliq
it = (1 + rt−1) ailliq

it−1 + dit · 1{adjit=1} (A.117)

aliq
it ≥ 0, ailliq

it ≥ 0

which are the standard equations for the two-account model with time-varying interest rates. At
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t = 0, we obtain:

c̃i0 + aliq
i0 = zi0 + (1− ζ)

{(
p0 + d0

p−1

)
v

liq
i,−1 + (1 + r−1)

(
1−v

liq
i,−1

)}
aliq

i−1

−di0 · 1{adjit=1} (A.118)

ailliq
i0 =

((
p0 + d0

p−1

)
v

illiq
i,−1 + (1 + r−1)

(
1−v

illiq
i,−1

))
ailliq

i−1 + di0 · 1{adjit=1} (A.119)

where we have defined v
liq
i,−1 ≡

p−1vliq
i−1

aliq
i−1

and v
illiq
i,−1 =

p−1villiq
i−1

ailliq
i−1

as the fraction of the liquid and illiquid

accounts invested in shares, respectively. Here, we have
∫ (

v
liq
i,−1aliq

i−1 + v
illiq
i,−1aliq

i−1

)
di = p−1. The

first-order optimality conditions for this problem are (A.101)–(A.105).

Aggregate consumption function with valuation effects. We start from a steady state where
r−1 = rss, p−1 = pss, and the distribution over (e, ai−1) or

(
e, aliq

i−1, ailliq
i−1

)
is the stationary distribu-

tion. For given distribution of vi,−1 in the one account model, or
(

v
liq
i,−1, v

illiq
i,−1

)
in the two-account

model, the equations above show that the aggregate behavior of the household sector is summa-
rized by the time paths {Zs, rs} and the initial, cum-dividend stock market price p0 + d0. We can
therefore apply the results from section A.1 to show that the consumption function is:

Ct ({Zs, rs} ; p0 + d0)

This is equation (33).

F.2 Proof of proposition 8

The proof of the proposition is as follows. We will show that equation (35) holds when applied to
every basis vector es, ie the vector with 0 everywhere, except at s where it has a 1. To do this, we
define U ≡ ∑∞

k=0 Fk as the matrix with ones on and above the main diagonal and zeros below. We
then prove the following lemma:

Lemma 7. For the RA, TA, HA-one, ZL, and HA-two models with σ = 1, and equal initial portfolio shares
ωi,−1 = ω (with ω

liq
i,−1 = ω

illiq
i,−1 = ω in HA-two), in response to a shock {drs, dZs, dcap0,s}, with

drs ≡ −es; dZs ≡ ZUes; dcap0,s ≡ (1 + r) A1′es

aggregate household behavior implies dCs = CUes, for any s.

The idea is similar to Werning (2015): given these changes in perceived interest rates, aggre-
gate income and capital gains, and given that individual income is distributed in proportion to
aggregate income, and that individual capital gains are proportional to aggregate capital gains
in each account, aggregate consumption moves as if the Euler equation applied to every agent.
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This requires an EIS σ = 1, and in the two-account model relies on our assumptions about the
distribution of income and capital gains.

Applying (34) to the shocks and outcome behavior in lemma 7, we obtain:

CUes = MdZs + Mrdrs + mcapdcap0,s

= MZUes −Mres + (1 + r) Amcap1′es

Substituting Z = C− rA and rearranging, this implies

Mres =
(
MZU− CU + (1 + r) Amcap1′

)
es

=

(
−CU

(
I−

(
1− r

A
C

)
M
)
+ (1 + r) Amcap1′

)
es

and since this relationship holds for all s, we obtain (35), completing the proof of the proposition.
To prove lemma 7, we note that for any s, our proposed shock {drs, dZs, dcap0,s} can be written

explicitly, dropping s subscripts for ease of notation, as:

d log(1 + rt) = −1t=s (A.120)

dZt = Z · 1t≤s (A.121)

dcap0 = (1 + r)A (A.122)

This implies in particular, for individual i, that dzit =
zit
Z · dZt = zit · 1t≤s.

Proof of lemma 7 for homothetic one-account models (RA, TA, HA-one and ZL). For these models, we show
that the shock (A.120)–(A.122) results in changes to consumption and assets at the individual level
of:

dcit = cit · 1t≤s (A.123)

dait = ait · 1t≤s (A.124)

We will use the notation for HA-one, with ZL being nested as a limit of HA-one, and RA being
nested as the special case with only one agent and no idiosyncratic uncertainty. For TA, the con-
jecture holds for the permanent-income agent like with RA, and it follows trivially from dcit = dzit

and dait = ait = 0 for the hand-to-mouth agent.
Euler equation. First, taking the Euler equation (A.87) when it holds with equality, with u (c) =

log c, we have:
1
cit

= β(1 + rt)Et

[
1

cit+1

]
(A.125)
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Totally differentiating, we obtain:

dcit

c2
it

= β(1 + r)Et

[
dcit+1

c2
it+1

]
− βdrtEt

[
1

cit+1

]
(A.126)

We check that our guess (A.120)–(A.124) satisfies (A.126). For t < s, we have drt = 0, dcit = cit,
and dcit+1 = cit+1, and (A.126) reduces to the Euler equation (A.125). For t > s, both sides of
(A.126) are identically zero. For t = s, we have −drt = 1+ r, dcit = cit, and dcit+1 = 0, and (A.126)
again reduces to the Euler equation (A.125).

