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Abstract

This paper studies the full equilibrium dynamics of an economy with financial frictions.

Due to highly non-linear amplification effects, the economy is prone to instability and occa-

sionally enters volatile episodes. Risk is endogenous and asset price correlations are high in

down turns. In an environment of low exogenous risk experts assume higher leverage making

the system more prone to systemic volatility spikes - a volatility paradox. Securitization

and derivatives contracts leads to better sharing of exogenous risk but to higher endogenous

systemic risk. Financial experts may impose a negative externality on each other and the

economy by not maintaining adequate capital cushion.
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1 Introduction

Economists such as Fisher (1933), Keynes (1936) and Minsky (1986) have attributed the economic

downturn of the Great Depression to the failure of financial markets. Kindleberger (1993) docu-

ments that financial crises are common in history - having occurred at roughly 10-year intervals

in Western Europe over the past four centuries. The current financial crisis has underscored once

again the importance of the financial frictions for the business cycles. These facts motivate ques-

tions about financial stability. How resilient is the financial system to various shocks? At what

point does the system enter a crisis regime, in the sense that market volatility, credit spreads and

financing activity change drastically? To what extent is risk exogenous, and to what extent is it

generated by the interactions within the system? How does one quantify systemic risk? Does fi-

nancial innovation really destabilize the financial system? How does the system respond to various

policies, and how do policies affect spillovers and welfare?

The seminal contributions of Bernanke and Gertler (1989), Kiyotaki and Moore (1997) (here-

after KM) and Bernanke, Gertler, and Gilchrist (1999) (hereafter BGG) uncover several important

channels how financial frictions affect the macroeconomy. First, temporary shocks can have per-

sistent effects on economic activity as they affect the net worth of levered agents, and financial

constraints. Net worth takes time to rebuild. Second, financial frictions lead to the amplification

of shocks, directly through leverage and indirectly through prices. Thus, small shocks can have

large effects on the economy. The amplification through prices works through adverse feedback

loops, as declining net worth of levered agents leads to drop in prices of assets concentrated in

their hands, further lowering these agents’ net worth.

Both BGG and KM consider on the amplification and propagation of small shocks that hit the

system at its deterministic steady state, and focus on linear approximations of system dynamics.

In both papers the location of the steady state is pinned down by an exogenous parameter. BGG

exogenously fix the rate at which accumulated net worth flows out of the constrained sector. In

KM, the wealth distribution at the steady state is determined by the exogenous leverage constraint.

In this paper we build upon the work of BGG and KM, but we develop them in two important

ways. First, instead of focusing on approximate dynamics near the steady state, we instead use

continuous-time methodology to solve for the full dynamics of the system. This allows us to

capture the dynamics both near and away from the steady state, and understand the size of

shocks that push the system away from the steady state into the crisis regime. Second, instead

of pinning down the location of the steady state by an exogenous parameter, we allow the wealth

distribution to evolve endogenously through risk-taking and payout decisions. The endogeneity
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of the steady state leads an important relationship between the risk environment and equilibrium

leverage, which implies that occasional crises are an essential characteristic of system dynamics.

As BGG and KM, the core of our model has two types of agents: productive experts and

less productive households. Because of financial frictions, the wealth of experts is important

for their ability to buy physical capital and use it productively. The evolution of the wealth

distribution depends on the agent’s consumption decisions, as well as macro shocks that affect

their balance sheets. Physical capital can be traded in markets, and its equilibrium price is

determined endogenously by the agents’ net worth and financial constraints. Unlike in BGG and

KM, agents in our model anticipate shocks. In normal times, the system is near the stochastic

steady state: a point at which agents reach their target leverage. The stochastic steady state is

defined as the balance point to which the system tends to come back after it is hit by small shocks.

It is a point such that, generally, after an adverse shock leads to losses, experts have sufficient

time to rebuild net worth before the next shock arrives.

The most important phenomena occur when the system is knocked off balance away from

the steady state. The full characterization of system dynamics allows us to derive a number of

important implications.

First, the system reaction to shocks is highly nonlinear. While the system is resilient to most

shocks near the steady state, unusually large shocks get much more amplified. Once in a crisis

regime, even small shocks become amplified, leading to significant endogenous risk. The reason is

that while at the steady state, experts can absorb moderate shocks to their net worths easily by

adjusting payouts, away from the steady state payouts cannot be further reduced. Hence, near

the steady state, shocks have small effect on the experts’ demand for physical capital. In the crisis

states away from the steady state, experts have to sell capital to cut their risk exposures. Overall,

the stability of the system depends on the experts’ endogenous choice of capital cushions. As it

is costly to retain earnings, excess profits are paid out when experts are comfortable with their

capital ratios.

Second, system reaction to shocks is asymmetric. Positive shocks at the steady state lead

to larger payouts and little amplification, while large negative shocks are amplified into crises

episodes resulting in significant inefficiencies, disinvestment, and slow recovery.

Third, increased volatility in the crisis regime affects the experts’ precautionary motive. When

changes in asset prices are driven endogenously by the constraints of market participants rather

than changes in cash flow fundamentals, incentives to hold cash and wait to pick up assets at the

bottom increase. In case prices fall further, the same amount of money can buy a larger quantity

of assets, and at a lower price, increasing the expected return. In our equilibrium this phenomenon
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leads to price drops in anticipation of the crisis, and higher expected return in times of increased

endogenous risk. In equilibrium leverage is determined by experts’ responses to everybody else’s

leverage: higher aggregate leverage increases endogenous risk, increases the precautionary motive

and reduces individual incentives to lever up.1

Fourth, after moving through a high volatility region, the system can get trapped for some time

in a recession with low growth and low market liquidity. The stationary distribution is ∪-shaped,
implying that while the system spends most of the time around the steady state, it also spends

some time in the depressed regime with low growth.

Fifth, the model has important asset pricing implications. In crisis regimes, credit spreads

and risk premia increase and asset prices become more correlated due to endogenous risk. In

general, asset returns exhibit fat tails and option prices display volatility smirks. In our model

these features are implied by equilibrium behavior rather than exogenously assumed rare events.

In addition, a number of comparative statics arise because, unlike the earlier literature, we

endogenize the experts’ payout policy. Economically, a phenomenon we refer to as the volatility

paradox arises. Paradoxically, lower exogenous risk can lead to more extreme volatility spikes in

the crisis regime. This happens because low fundamental risk leads to higher equilibrium leverage.

In sum, whatever the exogenous risk, it is normal for the system to sporadically enter volatile

regimes away from the steady state. In fact, our results suggest that low risk environments are

conducive to greater buildup of systemic risk.

Financial innovation that allows experts to hedge their idiosyncratic risk can be self-defeating

as it leads to higher systemic risk. For example, securitization of home loans into mortgage-backed

securities allows institutions that originate loans to unload some of the risks to other institutions.

Institutions can also share risks through contracts like credit-default swaps, through integration of

commercial banks and investment banks, and through more complex intermediation chains (e.g.

see Shin (2010)). We find that, when experts can hedge idiosyncratic risks better among each

other in our model, they take on more leverage. This makes the system less stable. Thus, while

securitization is in principle a good thing - it reduces the costs of idiosyncratic shocks and thus

interest rate spreads - it ends up amplifying systemic risks in equilibrium.

All our results extend to a setting, in which intermediaries facilitate lending from households

to experts. In this case, the net worth of both intermediaries and end borrowers matter for system

dynamics. As in the models of Diamond (1984) and Holmström and Tirole (1997) the role of

1The fact that in reality risk taking by leveraged market participants is not observable to others can lead to risk
management strategies that are in aggregate mutually inconsistent. Too many of them might be planning to sell
their capital in case of an adverse shock, leading to larger than expected price drops. Brunnermeier, Gorton, and
Krishnamurthy (2010) argue that this is one contributing factor to systemic risk.
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the intermediaries is to monitor end borrowers. In this process intermediaries become exposed to

macro risks.

Our model implies important lessons for financial regulation when financial crises lead to

spillovers into the real economy. Obviously, regulation is subject to time inconsistency. For

example, policies intended to ex-post recapitalize the financial sector in crisis times can lead to

moral hazard in normal times. In addition, even prophylactic well-intentioned policies can have

unintended consequences. For example, capital requirements, if set improperly, can easily harm

welfare, as they have little effect on behavior in good times, but bind in downturns. That is, in

good times the fear of hitting a capital constraint in the future may be too weak to induce experts

to build sufficient net worth buffers to overturn the destabilizing effects in downturns. Overall,

our model argues in favor of countercyclical regulation that encourages financial institutions to

retain earnings and build up capital buffers in good times and relaxes constraints in downturns.

Our model makes a strong case in favor ofmacro-prudential regulation. For example, regulation

that restricts payouts (such as dividends and bonus payments) should depend primarily on aggre-

gate net worth of all intermediaries. That is, even if some of the intermediaries are well capitalized,

allowing them to pay out dividends can destabilize the system if others are undercapitalized.

Literature review. This paper builds upon several strands of literature. At firm level, micro-

foundations of financial frictions lie the heart of papers that study capital structure in the presence

of informational and agency frictions, as well as papers that look at financial intermediation and

bank runs. In the aggregate, papers that study the effects of prices and collateral value, and more

generally consider financial frictions in a general equilibrium context, are relevant.

On the firm level, papers such as Townsend (1979), Bolton and Scharfstein (1990) and DeMarzo

and Sannikov (2006) explain why violations of Modigliani-Miller assumptions lead to bounds on

the agents’ borrowing capacity, as well as restrictions on risk sharing. Sannikov (2012) provides

a survey of capital structure implications of financial frictions. It follows that in the aggregate,

the wealth distribution among agents matters for the allocation of productive resources. Diamond

(1984) and Holmström and Tirole (1997) emphasize the monitoring role that intermediaries per-

form as they channel funds from lenders to borrowers. Diamond and Dybvig (1983) and Allen and

Gale (2007) intermediaries are subject to runs. He and Xiong (2009) model runs on non-financial

firms, and Shleifer and Vishny (2010) focus on bank stability and investor sentiment. These obser-

vations serve as a microfoundation to the balance sheet assumptions made by the literature that

analyze financial frictions in the macroeconomy, including our paper.

In the aggregate, a number of papers also build on the idea that adverse price movements affect
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the borrowers’ net worth, and thus financial constraints. Shleifer and Vishny (1992) emphasize the

importance of the liquidating price of capital, determined at the time when natural buyers, who

are typically in the same industry, are also constrained. Shleifer and Vishny (1997) emphasize

the role of the solvency constraint in the fund managers’ ability to trade against mispricing.

In Geanakoplos (1997, 2003), the identity of the marginal buyer affects prices. Brunnermeier

and Pedersen (2009) focus on margin constraints that depend on volatility, and Rampini and

Viswanathan (2011) stress that highly productive firms go closer to their debt capacity and hence

are harder hit in a downturns.

Important papers that analyze financial frictions in infinite-horizon macro settings include

KM, Carlstrom and Fuerst (1997) and BGG. These paper make use of log-linear approximations

to study how financial frictions amplify shocks near the steady state of the system. Other papers,

such as Christiano, Eichenbaum, and Evans (2005), Christiano, Motto, and Rostagno (2003, 2007),

Curdia and Woodford (2009), Gertler and Karadi (2009) and Gertler and Kiyotaki (2011), use

these techniques to study related questions, including the impact of monetary policy on financial

frictions. See Brunnermeier, Eisenbach, and Sannikov (2012) for a survey of literature on economies

with financial frictions.

Several recent papers avoid log-linearization, including Mendoza (2010) and He and Krishna-

murthy (2010b,a). Perhaps most closely related to our model is He and Krishnamurthy (2010b).

The latter studies an endowment economy to derive a two-factor asset pricing model for assets

held exclusively by financial experts. Like in our paper, financial experts face equity issuance con-

straints. When experts are well capitalized, risk premia are determined by aggregate risk aversion

since the outside equity constraint does not bind. However, after a severe adverse shock experts,

who cannot sell risky assets to households, become constrained and risk premia rise sharply. He

and Krishnamurthy (2010a) calibrate a variant of the model and show that in crisis equity injec-

tion is a superior policy compared to interest rate cuts or asset purchasing programs by the central

bank.

Several papers identify important externalities that exist due to financial frictions. These in-

clude Bhattacharya and Gale (1987), in which externalities arise in the interbank market, Gromb

and Vayanos (2002), who provide welfare analysis for a setting with credit constraints, andCa-

ballero and Krishnamurthy (2004), who study externalities an international open economy frame-

work. On a more abstract level these effects can be traced back to inefficiency results within an

incomplete markets general equilibrium setting, see e.g. Stiglitz (1982) and Geanakoplos and Pole-

marchakis (1986). In Lorenzoni (2008) and Jeanne and Korinek (2010) funding constraints depend

on prices that each individual investor takes as given. Adrian and Brunnermeier (2010) provide a
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systemic risk measure and argue that financial regulation should focus on these externalities.

Our paper is organized as follows. We set up our baseline model in Section 2. In Section 3 we

develop methodology to solve the model, and characterize the equilibrium that is Markov in the

experts’ aggregate net worth and present a computed example. Section 4 discusses equilibrium

dynamics and properties of asset prices. Section 5 focuses on comparative statics that depend

on the endogeneity of the wealth distribution. In Section 6 we discuss efficiency, spillovers and

regulation. Section 7 concludes.

2 The Baseline Model

In an economy without financial frictions and complete markets, the flow of funds to the most

productive agents is unconstrained, and hence the distribution of wealth is irrelevant. With

frictions, the wealth distribution may change with macro shocks and affect aggregate productivity.

When the net worth of productive agents become depressed, the allocation of resources (such as

capital) in the economy becomes less efficient and asset prices may decline.

In this section we develop a simple baseline model with two types of agents, in which productive

agents, experts, can finance their projects only by issuing risk-free debt. The simple capital

structure of experts simplifies exposition, but it is not crucial for our results. As long as frictions

restrict risk-sharing among the agents, aggregate shocks affect the wealth distribution and thus

the agents’ risk bearing capacity. In Appendix A, we examine how an agency problem leads

to various capital structures, in which experts may issue some issue equity and other payoff-

sensitive securities, such as risky debt. We also generalize the model to include intermediaries

that facilitate the flow of funds to productive projects, so that the net worth of intermediaries also

becomes important.

Technology. We consider an economy populated by experts and households. Both types of

agents can own capital, but experts are able to manage it more productively.

We denote the aggregate account of efficiency units of capital in the economy by Kt and capital

held by an individual agent by kt, where t ∈ [0,∞) is time. Physical capital kt held by an expert

produces output at rate

yt = akt,

per unit of time, where a is a parameter. Output serves as numeraire and its price is normalized

to one. New capital can be built through internal investment. When held by an expert, capital
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evolves according to

dkt = (Φ(ιt)− δ)kt dt+ σkt dZt (1)

where ιt is the investment rate per unit of capital (i.e. ιtkt is the total investment rate) and dZt are

exogenous aggregate Brownian shocks. Function Φ, which satisfies Φ(0) = 0, Φ′(0) = 1, Φ′(·) > 0

and Φ′′(·) < 0, represents a standard investment technology with adjustment costs. In the absence

of investment, capital managed by experts depreciates at rate δ. The concavity of Φ(ι) when ι is

negative represents technological illiquidity, i.e. large-scale disinvestments are less effective when

Φ′′ is more negative.

Households are less productive. Capital managed by households produces output of only

y
t
= a kt

with a ≤ a, and evolves according to

dkt = (Φ(ιt)− δ) kt dt+ σkt dZt,

with δ > δ, where ιt is the household investment rate per unit of capital.

The Brownian shocks dZt reflect the fact that one learns over time how “effective” the capital

stock is.2 That is, the shocks dZt capture changes in expectations about the future productivity of

capital, and kt reflects the “efficiency units” of capital, measured in expected future output rather

than in simple units of physical capital (number of machines). For example, when a company

reports current earnings, it not only reveals information about current but also future expected

cash flow. In this sense our model is also linked to the literature on connects news to business

cycles, see e.g. Jaimovich and Rebelo (2009).