When the Euler equation initially holds with inequality, then it continues to do so under a
small perturbation.

Budget constraint at t > 0. Here, the budget constraint is simply (9),

cit + ait = zit + (1 + rt−1)ait−1

Totally differentiating and using dzit =
zit
Z · dZt, we get

dcit + dait =
zit

Z
dZt + (1 + r)dait−1 + drt−1ait−1 (A.127)

For t < s + 1, we have drt−1 = 0, (1 + r)dait−1 = ait−1, zit
Z dZt = zit, and dcit + dait = cit + ait, so

(A.127) reduces to the budget constraint (9). For t > s + 1, both sides of (A.127) are identically
zero. For t = s + 1, (1+ r)dait−1 = (1+ r)ait−1 and drt−1ait−1 = −(1+ r)ait−1, cancelling out, with
all other terms in (A.127) being zero. This is the step at which assuming an EIS σ of 1 is critical. If,
for instance, we had a higher σ, then dcit and dait would have needed to be larger given drs, and
then these two terms would not cancel.

Budget constraint at t = 0. Here, the date-0 budget constraint is (A.114). Enforcing our assump-
tion that vi,−1 = v for all agents, this gives:

ci0 + ai0 = zi0 +
p0 + d0

p−1
vai,−1 + (1 + r−1)(1−v)ai,−1

Totally differentiating, using the definition dcap0 = d(p0 + d0), this becomes

dci0 + dai0 = dzi0 +
dcap0
p−1

vai,−1 (A.128)

Now, since we have p−1 =
∫

vi,−1ai−1di = vA. Using our guess (A.122), this implies dcap0
p−1

=

(1 + r) A
p−1

= (1 + r) 1
v , and therefore vai,−1

dcap0
p−1

= ωai,−1(1 + r) 1
v = (1 + r)ai,−1. Since dzi0 = zi0,

dci0 = ci0, and dai0 = ai0, (A.128) then reduces to the steady-state budget constraint (9) for t = 0.
This complete the proof of lemma for our homothetic one-account models.

Proof of lemma 7 for two-account model (HA-two). For our HA-two model, we similarly conjecture
that:
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dc̃it = c̃it · 1t≤s

daliq
it = aliq

it · 1t≤s

dailliq
it = ailliq

it · 1t≤s

d(dit) = dit · 1t≤s

d(Vailliq,t) = −Vailliq,t · 1t≤s+1

As above, we verify the Euler equation, as well as the budget constraints separately in the t > 0
and t = 0 cases.

Euler equations. Consolidating (A.101)–(A.105) by solving out for Valiq and using the σ = 1
assumption, the solution for agents that are not on a constraint is characterized by the four condi-
tions

1
c̃it

= β (1 + rt) (1− ζ)E

[
1

c̃it+1

]
(A.129)

1
c̃it

= βE
[
Vailliq,i,t+1

]
if adjit = 1 (A.130)

Vailliq,i,t = (1 + rt−1)
1
c̃it

if adjit = 1 (A.131)

Vailliq,i,t = β (1 + rt)E
[
Vailliq,i,t+1

]
if adjit = 0 (A.132)

The argument for why our guess satisfies the (A.129) is the same as in the HA-one case. Totally
differentiating (A.130), we find, if adjit = 1,

−dc̃it

c̃2
it

= βE
[
dVailliq,i,t+1

]
which, given our guess, reduces to (A.130) for t ≤ s, and is identically zero for t > s. Totally
differentiating (A.131), we obtain, when adjit = 1,

dVailliq,i,t = drt−1
1
c̃it
− (1 + r)

dc̃it

c̃2
it

When t ≤ s, we have drt−1 = 0, so the left-hand side is −Vailliq,t and the right-hand side is − 1+r
c̃it

,
reducing to (A.131). When t = s+ 1, we have drt−1 = − (1 + r) and dc̃it = 0, so the right-hand side
is also − 1+r

c̃it
and the equation again reduces to (A.131). When t > s + 1, both sides are identically

zero. Totally differentiating (A.132), we obtain, when adjit = 0,

dVailliq,i,t = βdrt−1E
[
Vailliq,i,t+1

]
+ β (1 + r)E

[
Vailliq,i,t+1

]
This again reduces to (A.132) for t ≤ s due to the E

[
Vailliq,i,t+1

]
term, and for t = s + 1 due to
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the drt−1 term; while it is identically zero for t > s + 1. Finally, whenever constraints bind, they
continue to do so under a small perturbation. This verifies our conjecture that all Euler equations
continue to hold in our perturbation.

Budget constraint at t > 0. Here, the liquid account budget constraint is (A.116),

c̃it + aliq
it = zit + (1 + rt−1)(1− ζ)aliq

it−1 − dit · 1adjit=1

The proof is the same as in the HA-one case, with everything scaling proportionally with the shock
for t < s + 1, everything unchanged for t > s + 1, and everything except (1 + rt−1)(1− ζ)aliq

it−1

obviously unchanged for t = s + 1, and then offsetting effects so that (1 + rt−1)(1− ζ)aliq
it−1 also

does not change to first order. The exact same argument applies to the illiquid account budget
constraint (A.117).