Preferences. Experts and less productive households are risk neutral. Households have the

discount rate r and they may consume both positive and negative amounts. This assumption

ensures that households provide fully elastic lending at the risk-free rate of r. Denote by ct the

cumulative consumption of an individual household until time t, so that dct is consumption at

2Alternatively, one can also assume that the economy experiences aggregate TFP shocks at with dat = atσdZt.
Output would be yt = atκt, where capital κ is now measured in physical (instead of efficiency) units and evolves
according to dκt = (Φ(ιt/at) − δ)κtdt. To preserve the tractable scale invariance property one has to modify the
adjustment cost function to Φ(ιt/at). The fact that adjustment costs are higher for high at can be justified by the
fact that high TFP economies are more specialized.
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time t. Then the utility of a household is given by3

E

[∫ ∞

0

e−rt dct

]
.

In contrast, experts have the discount rate ρ > r, and they cannot have negative consumption.

That is, cumulative consumption of an individual expert ct must be a nondecreasing process, i.e.

dct ≥ 0. Expert utility is

E

[∫ ∞

0

e−ρt dct

]
.

First Best, Financial Frictions and Capital Structure. In the economy without frictions,

experts would manage capital forever. Because they are less patient than households, experts

would consume their entire net worths at time 0, and finance their future capital holdings by

issuing equity to households. The Gordon growth formula implies that price of capital would be

q̄ = max
ι

a− ι

r − Φ(ι) + δ
, (2)

so that capital earns the required return on equity, which equals to the discount rate r of risk-

neutral households.

If experts cannot issue 100% of equity to households, they may become constrained, leading

to inefficiencies. Experts’ ability to absorb risks, in order to manage capital, depends on their

wealth. If experts lost their wealth, then the price of capital would permanently drop to

q = max
ι

a− ι

r − Φ(ι) + δ
,

the price that the households would be willing to pay if they had to hold capital forever.

The constraint on expert equity issuance can be justified in many ways, e.g. through the

existence of an agency problem between the experts and households. There is extensive literature

in corporate finance, which argues that firm insiders must have some “skin in the game” to align

their incentives with those of the outside equity holders.4 Typically, agency models imply that the

expert’s incentives and effort increase in his equity stake. The productivity is the greatest when

the expert owns the entire equity stake and borrows from outside investors exclusively through

risk-free debt.

While agency models place a restriction on the risk that expert net worth must absorb, they

3Note that we do not denote by c(t) the flow of consumption and write E
[∫∞

0 e−ρtc(t) dt
]
, because consumption

can be lumpy and singular and hence c(t) may be not well defined.
4See Jensen and Meckling (1976), Bolton and Scharfstein (1990) and DeMarzo and Sannikov (2006).
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imply nothing about how the remaining cash flows are divided among outside investors. That is,

the Modigliani-Miller theorem holds with respect to those cash flows. They can be divided among

various securities, including risk-free debt, risky debt, equity and hybrid securities. The choice of

the securities has no effect on firm value or the equilibrium. Moreover, because the assumptions

of Harrison and Kreps (1979) hold in our setting, there exists an analytically convenient capital

structure that in which outsiders hold only equity and risk-free debt. Indeed, any other security

can be perfectly replicated by continuous trading of equity and risk-free debt. More generally, an

equivalent capital structure involving risky long-term debt provides an important framework for

studying default in our setting. We propose an agency model and analyze its capital structure

implications in Appendix A.

For now, to simplify exposition, we focus on the simplest assumption that delivers the main

results of this paper: that experts must retain 100% of their equity and can issue only risk-free

debt.

Market for Capital. There is a fully liquid market for physical capital, in which experts can

trade capital among each other or with households. Denote the equilibrium market price of capital

in terms of output by qt assume that its law of motion is of the form

dqt = µq
tqt dt+ σq

t qt dZt. (3)

That is, capital kt is worth qtkt. In equilibrium qt is determined endogenously, and it is bounded

between q and q̄.

Return from Holding Capital. When an expert buys and holds kt units of capital at price

qt, by Ito’s lemma the value of this capital evolves according to5

d(ktqt)

ktqt
= (Φ(ιt)− δ + µq

t + σσq
t ) dt+ (σ + σq

t ) dZt. (4)

This is the capital gains rate that the expert is earning. The total risk of this position consists

of fundamental risk due to news about the future productivity of capital σ dZt, and endogenous

risk due to financial frictions in the economy, σq
t dZt. Capital also generates a dividend yield of

(a − ιt)/qt from output remaining after internal investment. Thus, the total return that experts

5We use Ito’s product rule. If dXt/Xt = µX
t dt+ σX

t dZt and dYt/Yt = µY
t dt+ σY

t dZt, then

d(XtYt) = Yt dXt +Xt dYt + (σX
t σY

t )(XtYt) dt.
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earn from capital (per unit of wealth invested) is

drkt =
a− ιt
qt

dt
︸ ︷︷ ︸
dividend yield

+(Φ(ιt)− δ + µq
t + σσq

t ) dt+ (σ + σq
t ) dZt.︸ ︷︷ ︸

capital gains rate

(5)

Similarly, less productive households earn the return of

drkt =
a− ιt
qt

dt
︸ ︷︷ ︸
dividend yield

+(Φ(ιt)− δ + µq
t + σσq

t ) dt+ (σ + σq
t ) dZt.︸ ︷︷ ︸

capital gains rate

(6)

Dynamic Trading and Experts’ Problem. The net worth nt of an expert who invests fraction

xt of his wealth in capital, 1−xt in the risk-free asset, and consumes at rate dct, evolves according

to6

dnt

nt
= xt dr

k
t + (1− xt) r dt−

dct
nt

. (7)

We expect xt to be greater than 1, i.e. experts use leverage. Less productive households provide

fully elastic debt funding for the interest rate r < ρ to any expert with positive net worth.7 Any

expert with positive net worth can guarantee to repay any the loan with probability one, because

prices change continuously, and individual experts are small and have no price impact.

Formally, each expert solves

max
xt≥0, dct≥0, ιt

E

[∫ ∞

0

e−ρtdct

]
,

subject to the solvency constraint nt ≥ 0, ∀t and the dynamic budget constraint (7).

We refer to dct/nt as the consumption rate of an expert. Note that whenever two experts

choose the same portfolio weights and consume wealth at the same rate, their expected discounted

payoffs will be proportional to their net worth.

Households’ problem. Similarly, the net worth nt of any household that invests fraction xt of

wealth in capital, 1− xt in the risk-free asset, and consumes dct, evolves according to

dnt

nt

= xt dr
k
t + (1− xt) r dt−

dct
nt

. (8)

6Chapter 5 of Duffie (2010) is an excellent overview of the mathematics of portfolio returns in continuous time.
7In the short run, an individual expert can hold an arbitrarily large amount of capital by borrowing through

risk-free debt because prices change continuously in our model, and individual experts are small and have no price
impact.
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Each household solves

max
xt≥0, dct, ιt

E

[∫ ∞

0

e−rtdct

]
,

subject to nt ≥ 0 and the dynamic budget constraint (8). Note that household consumption dct

can be both positive and negative, unlike that of experts.

In sum, experts and households differ in three ways: First, experts are more productive since

a ≥ a and/or δ < δ. Second, experts are less patient than households, i.e. ρ > r. Third, experts’

consumption has to be positive while household consumption is allowed to be negative, to ensure

that the risk free rate is always r.8

Equilibrium. Informally, an equilibrium is characterized by the processes of the market price of

capital {qt}, as well as the investment and consumption choices of agents, such that, given prices,

agents maximize their expected utilities and markets clear. To define an equilibrium formally, we

denote the set of experts to be the interval I = [0, 1], and index individual experts by i ∈ I, and
similarly denote the set of less productive households by J = (1, 2] with index j.

Definition 1 For any initial endowments of capital {ki
0, k

j
0; i ∈ I, j ∈ J} such that

∫

I
ki
0 di+

∫

J
kj
0 dj = K0,

an equilibrium is described by a group of stochastic processes on the filtered probability space defined

by the Brownian motion {Zt, t ≥ 0}: the price process of capital {qt}, net worths {ni
t, n

j
t ≥ 0},

capital holdings {ki
t, k

j
t ≥ 0}, investment decisions {ιit, ι

j
t ∈ R}, and consumption choices {dcit ≥

0, dcjt} of individual agents i ∈ I, j ∈ J; such that

(i) initial net worths satisfy ni
0 = ki

0q0 and nj
0 = kj

0q0, for i ∈ I and j ∈ J,

(ii) each expert i ∈ I and each household j ∈ J solve his problem given prices

(iii) markets for consumption goods,9 and capital clear

∫

I
(dcit) di+

∫

J
(dcjt) dj =

(∫

I
(a− ιit)k

i
t di+

∫

J
(a− ιjt) k

j
t dj

)
dt, and

∫

I
ki
t di+

∫

J
kj
t dj = Kt,

where dKt =

(∫

I
(Φ(ιit)− δ)ki

t di+

∫

J
(Φ(ιjt)− δ) kj

t dj

)
dt+ σKt dZt. (9)

8Negative consumption could be interpreted as the disutility from an additional labor input to produce extra
output.

9In equilibrium while aggregate consumption is continuous with respect to time, the experts’ and households’
consumption is not. However, their singular parts cancel out in the aggregate.

11



Note that if three of the markets clear, then the remaining market for risk-free lending and

borrowing at rate r automatically clears by Walras’ Law.

Since agents are atomistic perfectly competitive price-takers, the distribution of wealth among

experts and among households in this economy does not matter. However, the wealth of experts

relative to that of households plays a crucial role in our model, as we discuss in the next section.

3 Solving for the Equilibrium

We have to determine how the equilibrium allocation of capital and price qt, as well as the agents’

consumption decisions, depend on the history of macro shocks {Zs; 0 ≤ s ≤ t}. Our procedure

to solve for the equilibrium has two major steps. First, we use the equilibrium conditions, agent

utility maximization and market clearing, to derive certain properties of the price qt, the expert’s

value functions and other processes. Second, we show that the equilibrium dynamics can be

described by a single state variable and derive a system of equations that determine the price of

capital qt and other variables as functions of this state variable.

Intuitively, we expect the equilibrium prices to fall after negative macro shocks, because those

shocks lead to expert losses and make them more constrained. At some point, prices may drop

so far that less productive households may find it profitable to buy capital from experts. Less

productive households are speculative as they hope to sell capital back to experts at a higher price

in the future. In this sense households are liquidity providers as they pick up some of the functions

of the traditional financial sector in times of crises.

Internal Investment. The returns (5) and (6) that experts and households receive from capital

are maximized by choosing the investment rate ι that solves

max
ι

Φ(ι)− ι/qt.

The first-order condition Φ′(ι) = 1/qt (marginal Tobin’s q) implies that the optimal investment

rate is a functions of the price qt, i.e.

ιt = ιt = ι(qt),

The determination of the optimal investment rate is a completely static problem: it depends only

on the current price of capital qt. From now on, we incorporate the optimal investment rate in the

expressions for the returns drkt and drkt that experts and households earn.

12



Households’ optimal portfolio choice. Denote the fraction of physical capital held by house-

holds by

1− ψt =
1

Kt

∫

J
kj
t dj.

The problem of households is straightforward as they are not financially constrained. In equilib-

rium they must earn a return of r, their discount rate, from risk-free lending to experts and, if

1− ψt > 0, from holding capital. If households do not hold any physical capital, i.e. ψt = 1, their

expected return on capital must be less than or equal to r. This leads to the equilibrium condition

a− ι(qt)

qt
+ Φ(ι(qt))− δ + µq

t + σσq
t

︸ ︷︷ ︸
Et[drkt ]/dt

≤ r, with equality if 1− ψt > 0. (H)

Experts’ optimal portfolio and consumption choices. The experts face a significantly more

complex problem, because they are financially constrained. Their problem is dynamic, that is,

their choice of leverage depends not only on the current price levels, but also on the entire future

law of motion of prices. Even though experts are risk-neutral with respect to consumption, they

exhibit risk-averse behavior in our model (in aggregate) because their marginal utility of wealth

is stochastic - it depends on the time-varying investment opportunities. Greater leverage leads to

higher profit and also greater risk. Experts who take on more risk suffer greater losses exactly

when they value their funds the most: after negative shocks depress prices and create attractive

investment opportunities.

We characterize the experts optimal dynamic strategies through the Bellman equation for

their value functions. Consider a feasible strategy {xt, dζt}, which specifies the fraction of wealth

invested in capital xt and the consumption rate dζt = dct/nt of an expert, and denote by

θtnt = Et

[∫ ∞

t

e−ρ(s−t)dcs

]
(10)

the expert’s future expected payoff under this strategy. Note that the expected payoff is pro-

portional to expert wealth nt because experts are price-takers, and their consumption under the

strategy {xt, dζt} is proportional to their wealth because dct = dζtnt by definition. The following

proposition provides necessary and sufficient conditions for the strategy {xt, dζt} to be optimal,

given the price process {qt, t ≥ 0}.

Lemma 1 Let {qt, t ≥ 0} be a price process for which the maximal payoff that any expert can

13



attain is finite.10 Then the process {θt} satisfies (10) under the strategy {xt, dζt} if and only if

ρθtnt dt = nt dζt + E[d(θtnt)] (11)

when nt follows (7), and the transversality condition E[e−ρtθtnt] → 0 holds.

Moreover, this strategy is optimal if and only if

ρθtnt dt = max
x̂t≥0,dζ̂t≥0

nt dζ̂t + E[d(θtnt)] s.t.
dnt

nt
= x̂t dr

k
t + (1− x̂t) r dt− dζ̂t. (12)

Proposition 1 breaks down the Bellman equation (12) into specific conditions that the stochastic

laws of motion of qt and θt, together with the experts’ optimal strategies, have to satisfy.

Proposition 1 Consider a finite process

dθt
θt

= µθ
t dt+ σθ

t dZt.

Then ntθt represents the maximal future expected payoff that an expert with net worth nt can attain

and {xt, dζt} is an optimal strategy if and only if

(i) θt ≥ 1 at all times, and dζt > 0 only when θt = 1,

(ii) µθ
t = ρ− r, (E)

(iii) either xt > 0 and
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µq

t + σσq
t − r

︸ ︷︷ ︸
expected excess return on capital, Et[drkt ]/dt−r

= −σθ
t (σ + σq

t )︸ ︷︷ ︸
risk premium

, (EK)

or xt = 0 and E[drkt ]/dt− r ≤ −σθ
t (σ + σq

t ),

(iv) and the transversality condition E[e−ρtθtnt] → 0 holds under the strategy {xt, dζt}.

Equation (EK) is instructive. We will see below that in equilibrium E[drkt ]/dt ≥ r and σq
t ≥ 0,

so that experts earn profit and take on more risk by levering up to buy capital. Because also

σθ
t ≤ 0, a loss of (σ+σq

t )dZt per dollar invested in capital happens exactly in the event that better

investment opportunities arise as θt goes up by σθ
t θt dZt. Thus, while the left hand side of (EK)

reflects the experts’ incentives to hold more capital, the expression σθ
t (σ + σq

t ) on the right hand

side reflects the experts’ precautionary motive. If endogenous risk ever made the right hand side

10In our setting, because experts are risk-neutral, their value functions under many price processes can be easily
infinite (although, of course, in equilibrium they are finite).
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of (EK) greater than the left hand side, experts would choose to hold no capital in volatile times,

and instead lend to households at the risk-free rate, waiting to pick up assets at low prices at the

bottom (“flight to quality”).

As becomes clear in further analysis, the precautionary motive increases with aggregate leverage

of experts, but disappears completely if experts invest in capital without using leverage. Therefore,

the incentives of individual experts to take on risk are decreasing in the risks taken by other experts

in the aggregate. This leads to an equilibrium choice of leverage. We conjecture, and later verify,

that experts always use positive leverage in equilibrium, so that

ψtqtKt > Nt, where Nt =

∫

I
ni
t di.

While not directly relevant to our derivation of the equilibrium, it is interesting to note that

because θt is the experts’ marginal utility of wealth, at any time t they use the stochastic discount

factor (SDF)

e−ρs θt+s

θt
(13)

to price cash flows at a future time t+ s. That is, the price of any asset that pays a random cash

flow of n̂t+s at time t+ s is

n̂t = Et

[
e−ρsθt+s

θt
n̂t+s

]
.