Budget constraint at t = 0. Here, the liquid account budget constraint is (A.118). Enforcing our
assumption that v

liq
i,−1 = v, this is

c̃i0 + ai0 = zi0 +
p0 + d0

p−1
valiq

i,−1 + (1 + r)(1−v)aliq
i,−1 − di0 · 1adji0=1

and analogous to the HA-one case, totally differentiating, this becomes

dc̃i0 + dai0 = dzi0 +
dcap0
p−1

valiq
i,−1 − d(di0) · 1adji0=1 (A.133)

where dcap0
p−1

valiq
i,−1 = (1 + r)aliq

i,−1 and all other variables also change proportionally, so that the
budget constraint continues to hold. The illiquid account budget constraint, (A.119), enforcing
v

illiq
i,−1 = v

ailliq
i0 =

p0 + d0

p−1
vailliq

i,−1 + (1 + r)(1−v)ailliq
i,−1 + di0 · 1adji0=1

and we verify again that this reduces to (A.119) under our guess. Note that all accounts hold the
same fraction in shares is important to ensure that the shock does not alter the portfolio allocation
between the liquid and the illiquid account. This completes the proof.

F.3 Relaxing σ = 1

To accommodate the case where the elasticity of intertemporal substitution σ is different from 1,
we generalize the budget constraint so that in the one-account model it reads

cit + ait = zit + (1 + rt−1)(1− ω̂)ai,t−1 +
pt + dt

pt−1
ω̂ai,t−1 (A.134)

where we now allow for (pt + dt)/pt−1 to differ from 1+ rt−1 away from the steady state by some
perturbation dcapt ≡ d((pt + dt)− (1 + rt−1)pt−1), which generalizes dcap0. We assume that the
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Euler equation still depends only on rt and is unaffected by the additional asset return dcapt.A-30

We also extend the assumption of constant portfolio shares ω̂ to all periods.
We make analogous modifications to the budget constraints in all other models, and then de-

fine the matrix Mcap to be the Jacobian of consumption with respect to the vector dcap, which
stacks the dcapt. We then have the following generalization of proposition 8.

Proposition 12. For the RA, TA, HA-one, ZL, and HA-two models, with any elasticity of intertemporal
substitution σ, and equal portfolio shares, we have:

Mr = −σC
(

I−
(

1− rA
C

)
M
)

U + σ(1 + r)Amcap1′ + (1− σ)(1 + r)AMcapL (A.135)

where the matrix Mcap is the Jacobian of consumption with respect to asset return shocks dcap.

Note that (A.135) is mostly similar to the σ = 1 case (35). Intuitively, since we expect the
response to interest rates to scale with the intertemporal elasticity of substitution, it multiplies the
two terms from (35) by σ. There is, however, an additional term (1− σ)(1 + r)AMcapL. This is a
correction to reflect the fact that the direct income effects of real interest rates do not scale with σ.

The proof is quite similar to that of proposition 8, and we will proceed analogously, skipping
some steps to conserve space. First, we have the lemma

Lemma 8. For the RA, TA, HA-one, ZL, and HA-two models with any elasticity of intertemporal substi-
tution σ, and equal portfolio shares, in response to a shock {drs, dZs, dcaps}, with

drs ≡ −es; dZs ≡ σZUes; dcaps ≡ (1 + r) A(σe0 + (1− σ)Les)

aggregate household behavior implies dCs = σCUes, for any s.

Totally differentiating consumption in response to the shocks in lemma 8, we obtain

σCUes = MdZs + Mrdrs + Mcapdcaps

= σMZUes −Mres + (1 + r)A(σMcape0 + (1− σ)McapLes)

Substituting Z = C − rA and Mcape0 = mcap (since the 0th column of Mcap is just our original
mcap) and rearranging, this becomes

Mres =
(
σMZU− σCU + σ(1 + r)Amcap1′ + (1− σ)(1 + r)AMcapL

)
es

=

(
−σCU

(
I−

(
1− r

A
C

)
M
)
+ σ (1 + r) Amcap1′ + (1− σ)McapL

)
es

and since this holds for each s, (A.135) follows.

A-30We can also interpret the response to dcapt as the income effect of a change in rates from rt−1 to rt, suppressing the
substitution effect that works through the Euler equation.
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Proof of lemma 8. Similar to the proof of lemma 7, we write our proposed shock explicitly for a
given s,

d log(1 + rt) = −1t=s

dZt = σZ · 1t≤s

dcap0 = σ(1 + r)A

dcapt+1 = (1− σ)(1 + r)A

We then guess and verify that this is consistent with a policy dcit = σcit · 1t≤s and dait = σait · 1t≤s

for the HA-one model. The extension to other models is similar to lemma 7, and we omit it to
conserve space.

Euler equation. First, the Euler equation when binding is

c−σ−1

it = β(1 + rt)Etc−σ−1

it+1 (A.136)

Totally differentiating gives

σ−1dcit · c−σ−1−1
it = σ−1β(1 + r)Etdcit+1c−σ−1−1

it+1 − βdrtEtc−σ−1

it+1 (A.137)

For t < s, we have drt = 0, dcit = σcit, and dcit+1 = σcit+1. Substituting these into (A.137) gives
the Euler equation (A.136). For t > s, (A.137) is identically zero on both sides. For t = s, we have
dcit = σcit and −drt = 1 + r, so that (A.137) again reduces to the Euler equation (A.136). When
not binding, the Euler equation as before is not affected by an infinitesimal perturbation.