Market Clearing. Besides household and expert optimization, the equilibrium has to satisfy

market-clearing conditions. If the experts always hold a positive amount of capital, i.e. ψt > 0,

then, interestingly, the market-clearing conditions can be automatically satisfied as long as the

condition (H) for household optimization as well as conditions (E) and (EK) for experts hold.

Indeed, according to Proposition 1, as long as (EK) holds, any nonnegative amount of capital in

the experts’ portfolios is consistent with the experts’ utility maximization, so markets for capital

can clear. Markets for consumption goods and risk-free assets clear because the households, whose

consumption may be positive or negative, are willing to borrow and lend arbitrary amounts at the

risk-free rate r.

Wealth distribution. Due to financial frictions, the wealth distributions across agents matters

in our economy. In aggregate, experts and households have wealth

Nt =

∫

I
ni
t di and qtKt −Nt =

∫

J
nj
t dj

15



respectively. The experts’ wealth share is

ηt ≡
Nt

qtKt
∈ [0, 1].

Experts become constrained when ηt falls, leading a low price of capital qt, low investment rate

ι(qt), and a larger fraction of capital 1− ψt allocated to households.

Our model has convenient scale-invariance properties, which imply that the price level, as well

as inefficiencies with respect to investment and capital allocation, depend on ηt. That is, for any

equilibrium in one economy, there is an equivalent equilibrium with the same laws of motion of

ηt, qt θt and ψt in any scaled version of the economy by any factor ς ∈ (0,∞).

We will characterize an equilibrium that is Markov in the state variable ηt. Before we proceed,

Lemma 2 derives the equilibrium law of motion of ηt = Nt/(qtKt) from the laws of motion of Nt,

qt and Kt. In Lemma 2, we do not assume that the equilibrium is Markov.11

Lemma 2 The equilibrium law of motion of ηt is

dηt
ηt

=
ψt − ηt

ηt
(drkt − r dt− (σ + σq

t )
2 dt) +

a− ι(qt)

qt
dt+ (1− ψt)(δ − δ) dt− dζt, (14)

where dζt = dCt/Nt, with dCt =
∫
I(dc

i
t) di, is the aggregate expert consumption rate. Moreover, if

ψt > 0, then (EK) implies that we can write

dηt
ηt

= µη
t dt+ ση

t dZt − dζt, (15)

where ση
t =

ψt − ηt
ηt

(σ + σq
t ) and µη

t = −ση
t (σ + σq

t + σθ
t ) +

a− ι(qt)

qt
+ (1− ψt)(δ − δ).

Markov Equilibrium. Because of scale invariance, it is natural to look for an equilibrium that

is Markov in the state variable ηt. In a Markov equilibrium, all processes are functions of ηt, i.e.

qt = q(ηt), θt = θ(ηt) and ψt = ψ(ηt). (16)

If these functions are known, then we can use equation (15) to map any path of aggregate shocks

{Zs, s ≤ t} into the current values of ηt, and subsequently qt, θt and ψt.

11We conjecture that the Markov equilibrium we derive in this paper is unique, i.e. there are no other equilibria
in the model (Markov or non-Markov). While the proof of uniqueness is beyond the scope of the paper, a result
like Lemma 2 should be helpful for the proof of uniqueness.
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Proposition 2 reduces the problem of finding functions (16) to a system differential equations.

For a given value of η, to get the second derivatives q′′(η) and θ′′(η) from q(η), θ(η) and their first

derivatives, we use equations (E), (EK), (H) and (15) to

1. using Ito’s lemma, express the volatilities ση
t , σ

q
t , and σθ

t and

2. after calculating the drifts µη
t , µ

q
t and µθ

t , use Ito’s lemma again to get the second derivatives

of q and θ.

In these calculations, we assume that ψt > ηt, i.e. expert leverage is positive.

Proposition 2 The equilibrium domain of functions q(η), θ(η) and ψ(η) is an interval [0, η∗]. The

following formulas can be used to compute q′′(η), θ′′(η) and ψ(η) from (η, q(η), q′(η), θ(η), θ′(η))

1. Find ψ ∈ (η, η + q(η)/q′(η)) such that12

a− a

q(η)
+ δ − δ + (σ + σq

t )σ
θ
t = 0, (17)

where ση
t η =

(ψ − η)σ

1− (ψ − η)q′(η)/q(η)
, σq

t =
q′(η)

q(η)
ση
t η and σθ

t =
θ′(η)

θ(η)
ση
t η. (18)

2. If ψ > 1, set ψ = 1 and recalculate (18).

3. Compute

µη
t = −ση

t (σ + σq
t + σθ

t ) +
a− ι(q(η))

q(η)
+ (1− ψ)(δ − δ),

µq
t = r − a− ι(q(η))

q(η)
− Φ(q(η)) + δ − σσq

t − σθ
t (σ + σq

t ), µθ
t = ρ− r,

q′′(η) =
2(µq

tq(η)− q′(η)µη
t η)

(ση
t )

2 η2
and θ′′(η) =

2
[
µθ
tθ(η)− θ′(η)µη

t η
]

(ση
t )

2 η2
. (19)

Function q(η) is increasing, θ(η) is decreasing, and the boundary conditions are

q(0) = q, θ(η∗) = 1, q′(η∗) = 0, θ′(η∗) = 0 and lim
η→0

θ(η) = ∞.

Experts consume only when ηt = η∗, which is a reflecting boundary for the process ηt due to the

aggregate expert consumption rate dζt.

Proposition 2 allows us to derive analytical results about equilibrium behavior and asset prices,

and to compute equilibria numerically.

12The left hand side of (17) decreases from (a−a)/q(η)+δ−δ > 0 to −∞ over the interval ψ = [η, η+q(η)/q′(η)].
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Algorithm to Solve the Equations. The numerical computation of the functions q(η), θ(η)

and ψ(η) poses challenges because of the singularity near η = 0. In addition, we need to determine

the endogenous endpoint η∗ and match the boundary conditions both at 0 and η∗. To match

the boundary conditions, it is helpful to observe that if a function θ(η) solves the equations of

Proposition 2, then so does any function ςθ(η), for any constant ς > 0. Therefore, one can always

adjust the level of θ(η) ex post to match the boundary condition θ(η∗) = 1. We use the following

algorithm to calculate our numerical examples.

1. Set q(0) = q, θ(0) = 1 and θ′(0) = −1010.

2. Set qL = 0 and qH = 1015.

3. Guess that q′(0) = (qL + qH)/2. Use the Matlab function ode45 to solve for q(η) and θ(η)

until either (a) q(η) reaches q̄ or (b) θ′(η) reaches 0 or (c) q′(η) reaches 0, whichever happens

soonest. If q′(η) reaches 0 before any of the other events happens, then increase the guess

by setting qL = q′(0). Otherwise, let qH = q′(0). Repeat until convergence (e.g. 50 times).

4. If qH was chosen to be large enough, then θ′(η) and q′(η) will reach 0 at the same point η∗.

5. Divide the entire function θ(η) by θ(η∗) to match the boundary condition θ(η∗) = 1.

The more negative the initial choice of θ′(0), the better we approximate the boundary condition

θ(0) = ∞, that is, the higher the value of θ(0) becomes after we divide the entire solution by θ(η∗).

We provide our Matlab implementation of this algorithm in the Online Appendix.

Numerical Example. To compute the example in Figure 1, we took parameter values ρ = 6%,

r = 5%, a = 10%, a = 5%, δ = 3%, δ = 5%, σ = 40% and Φ(ι) = 1
10(

√
1 + 20ι − 1).13 Under

these assumptions,

q = 0.5858 and q̄ = 1.3101.

As η increases, the price of capital q(η) increases, investment rate ι(q(ηt)) increases and the

value that experts get per unit of wealth θ(η) declines. The allocation of capital to experts ψ(η)

increases in η and reaches 100% on [ηψ, η∗].

The map from the history of aggregate shocks dZt to the state variable ηt is captured by the

drift µη
t η and the volatility ση

t η, depicted on the top panels of Figure 2. The drift of ηt is positive

on the entire interval [0, η∗), because levered experts refrain from consumption and earn a positive

13The investment technology in this example has quadratic adjustment costs: an investment of Φ+5Φ2 generates
new capital at rate Φ.
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Figure 1: Equilibrium functions q(η), θ(η), ι(q(η)) and ψ(η).

risk premium (−σθ
t )(σ+σq

t ) > 0 from capital, while less productive households are consuming and

earning the risk-free return r in expectation. The magnitude of the drift is increasing in expert

leverage, shown on the bottom left panel of Figure 2, and the return that experts earn on capital,

shown on the bottom right panel. The bottom right panel shows the lower return that households

earn from capital, which equals r on the interval [0, ηψ].

The volatility of ηt is ∩-shaped: from zero, it increases towards its maximum near ηψ and

lowers down towards η∗. We discuss the volatility dynamics in detail in Section 4. Point 0 is

an absorbing boundary, but in equilibrium ηt never reaches 0 because it evolves like a geometric

Brownian motion in the neighborhood of 0, as we show in Proposition 3. Point η∗ is a reflecting

boundary where experts consume excess net worth.

Because in expectation ηt gravitates towards the reflecting boundary η∗, the point η∗ is the

stochastic steady state of our system. Point η∗ in our model is analogous to the deterministic

steady state in traditional macro models, such as BGG and KM. Just like the steady state in BGG

and KM, η∗ is the point of global attraction of the system and, as we see from Figure 2 and as we

discuss below, the volatility near η∗ is low.

However, point η∗ is also different from the steady state in BGG and KM in important ways.

Unlike in traditional macro models, we do not consider the limit as noise σ goes to 0 to identify
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Figure 2: The drift and volatility of ηt, expert leverage, and expected asset returns.

the steady state, but rather fix the volatility of macro shocks and look for the point where the

system remains still in the absence of shocks.14 Thus, the location of η∗ endogenously depends on

volatility! It is determined indirectly through the consumption and portfolio decisions, which the

agents make while taking shocks into account. As we discuss in detail in Sections 4 and 5, the

endogeneity of η∗ leads to a number of important phenomena, including nonlinearity - the system

responds very differently to small and large shocks near η∗ - and the volatility paradox - that lower

values of σ may lead higher maximal values of endogenous risk σq
t .

Inefficiencies in Equilibrium. Without financial frictions, experts would permanently manage

all capital in the economy. Capital would be priced at q̄, leading to an investment rate of ι(q̄).

Moreover, experts would consume their net worth in lump sum at time 0, so that the sum of

utilities of all agents would be q̄K0. With frictions, however, there are three types of inefficiencies

in our model,

14Strictly speaking, the deterministic steady state of our system is η = 0 : as σ → 0, financial frictions go away
and experts do not require any net worth to manage capital.
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(i) capital misallocation, since less productive households end up managing capital for low ηt,

when ψt < 1,

(ii) under-investment, since ι(qt) < ι(q̄), and

(iii) consumption distortion, since experts postpone some of their consumption into the future.

Note that these inefficiencies vary with the state of the economy: they get worse when ηt drops.

Due to these inefficiencies, the sum of utilities of all agents is less than first best utility q̄K0.

Even at point η∗ the sum of the agents’ utilities is

E

[∫ ∞

0

e−ρtdCt

]

︸ ︷︷ ︸
expert payoff

+ E

[∫ ∞

0

e−rtdCt

]

︸ ︷︷ ︸
household payoff

= θ(η∗)Nt︸ ︷︷ ︸
expert payoff

+ q(η∗)Kt −Nt︸ ︷︷ ︸
household payoff/wealth

= q(η∗)Kt < q̄Kt, (20)

since θ(η∗) = 1 and q(η∗) < q̄.

4 Instability, Endogenous Risk, and Asset Pricing

Having solved for the full dynamics, we can address various economic questions like (i) How

important is fundamental cash flow risk relative to endogenous risk created by the system? (ii)

Does the economy react to large exogenous shocks differently compared to small shocks? (iii) Is

the dynamical system unstable and hence the economy is subject to systemic risk?

The equilibrium exhibits instability, which distinguishes our analysis from the log-linearized

solutions of BGG and KM. Like in those papers, the price of capital in our model is subject

to endogenous risk σq
t , which leads to excess volatility. However, different from BGG and KM,

the amount of endogenous risk varies over the cycle: it goes to zero near the steady state η∗,

but it is large below the stochastic steady state η∗. Thus, an unusually long sequence of negative

shocks throws the economy into a volatile crisis regime. If more bad shocks arrive, they get

amplified, pushing the system into a depressed region, from which the economy takes a long time

to recover. These dynamics imply a bimodal stationary distribution over the state space. This

is in sharp contrast to the linear approximations: they predict a normal stationary distribution

around the the steady state, suggesting a much more stable system. Papers such as BGG and

KM do not capture the distinction between relatively stable dynamics near the steady state, and

much stronger amplification below the steady state. Our analysis highlights the sharp distinction

between crisis and normal times.
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The nonlinearities of system dynamics are robust to modeling assumptions. For example, a

model with logarithmic utility would also generate low (but nonzero) amplification near the steady

state, and high amplification below the steady state, especially at the point where experts start

selling capital to households.

The differences in system dynamics near the steady state and away have to do with the forces

that determine the steady state: the experts’ profits and their endogenous payout/consumption

decisions. The system tends to gravitate towards a point where these two forces exactly balance

each other out: the steady state. Experts accumulate net worth in crisis regimes, where volatility

and risk premia are high. They start paying out once their aggregate net worth recovers enough

that the probability of the next crisis becomes tolerable.

At the end of this section, we briefly discuss the asset pricing implications of our model.

Amplification due to Endogenous Risk Endogenous risk refers to changes in asset prices

that arise not due to changes in fundamentals, but rather due to adjustments that agents make in

response to shocks, which may be driven by constraints or simply the precautionary motive. While

exogenous fundamental shocks cause initial losses, endogenous risk is created through feedback

loops that arise when agents react to losses. In our model, exogenous risk σ is assumed to be

constant, but endogenous risk σq
t varies with the state of the system. The total volatility is the

sum of exogenous and endogenous risk, σ + σq
t .

The amplification of shocks that creates endogenous risk depends on (i) expert leverage and

(ii) feedback loops that arise as prices react to changes in expert net worth, and affect expert net

worth further. While the experts finance themselves through fully liquid short-term debt, their

assets are subject to aggregate market illiquidity.15 Figure 3 illustrates the feedback mechanism

of amplification, which has been identified by both BGG and KM near the steady state of their

models.

The immediate effect of a shock dZt that reduces Kt by 1% is a drop of Nt by
ψ
η% and a drop

of ηt by (ψη − 1)%, where ψ
η is the experts’ leverage ratio (assets to net worth). This drop in ηt

15Recall that the price impact of a single expert is zero in our setting. However, the price impact due to aggregate
shocks can be large. Hence, a “liquidity mismatch index” that tries captures the mismatch between market liquidity
of experts’ asset and funding liquidity on the liability side has to focus on price impact of assets caused by aggregate
shocks rather than idiosyncratic shocks.
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Figure 3: Adverse Feedback Loop.

causes the price q(ηt) to drop by

φ% ≡
q′(ηt)

total drop in η︷ ︸︸ ︷
(
ψt

ηt
− 1)ηt

q(η)
%,

where the numerator reflects the total drop in q(η). That is, this aftershock causes qtKt to drop

further by φ%, Nt further by
ψ
η φ% and a ηt further by (ψη − 1)φ%. We see that the initial shock

gets amplified by a factor of φ each time it goes through the feedback loop. If φ < 1 then this

loop converges with a total amplification factor of 1/(1− φ) and total impacts on ηt and q(ηt) of

dηt
ηt

=
ψ
η − 1

1− φ
% =

1

η

ψ − η

1− (ψ − η)q′(η)/q(η)
% and

dqt
qt

=
q′(η)

q(η)

ψ − η

1− (ψ − η)q′(η)/q(η)
% (21)

respectively. This leads us to formulas (18), provided by Proposition 2, that capture how leverage

and feedback loops contribute to endogenous risk.