Budget constraint. The modified budget constraint (A.134) from above is

cit + ait = zit + (1 + rt−1)(1− ω̂)ai,t−1 +
pt + dt

pt−1
ω̂ai,t−1

Using the definition dcapt = d((pt + dt)− (1 + rt−1)pt−1), we have

d
pt + dt

pt−1
= drt−1 +

dcapt

p

Now, using this to totally differentiate the entire budget constraint, and noting that the ratio of the
portfolio share ω̂ to steady-state p is 1

A , we have

dcit + dait = dzit + drt−1ai,t−1 + (1 + r)dai,t−1 + dcapt
1
A

ai,t−1 (A.138)

Recall that dzit =
zit
Z dZt = σzit · 1t≤s here.

For t > s + 1, everything is identically zero. For 0 < t < s + 1, we have dcapt = 0 and
drt−1 = 0. In these cases, (A.138) reduces to dcit + dait = dzit + (1 + r)dai,t−1, which becomes
σcit + σait = σzit + (1 + r)σai,t−1, just the budget constraint times t.
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For t = 0, (A.138) becomes

dci0 + dai0 = dzi0 + dcap0
1
A

ai,−1

which becomes σci0 + σai0 = σzi0 +
(1+r)A

A ai,−1 = σzi0 + (1 + r)ai,−1, which is again the budget
constraint. Finally, for t = s + 1, (A.138) becomes

0 = −(1 + r)ai,s + (1 + r)σai,s + (1− σ)
(1 + r)A

A
ai,s

which indeed evaluates to zero.

F.4 Relation between M and Mr in TABU model

In the BU model, we have the following proposition.

Proposition 13. Consider the BU model with elasticity of intertemporal substitution σ = 1. Let ψ ≡
−χ′(A)/ (χ′′(A)A) denote the equilibrium inverse curvature in utility from assets. Then we have:

Mr = −C
(

I−
(

1− ψ
rA
C

)
M
)

U + ψ(1 + r)Amcap1′ + (1− ψ)(1 + r)AML (A.139)

Again, the proof of this proposition follows the same argument as that of proposition 8 in
section F.2, except that the perturbation is different. We have the following modification of lemma
7.

Lemma 9. For the BU model with σ = 1, in response to a shock {drs, dZs, dcap0,s}, with

drs ≡ −es; dZs ≡ ((Z + (1− ψ)rA) ·U + (1− ψ)(1 + r)A · L) es; dcap0,s ≡ ψ (1 + r) A1′es

aggregate household behavior implies dCs = CUes and dAs = ψAUes, for any s.

This perturbation corrects for the way in which the income effect accrues in the BU model.
Applying (34) to these shocks and outcome behavior, and noting that this holds for all es and
therefore holds in matrix form, we have

CU = M ((Z + (1− ψ)rA) ·U + (1− ψ)(1 + r)A · L)−Mr + ψ (1 + r) Amcap1′

Writing Z + (1− ψ)rA = C− ψrA, and rearranging, this delivers equation (A.139), which makes
three changes relative to (35) in Proposition 8: it dampens A by ψ in its two appearances in (35),
and then adds the term (1− ψ)(1 + r)AML.

Proof of lemma 9. For given s, the perturbation in lemma 9 can be written explicitly for each t (drop-
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ping the s subscript for simplicity), as:

d log(1 + rt) = −1t=s

dZt = (Z + (1− ψ)rA) · 1t≤s + (1− ψ)(1 + r)A · 1t=s+1

dcap0 = ψ(1 + r)A

We conjecture that dCt = C · 1t≤s and dAt = ψA · 1t≤s. We again show that the Euler equation and
budget constraints at t > 0 and t = 0 are satisfied.

Euler equation. First, the Euler equation is (A.55), where the interest rate can now vary. With
σ =1 this reads:

1
Ct

= β(1 + rt)
1

Ct+1
+ χ′(At) (A.140)

Totally differentiated, this becomes

−dCt

C2 = −β(1 + r)
dCt+1

C2 + βdrt
1
C
+ χ′′(A)dAt

or equivalently, given our definition of ψ ≡ −χ′(A)/ (χ′′(A)A),

−dCt

C2 = −β(1 + r)
dCt+1

C2 + βdrt
1
C
− χ′(A)

1
ψ

dAt

A

For t < s, dCt = C, dAt/ψ = A, dCt+1 = C, and drt = 0, and this reduces to the steady-state Euler
equation (A.140). For t > s, all terms are identically zero. For t = s, dCt and dAt are unchanged,
but dCt+1 = 0 and drt = −(1 + r), so that βdrt

1
C = −β(1 + r) 1

C and again this reduces to the
steady-state Euler (A.140).

t > 0 budget constraint. The budget constraint at date t > 0 is (9), which given that there is a
single BU agent is simply

Ct + At = (1 + rt−1)At−1 + Zt

and totally differentiated we can write this as

dCt + dAt − (1 + r)dAt−1 − drt−1A = dZt

For 0 < t < s + 1, we have dCt = C, dAt = dAt−1 = ψA, and drt−1 = 0, so that the left
side is just C − ψrA, which from C = Z + rA can be rewritten as Z + (1− ψ)rA, which equals
dZt. For t > s + 1, this is identically zero. Finally, for t = s + 1, we have dCt = dAt = 0,
(1 + r)dAt−1 = ψ(1 + r)A, and drt−1A = −(1 + r)A, so that the left side equals (1− ψ)(1 + r)A,
which equals dZs+1.

t = 0 budget constraint. The budget constraint at t = 0 is (A.114), which given that there is a
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single BU agent with stock portfolio share v is simply

C0 + A0 = Z0 +
p0 + d0

p−1
vA−1 + (1 + r)(1−v)A−1

or totally differentiated

dC0 + dA0 = dZ0 +
dcap0
p−1

ωA

Like before, but now with a ψ factor, we can write dcap0
p−1

vA = ψ(1 + r)A. Substituting dC0, dA0

and dZ0, this becomes
C + ψA = Z + (1− ψ)rA + ψ(1 + r)A

and cancelling out the ψ terms leaves C = Z + rA, which is just the steady-state budget constraint.

Extension to TABU. We can extend proposition 13 to the TABU model as follows. We know that
Mr for the hand-to-mouth households is zero, since these households hold no assets and are not
on their Euler equations. Hence, we only need to evaluate Mr for the BU households and multiply
by 1− µ. Rewriting (A.139), we have:

Mr = −(1− µ)CBU
(

I−
(

1− ψ
rABU

CBU

)
MBU

)
U

+ (1− µ)ψ(1 + r)ABUmcap1′ + (1− µ)(1− ψ)(1 + r)ABUMBUL (A.141)

Since all assets are held by the BU households, (1− µ)ABU = A and MBU = Mcap, and the second
two terms reduce to ψ(1 + r)Amcap1′ + (1− ψ)(1 + r)AMcapL.

We now focus on the coefficient on U in the first term of (A.141). Multiplying out and expand-
ing CBU = Z + rA

1−µ , this becomes

−(1− µ)CBUI + (1− µ)ZMBU + rAMBU − ψrAMBU

Adding 0 = −µZI + µZI, where we note that C = (1− µ)CBU + µZ and M = (1− µ)MBU + µI,
this simplifies to just

−CI + ZM + (1− ψ)rAMBU

Combining this with the other two terms derived above, and using Z = C
(
1− rA

C

)
and MBU =

Mcap again, we summarize our results in the following corollary to proposition 13.

Corollary 4. Consider the TABU model with elasticity of intertemporal substitution σ = 1. Let ψ ≡
−χ′(A)/ (χ′′(A)A) denote the equilibrium inverse curvature in utility from assets. Then we have:

Mr = −C
(

I−
(

1− rA
C

)
M− (1− ψ)

rA
C

Mcap
)

U + ψ(1 + r)Amcap1′ + (1− ψ)(1 + r)AMcapL

(A.142)
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Figure F.1: Robustness to holding equity only in the illiquid account
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F.5 Role of the common equity share assumption

Applied to the two-account heterogeneous-agent model, proposition 8 assumes that all agents
hold equity in their liquid and illiquid accounts in equal proportions. In this section, we relax
this assumption and instead assume that all equity is held in illiquid accounts, that is, v

liq
i,−1 = 0

and v
illiq
i,−1 = p−1

Ailliq . This is possible because, in our calibration, the aggregate steady state illiquid
account balance Ailliq is smaller than steady state equity p−1.

Figure F.1(a) plots the iMPCs out of capital gains, comparing the model with only equity in
illiquid accounts with the common equity share model described in section 6. Both models’ iMPCs
are small; they are even a bit smaller in the model in which all equity is held in illiquid accounts,
as capital gains earned in the illiquid account take longer to pass through to consumption.

Figure F.1(b) feeds the same shock dG as in figure 8 into the quantitative model from section 7;
comparing the consumption responses of the model with only equity in illiquid accounts with
that of the common equity share model. For both degrees of deficit financing ρB, the consumption
responses are very close. Since the iMPCs out of capital gains are smaller when equity is entirely
held in illiquid account, the consumption response is slightly greater in that model.

G Appendix to section 7

G.1 Supply side with investment

The equations for the model with investment are as follows. Recall that the production function
of each firm is Cobb-Douglas,

F (kt−1, nt) = Θkα
t−1n1−α

t
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We first note that the Rotemberg adjustment costs function ξ (Pt,Pt−1) =
1

2κp(µp−1)

(
Pt−Pt−1
Pt−1

)2
has

partial derivatives that satisfy:

ξp (Pt,Pt−1)Pt =
1

κp (µp − 1)

(Pt −Pt−1

Pt−1

) Pt

Pt−1
(A.143)

−ξp− (Pt+1,Pt)Pt+1 =
1

κp (µp − 1)

(Pt+1 −Pt

Pt

) Pt+1

Pt
(A.144)

We also note that the adjustment cost function ϕ
(

kt
kt−1

)
≡ 1

2δεI

(
kt

kt−1
− 1
)2

satisfies

ϕ′
(

kt

kt−1

)
=

1
δεI

(
kt

kt−1
− 1
)

(A.145)

We look for the solution to the firm problem given production constraint F (kt−1, nt) = Yt

(
pt
Pt

)− µp

µp−1 .
The firm states are its price Pt−1 and its capital stock kt−1 from the previous period. The Bellman
equation is:

Jt (Pt−1, kt−1) = max
Pt,kt,nt

{Pt

Pt
F (kt−1, nt)−

Wt

Pt
nt − (kt − (1− δ) kt−1)− ϕ

(
kt

kt−1

)
kt−1

−ξ (Pt,Pt−1)Yt +
1

1 + rt
Jt+1 (Pt, kt)

}
s.t.