The amplification effect of q′(η) on the endogenous volatility σq
t is nonlinear, since q′(η) enters

not only the numerator, but also the denominator of (21) and (18). If q′(η) is so large that φ > 1,

then the feedback effect would be completely unstable, leading to infinite volatility.

Normal versus Crisis Times and “Ergodic Instability.” The equilibrium in our model has

no endogenous risk near the stochastic steady state η∗, and significant endogenous risk below the

steady state. This result strongly resonates what we observe in practice during normal times and

crisis episodes.

Theorem 1 In equilibrium, at η∗ the system has no amplification and σq
t = 0, since q′(η∗) = 0.
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For ηt < η∗, exogenous shocks spill over into prices, leading to the indirect dynamic amplification

factor of 1/(1− (ψt − ηt)q′(ηt)/q(ηt)).

Proof. This result follows directly from Proposition 2.

The left panel of Figure 4 shows the volatility of the value of capital σ+ σq
t , for our computed

example. Because endogenous risk σq
t rises sharply below steady state, the system exhibits nonlin-

earities: large shocks have a very different effect on the system than small shocks. Near the point

ηψ, increased endogenous risk and leverage lead to a high volatility of ηt, as seen in Figure 2. This

leads to systemic risk that the economy occasionally ends up in a depressed regime far below the

steady state, where most of the capital is allocated inefficiently to households.
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Figure 4: Systemic risk: total volatility of capital and the stationary density of ηt.

The right panel of Figure 4 shows the stationary distribution of ηt. Starting from any point

η0 ∈ (0, η∗) in the state space, the density of the state variable ηt converges to the stationary

density in the long run as t → ∞. Stationary density also measures the average amount of time

that the variable ηt spends in the long run near each point. It can be computed from the drift

and volatility of ηt using Kolmogorov forward equations (see Appendix B).

The key feature of the stationary distribution in Figure 4 is that it is bimodal with high

densities at the extremes. We refer to this characteristic as “ergodic instability.” The system

exhibits large swings, but it is still ergodic ensuring that a stationary distribution exists.

The stationary density is high near η∗, which is the attracting point of the system, but very

thin in the middle region below η∗ where the volatility is high. The system moves fast through

regions of high volatility, and so the time spent there is very short. These excursions below the

steady state are characterized by high uncertainty, and occasionally may take the system very far
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below the steady state. In other words, the economy is subject to break-downs – i.e. systemic

risk. At the extreme low end of the state space, assets are essentially valued by unproductive

households, with qt ∼ q, and so the volatility is low. The system spends most of the time around

the extreme points: either experts are well capitalized and financial system can deal well with

small adverse shocks or it drops off quite rapidly to very low η-values, where prices and experts’

net worth drop dramatically. As the economy occasionally implodes, it exhibits systemic risk.

The following proposition formally demonstrates that the stationary density (if it exists) indeed

has peaks at η = 0 and η = η∗. The proof in Appendix D shows that in a neighborhood of 0,

variable ηt evolves like a geometric Brownian motion, and uses the Kolmogorov forward equation

to characterize the stationary density near 0. The stationary distribution may fail to exist if the

experts’ productive advantage is small relative to the volatility of capital: in that case the system

gets trapped near η = 0 in the long run.

Proposition 3 Denote by κ = (a− a)/q + δ − δ the risk premium that experts earn from capital

at η = 0. As long as

2(ρ− r)σ2 < κ2 (22)

the stationary density d(η) exists and satisfies d′(η∗) > 0 and d(η) → ∞ as η → 0. If 2(ρ− r)σ2 >

κ2 then the stationary density does not exist and in the long run ηt ends up in an arbitrarily small

neighborhood of 0 with probability close to 1.

In our numerical examples, κ = 0.1054.

Robustness of the Equilibrium Features. Our model exhibits stability in normal times,

and strong amplification in crisis times, because the wealth distribution evolves endogenously.

The steady state of the wealth distribution is determined by the relative rates of consumption of

experts and households on one hand, and the difference in returns that experts and households

earn on their portfolios. Variable ηt reaches the steady state when experts accumulate enough

wealth to absorb most shocks easily. At that point, competition among experts pushes up the price

of capital and drives down the risk premia that experts earn. These factors encourage experts to

consume their net worth instead of reinvesting it.

Near the stochastic steady state η∗, where experts become comfortable and risk premia come

down, the price of capital reacts less to shocks. Thus, amplification and endogenous risk are

significantly lower near the steady state. In fact, in our risk-neutral model, the risk premium

−σθ
t (σ + σq

t ) and endogenous risk σq
t both drop to zero at η∗.
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How robust are these equilibrium features? Do they depend on risk neutrality? To answer these

questions, we solved a variation of our model, in which experts and households have logarithmic

utility with the same discount rates ρ and r, instead of being risk-neutral. All other features of

the model, including production technologies, financial frictions and asset markets, are the same.

Thus, equations (5) and (6) expressing the agent’s return on capital are unchanged. The law of

motion of ηt takes the same form as (14), except that the risk-free return drt is no longer constant.

Models with logarithmic utility are easy to solve, because they lead to myopic optimal con-

sumption and portfolio choice decisions. Specifically, (1) given the net worth of nt, the optimal

consumption of an expert is given by ρnt dt (and household, rnt dt), regardless of investment

opportunities, and (2) the agent’s optimal portfolio choice always results in the percent volatility

of net worth equal to the Sharpe ratio of risky investment. The first property implies that the

market-clearing condition for consumption goods is

r(qtKt −Nt) + ρNt = (ψa+ (1−ψ)a− ι(qt))Kt ⇒ ψt =
(r(1− ηt) + ρηt)qt + ι(qt)− a

a− a
. (23)

Since the volatilities of expert and household net worths are ψt

ηt
(σ+σq

t ) and
1−ψt

1−ηt
(σ+σq

t ) respectively,

the second property implies that

E[drkt − drt]/dt =
ψt

ηt
(σ + σq

t )
2 and E[drkt − drt]/dt ≤

1− ψt

1− ηt
(σ + σq

t )
2, (24)

with equality in the last expression if households hold a positive amount of capital 1−ψt > 0. As

the experts’ return on capital is higher than that of households by (a − a)/qt + δ − δ, it follows

that

(a− a)/qt + δ − δ =

(
ψt

ηt
− 1− ψt

1− ηt

)
(σ + σq

t )
2 ⇒ σ + σq

t =

√
(a− a)/qt + δ − δ

ψt/ηt − (1− ψt)/(1− ηt)
(25)

when ψt < 1. Also, as in the risk-neutral model,

σ + σq
t =

σ

1− (ψt − ηt)q′(η)/q(η)
⇒ q′(η) =

q(η)

ψt − ηt

(
1− σ

σ + σq
t

)
. (26)

These equations are sufficient to solve for the equilibrium. Indeed, (23) leads to the boundary

condition of rq(0) + ι(q(0)) = a at η = 0. From that point, we can use equations (23), (25) and

(26) to compute q′(η) from η and q(η), and solve a first-order ordinary differential equation for

q(η) until the point ηψ where ψt reaches 1. On [ηψ, 1], we can solve for q(η) from (23), using
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Figure 5: Equilibrium with logarithmic utility.

ψt = 1. Equations (14) and (24) imply that the volatility and drift of ηt are given by

ση
t =

ψt − ηt
ηt

(σ + σq
t ) and µη

t = (ση
t )

2 +
a− ι(qt)

qt
+ (1− ψt)(δ − δ)− ρ, (27)

where we used dζt = ρηt dt for the experts’ consumption rate. The stochastic steady state is

defined as the point η∗ where µη
t = 0.

Figure 5 shows a computed example for the same parameter values of ρ, r, a, a, δ, δ and θ as

we used in Section 3, and σ = 5%, 10% and 15%. Certainly, the sharp result of the risk-neutral

model that σq
t = 0 at the steady state η∗ no longer holds exactly. However, it is still true that the

volatility of ηt is low near η∗ and it rises below η∗ as the experts’ leverage increases.16 If ηt falls

below the point ηψ where households start investing, the volatility of ηt jumps sharply.17

These features arise because the wealth distribution is endogenous. For example, as σ increases,

risk premia rise, experts make more profit and the steady state η∗ shifts to the right into the region

where experts are less levered. This endogenous force stabilizes the steady state as exogenous risk

16The location of the steady state η∗ above ηψ depends on the assumption that ρ is not much larger than r. If
so, then the steady state falls in the region where only experts invest.