(
F (kt−1, nt)

Yt

) 1
µp−1

Yt =
Pt

Pt
Yt

Let ηt denote the Lagrange multiplier on the production constraint. The first order condition for
labor nt is: (

Pt

Pt
+ ηt

(
1

µp − 1
)(

F (kt−1, nt)

Yt

) 1
µp−2

)
︸ ︷︷ ︸

mct

Fn (kt−1, nt) =
Wt

Pt
(A.146)

Where mct denotes marginal cost. In equilibrium all firms chose the same price, so Pt = Pt and
F (kt−1, nt) = Yt. This implies the following relationship between marginal cost and the Lagrange
multiplier:

mct = 1− ηt

(
1− 1

µp

)
(A.147)

Note that a higher multiplier ηt is associated with a lower real marginal cost, with mct ≤ 1, mct =
1

µp when ηt = 1 and mct → 1 when ηt → 0.
The first-order condition for the price Pt is:

1
Pt

F (kt−1, nt)− ξp (Pt,Pt−1)Yt +
1

1 + rt

∂Jt+1 (Pt, kt)

∂Pt
− ηt

Pt
Yt = 0 (A.148)
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while the envelope condition gives:

∂Jt (Pt−1, kt−1)

∂Pt−1
= −ξp− (Pt,Pt−1)Yt (A.149)

Combining the two and multiplying by Pt we obtain(Pt

Pt
(1− ηt)

)
Yt = ξp (Pt,Pt−1)PtYt +

1
1 + rt

ξp− (Pt+1,Pt)PtYt+1

This shows that firms indeed choose the same price Pt = Pt. Using (A.143) and (A.144), and the
definition of gross inflation 1 + πt ≡ Pt

Pt−1
= Pt

Pt−1
, we therefore obtain:

Pt

Pt
(1− ηt) =

1
κp (µp − 1)

πt (1 + πt)−
1

1 + rt

1
κp (µp − 1)

πt+1 (1 + πt+1)
Yt+1

Yt

Further, (A.147) implies

1− ηt = 1− mct − 1
1

µp − 1
=

1
µp −mct

1
µp − 1

=
1− µp ·mct

1− µp =
µp ·mct − 1

µp − 1

Hence, we obtain the price Phillips curve

πt (1 + πt) = κp (µp ·mct − 1) +
1

1 + rt
πt+1 (1 + πt+1)

Yt+1

Yt

which is equation (39) in the main text.
The first-order condition for kt is:

1 + ϕ′
(

kt

kt−1

)
=

1
1 + rt

∂Jt+1

∂kt
≡ Qt

and the envelope condition is:

∂Jt

∂kt−1
= mct · Fk (kt−1, nt)− (1− δ)− ϕ

(
kt

kt−1

)
+ ϕ′

(
kt

kt−1

)
kt

kt−1

Rewriting and using (A.145), the first is

1
δεI

(
kt

kt−1
− 1
)
= Qt − 1 (A.150)

and the second is, using ϕ′
(

kt
kt−1

)
kt

kt−1
= (Qt − 1) kt

kt−1
,

(1 + rt−1) Qt−1 = mct · Fk (kt−1, nt)−
(

kt

kt−1
− (1− δ)

)
− ϕ

(
kt

kt−1

)
+

kt

kt−1
Qt (A.151)

where Fk (kt−1, nt) = α Yt
kt−1

with Cobb-Douglas production.
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To conclude, given the sequences
{

Yt, Wt
Pt

, rt

}
, all firms starting the same initial level of capital

k−1 = K−1 choose the same sequence of labor nt = Nt, capital kt = Kt, and prices Pt = Pt. Given
the Cobb-Douglas production function, the time path for aggregates {Nt, Kt, Qt, mct, πt, It, Jt, pt, dt}
must satisfy:

a) The labor first-order condition (A.146), which reads:

mct =
Wt

Pt

1
Fn (Kt−1, Nt)

=
1

1− α

WtNt

PtYt
(A.152)

b) The investment first-order condition (A.150), and the dynamics of Q, (A.151), which reads,
for all for all t ≥ 1:

(1 + rt−1) Qt−1 = mct · α
Yt

Kt−1
− It

Kt−1
− ϕ

(
Kt

Kt−1

)
+

Kt

Kt−1
Qt (A.153)

c) The definition of investment,
It = Kt − (1− δ)Kt−1 (A.154)

d) The production constraint, determining labor given target production and capital:

Nt =

(
Yt

Θ
· 1

Kα
t−1

) 1
1−α

(A.155)

e) The new Keynesian Phillips curve (39)

f) The stock market valuation condition, with the ex-dividend price pt ≡ Jt − dt satisfying, for
all t ≥ 0,

pt =
1

1 + rt
(dt+1 + pt+1) (A.156)

and the date-t dividend being given by:

dt = F (Kt−1, Nt)−
Wt

Pt
Nt − It − ϕ

(
Kt

Kt−1

)
Kt−1 − ξ (Pt, Pt−1)Yt (A.157)

G.2 Additional model equations

The remaining equations for our quantitative model are:

a) Flow government budget constraint

Gt + (1 + rt−1) Bt−1 = Tt + Bt (A.158)

b) Nonlinear wage Phillips curve (36)
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c) Wage inflation consistency condition

1 + πw
t = (1 + πt)

Wt/Pt

Wt−1/Pt−1
(A.159)

d) Market clearing equations: ∫ (
vliq

it + villiq
it

)
di = 1 (A.160)∫ (

bliq
it + billiq

it

)
di = Bt (A.161)∫

citdi + ζt

∫
aliq

it−1di + Gt + It + ϕtKt−1 + ξtYt = Yt (A.162)

where ζt ≡ ζ (1 + rt−1).

e) Fisher equation:

1 + rt =
1 + it

1 + πt+1

f) No arbitrage between bonds and shares, (32) at all t ≥ 0.

Walras’s law. Aggregating budget constraints, we have in the single-account models (A.113)∫
citdi + pt

∫
vitdi +

∫
bitdi = Zt + (pt + dt)

∫
vit−1di + (1 + rt−1)

∫
bit−1di

And in the two-account model (A.115), we have:∫
c̃itdi + pt

∫ (
vliq

it + villiq
it

)
di +

∫ (
bliq

it + billiq
it

)
di

= Zt + (pt + dt)
∫ (

vliq
it−1 + villiq

it−1

)
di + (1 + rt−1)

∫ (
bliq

it−1 + billiq
it−1

)
di

−ζ (pt + dt)
∫

vliq
it−1di− ζ (1 + rt−1)

∫
bliq

it−1di

Defining Ct ≡
∫

citdi in the single-account models, and Ct ≡
∫

c̃itdi + ζ (pt + dt)
∫

vliq
it−1di +

ζ (1 + rt−1)
∫

bliq
it−1di in the two-account model, and using share market clearing (A.160) and bond

market clearing (A.161) at all t, we obtain at every t ≥ 0,

Ct + pt + Bt = Zt + pt + dt + (1 + rt−1) Bt

Canceling pt on both sides, and using the government budget constraint (A.158), we obtain:

Ct + Gt = Zt + Tt + dt
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Using the expression for dividends in (A.157), we obtain:

Ct + Gt + It + ϕtKt−1 + ξtYt = Zt + Tt + Yt −
Wt

Pt
Nt

Finally, using the definition of aggregate post-tax income, Zt = Wt
Pt

Nt − Tt, we obtain the goods
market clearing condition:

Ct + Gt + It + ϕtKt−1 + ξtYt = Yt

Reducing to a single asset market clearing condition. Since the no arbitrage condition (32)
holds in equilibrium, we can apply the result of section F.1 to show that given paths {Zt, rt},
an initial set

(
v

liq
i−1, v

illiq
i−1

)
of fractions invested in shares in each account, and initial values for

p0 + d0, the policies aliq
it , ailliq

it , cit and the distribution over the total asset positions Dt
(
aliq, ailliq)

are both well defined, with agents indifferent between investing in bonds and shares.
Suppose that aggregate asset market clearing holds, ie:

At ({Zt, rs} , p0 + d0) = Bt + pt (A.163)

This implies that there is a path for individual portfolio shares vit in one-account models (and
v

liq
it , v

illiq
it in the two-account model), such that market clearing holds for each asset separately, ie∫ (

1−v
liq
it

)
aliq

it di +
∫ (

1−v
illiq
it

)
ailliq

it di = Bt∫
v

liq
it aliq

it di +
∫

v
illiq
it ailliq

it di = pt

while many such paths are possible, given that households are indifferent between holding bonds
or shares in each account, one solution that works is vt = pt

At
for every i and every t. In our

calibration, we assume that v−1 = p
A for every i in the steady state. In summary, it is sufficient to

enforce (A.163) and an initial vi−1 consistent with market clearing to obtain equilibrium in both
asset markets.

G.3 Steady state

In a steady state, aggregates
{

Yt, Kt, Nt, It, Ct, At, Bt, Qt, pt, dt, mct, Wt
Pt

, rt, it, πt, πw
t

}
are constant.

We restrict our attention to the steady state with no inflation, π = 0. The NKPC (39) implies

mc =
1

µp

and price adjustment costs are ξ = 0. The first-order condition for investment (A.150) implies
Q = 1, and the steady-state investment condition (A.154) implies I = δK. Given that capital
adjustment costs are ζ = 0, the first-order conditions for labor and capital (A.152), (A.153), and
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the production function (A.155), imply

WN
PY

=
1− α

µp
K
Y

=
1

µp
α

r + δ

1
Θ

=

(
K
Y

)α (N
Y

)1−α

(A.164)

Given our calibration for r, α, δ, µp in tables 2 and 3 and our normalization Y = N = 1, equa-
tions (A.164) imply W

P , K
Y and Θ. The steady-state versions of (A.156) and (A.157) also imply

p =
d
r

=
Y
r

(
1− W

P
N
Y
− (r + δ)

K
Y
+ r

K
Y

)
p = K +

Y
r

(
1− 1

µp

)
(A.165)

showing that the steady-state stock price incorporates both the value of the capital stock and the
capitalized value of markups.

The government budget constraint at steady state reads

G = rB + T (A.166)

Given our calibration for G/Y and B/Y in table 3 and our normalization Y = 1, we obtain G, B,
and T from (A.166).

On the household side, given our calibration of one of the models described in Table 2, post-tax
income Z = W

P N − T, and p + d = (1 + r) p, we obtain the steady-state consumption, asset, and
virtual-consumption functions:

C = C ({Z, r, β} , (1 + r) p) A = A ({Z, r, β} , (1 + r) p) C∗ = C∗ ({Z, r, β} , (1 + r) p)
(A.167)

The wage consistency condition (A.159) implies that there is no wage inflation, πw = 0, which
from (36) implies

γN
1
φ

(C∗)−σ (1− θ) Z
N

=
1

µw (A.168)

We calibrate µw = 1 and the progressivity parameter θ, and γ follows from equation (A.168).
Finally, the asset market clearing condition (A.163) is

A ({Z, r, β} , (1 + r) p) = B + p = B + K +
Y
r

(
1− 1

µp

)
(A.169)

and the goods market clearing condition (A.162) is

C ({Z, r, β} , (1 + r) p) + G + I = Y (A.170)

Given all of our other calibration targets, for any model of consumption, we find β that satisfies
(A.169), and make sure that (A.170) is also satisfied, as it should given Walras’s law.
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In a steady state there are no valuation effects, so A ({Z, r, β} , (1 + r) p) = A ({Z, r, β}). The
models of section 2–5 are calibrated to have identical A/Z as in the quantitative model.

G.4 Additional model simulations

This section presents the additional model simulations mentioned in the main text. Figure G.1
compares responses in the HA-two model across degrees of deficit financing ρB, finding that
greater ρB leads to unambiguously stronger output and consumption responses.

Figure G.2 reproduces figure G.1 in the TABU model. As claimed, consumption multipliers are
never positive in the TABU model, and the impulse response is not monotone in ρB. This is due
to the effect of the decline in the stock market on consumption. This effect is implausibly large
because of the very high iMPCs out of capital gains mcap of the TABU model.

Figures G.3–G.6 reproduce figure G.1 with ρB = 0.93, varying one parameter at a time in the
HA-two model. Figure G.3 varies the Taylor rule coefficient φπ. Provided φπ is above the HA-two
determinacy threshold of 1.05, higher φπ raises real rates and amplifies crowd-out of investment
and consumption, but consumption still rises in fiscal expansion unless φπ is around 2. Note that
at φπ = 1.1 investment is essentially constant, as the dampening effect from the rising user cost of
capital is offset by the expansionary effect from rising marginal product of labor.

Figure G.4 shows the impulse response as we vary the elasticity of investment to Q, εI , around
its benchmark value of 4. When investment is more sensitive to Q, the crowding-out effect is larger
and equilibrium real interest rates rise by less. While consumption multipliers remain positive for
most plausible values of εI , as εI gets very large (εI ' 20), the negative effect on labor incomes
from declining investment starts to be too large and consumption actually falls.

Figure G.5 shows the impulse responses as we vary the slope of the price Phillips curve κp.
We do this by taking the formula from the main text, κp = 1

1+Γp (1− β (1− freq)) freq/ (1− freq)
with a annual frequency of price reset freq = 0.67 from Nakamura and Steinsson (2008), and
varying the degree of real rigidity Γp ∈ {0, 1, 5, 9}. Here, Γp = 0 corresponds to the standard
Calvo formula without real rigidity and Γp = 5 is our benchmark. As prices become more flexible
for given wage rigidity, the consumption multiplier rises. Intuitively, with more flexible prices,
real wages get closer to the marginal product of labor, which falls with output, and this reduces
post-tax labor incomes and therefore consumption. Counterbalancing this, margins—and so the
stock market—fall by less, but this has only a small effect on consumption because of the low MPC
out of capital gains. All in all, with more flexible prices, the intertemporal Keynesian cross effect
described in sections 2–5 is dampened by an offsetting movement in the real wage.

Figure G.6 shows the impulse responses as we vary the slope of the wage Phillips curve κw.
We do this by taking the formula from the main text, κw = 1

1+Γw (1− β (1− freq)) freq/ (1− freq)
with a annual frequency of wage reset freq = 0.33 from Grigsby et al. (2021), and varying the
degree of real rigidity Γw ∈ {0, 1, 5, 9}. Again, Γw = 0 corresponds to the standard Calvo formula
without real rigidity and Γp = 5 is our benchmark. Here again, rising wage flexibility dampens
the consumption multiplier, with similar magnitudes as with rising price flexibility.
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Figure G.1: Response to a government spending shock in our quantitative two-account model HA-two
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Note: The HA-two model is a two-account heterogeneous-agent model which is calibrated to match evidence on in-
tertemporal MPCs. The government spending shock declines exponentially at rate ρG = 0.76 and public debt follows
dBt = ρB (dBt−1 + dGt) for various values of ρB.

Figure G.2: Impulse responses as a function of ρB in the TABU model
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Note: This figure reproduces figure G.1 but in the TABU model.
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Figure G.3: Impulse responses as a function of the Taylor rule coefficient φπ
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Note: This figure reproduces figure G.1 with ρB = 0.93, and varies the level of the Taylor rule coefficient φπ . The
benchmark calibration has φπ = 1.5 (see table 3).

Figure G.4: Impulse responses as a function of the investment sensitivity parameter εI
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Note: This figure reproduces figure G.1 with ρB = 0.93, and varies the level of the investment sensitivity parameter εI .
The benchmark calibration has εI = 4 (see table 3).
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Figure G.5: Impulse responses as a function of the slope of the price Phillips curve κp
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Note: This figure reproduces figure G.1 with ρB = 0.93, and varies the slope of the price Phillips curve κp =
1

1+Γp (1− β (1− freq)) freq/ (1− freq) by altering the degree of real rigidity Γp ∈ {0, 1, 5, 9}, with freq = 0.33 as in
the main text. The benchmark calibration has Γp = 5 (see section 7.1).

Figure G.6: Impulse responses as a function of the slope of the wage Phillips curve κw
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Note: This figure reproduces figure G.1 with ρB = 0.93, and varies the slope of the price Phillips curve κw =
1

1+Γw (1− β (1− freq)) freq/ (1− freq) by altering the degree of real rigidity Γw ∈ {0, 1, 5, 9}, with freq = 0.33 as in
the main text. The benchmark calibration has Γw = 5 (see section 7.1).
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