17The jump in volatility at point ηψ occurs because the price q(η) has a kink at ηψ, which occurs due to the
mechanical relationship (23) between ψt and the market price in the log utility model. Technically, because of this
feature, we have to write the risk-free return in the model in the form drt because the risk-free rate is undefined at
the kink.
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increases. At the same time, point ηψ where households start participating in capital markets also

shifts to the right. Interestingly, the spike in volatility at point ηψ is the highest when exogenous

risk σ is the lowest.

One may wonder how robust the stationary distribution of ηt is to the agents’ preferences.

Lemma 3 in Appendix C shows that hump of the stationary distribution near η = 0 exists only

under some parameter values when agents have logarithmic utility (specifically, if ρ > r + κ).

Intuitively, because risk-averse experts are more cautious than risk-neutral experts, they use less

leverage and the economy is less likely to get stuck near η = 0.

Correlation in Asset Prices and “Fat Tails.” Excess volatility due to endogenous risk spills

over across all assets held by constrained agents, making asset prices in cross-section significantly

more correlated in crisis times. Erb, Harvey, and Viskanta (1994) document this increase in

correlation within an international context. This phenomenon is important in practice as many

risk models have failed to take this correlation effects into account in the recent housing price

crash.18

Our model, extended to multiple types of capital, generates this result. Specifically, we can

reinterpret equation (1),

dkt = (Φ(ιt)− δ)kt dt+ σkt dZt,

as the law of motion of fully diversified portfolios of capital held by experts, composed of specific

types of capital l ∈ [0, 1] that follow

dkl
t = (Φ(ιt)− δ)kl

t dt+ σkl
t dZt + σ̂kl

t dZ
l
t.

The diversifiable specific Brownian shocks dZ l
t are uncorrelated with the aggregate shock dZt.

Because of this, the specific shocks carry no risk premium, and so all types of capital are trading

at the same price qt.

In equilibrium the laws of motion of ηt and qt are the same as in our basic model, and depend

only on the aggregate shocks dZt. The return of capital l is given by

drk,lt =

(
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µq

t + σσq
t

)
dt+ (σ + σq

t ) dZt + σ̂ dZ l
t.

18See “Efficiency and Beyond” in The Economist, July 16, 2009.
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The correlation between assets l and l′,

Cov[qtkl
t, qtk

l′
t ]√

V ar[qtkl
t] V ar[qtkl′

t ]
=

(σ + σq
t )

2

(σ + σq
t )2 + σ̂2

,

increases in the amount of endogenous risk σq
t . Near the steady state η∗, σq

t = 0 and so the

correlation is σ2/(σ2+ σ̂2). All the correlation near η∗ is fundamental. Away from the steady state,

some of the correlation becomes endogenous: it arises when both assets are held in portfolios of

constrained agents.

The equilibrium patterns of volatility and correlation have implications on the pricing of deriva-

tives. First, since the volatility rises in crisis times, option prices exhibit a “volatility smirk” in

normal times. This observation is broadly consistent with empirical evidence (see e.g. Bates

(2000)). Put options have a higher implied volatility when they are further out of the money.

That is, the larger the price drop has to be for an option to ultimately pay off, the higher is the

implied volatility or, put differently, far out of the money options are overpriced relative to at the

money options. Second, so called “dispersion trades” try to exploit the empirical pattern that the

smirk effect is more pronounced for index options than for options written on individual stocks

(Driessen, Maenhout, and Vilkov (2009)). Index options are primarily driven by macro shocks,

while individual stock options are also affected by idiosyncratic shocks. The observed option price

patterns arise quite naturally in our setting as the correlation across stock prices increases in crisis

times.19

Since data for crisis periods is limited, option prices provide valuable information about the

market participants’ implicit probability weights of extreme events.

5 Volatility Paradox and Endogenous Leverage

In this section, we explore how equilibrium dynamics change with model parameters, such as

fundamental aggregate risk σ, and with modifications of the model that affect the experts’ en-

dogenous leverage. Specifically, we add expert-specific shocks to the model, which increase the

experts’ borrowing costs and make them leverage-dependent. These idiosyncratic shocks, which

play an important role in BGG, allows us to make a better comparison with their analysis. Finally,

we introduce financial innovation that allows experts to hedge shocks among each other.

System stability depends on the equilibrium leverage, which is endogenous. The model ex-

19In our setting options are redundant assets as their payoffs can be replicated by the underlying asset and the
bond, since the volatility is a smooth function in qt. This is in contrast to stochastic volatility models, in which
volatility is independently drawn and subject to a further stochastic factor, for which no hedging instrument exists.
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hibits a volatility paradox: as exogenous risk σ decreases, the maximal endogenous risk σq
t may

rise. The reason is that the experts’ endogenous consumption decisions affect the location of the

stochastic steady state η∗. Thus, lower fundamental exogenous volatility, which leads to higher

expert leverage, may result in the rise of the self-generated systemic risk.

When we introduce idiosyncratic shocks, higher borrowing costs naturally lead to lower equi-

librium leverage. However, leverage rises again with the introduction of new financial products,

like derivatives, that allow experts to (better) hedge idiosyncratic risks. Thus, while financial

innovation allows for more efficient risk-sharing, it also affects system stability.

Volatility Paradox. A reduction in exogenous cash flow risk σ reduces financial frictions. Para-

doxically, it can make the economy less stable. That is, it can increase the maximum volatility of

prices and the experts’ net worth. The reason is that a decline in cash flow volatility encourages

experts to increase their leverage by reducing their net worth buffer.
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Figure 6: Equilibrium for three levels of exogenous risk, σ = 50%, 20% and 5%.

Figure 6 illustrates how exogenous risk affects equilibrium prices, volatility and expert leverage

in our example of Section 3, for σ = 50%, 20% and 5%. As exogenous risk declines, financial

frictions become less severe and the maximal price of capital q(η∗) rises. One would expect the

system to become more stable. However, to the contrary, experts keep lower net worth buffers and
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η∗ declines as aggregate risk falls. Due to increased leverage, the maximal endogenous risk σq
t (at

point ηψ) increases in this example. Likewise, ση
t exhibits the build-up of systemic risk in crises.

The volatility paradox is fairly robust. For example, in Figure 5 in a version of our model

with logarithmic utility, the maximal endogenous risk σq
t also rises as exogenous risk σ declines.

In fact, the following proposition shows that both with risk-neutrality and logarithmic utility, the

equilibrium level of ση
t when η is small increases as σ declines.

Proposition 4 Both in the baseline risk-neutral model, and in the variation with logarithmic

utility of Section 4,20

ση
t → κ

σ
+O(σ), (28)

as ηt → 0, where κ = (a− a)/q + δ − δ.

This “volatility paradox” is consistent with the fact that the current crisis was preceded by a

low volatility environment, referred to as the “great moderation.” In other words, in the absence

of leverage restrictions, the system is prone to instabilities even and especially when the level of

aggregate risk is low.

Idiosyncratic Risk and Borrowing Costs. Next, we explore the impact on financial stability

of borrowing frictions and financial innovations that facilitate risk management. To study these

question we add idiosyncratic jump risk to our baseline setting. With this risk, debt may default

and so we can examine credit spreads between risky loans and the risk-free rate. This model

variation also allows us to draw a more direct comparison to BGG.21

Formally, assume that capital kt managed by expert i evolves according to

dkt = (Φ(it)− δ)kt dt+ σkt dZt + kt dJ
i
t , (29)

instead of (1). The new term dJ i
t is a compensated (i.e. mean zero) Poisson process with intensity

λ and jump distribution F (y), y ∈ [−1, 0] (if y = −1, the expert’s entire capital is wiped out).

Jumps are independent across experts and cancel out in the aggregate, so that total capital evolves

according to the same equation as in the baseline model, (9). As in BGG, jump distribution is the

same for all experts and does not depend on the balance sheet size.

As BGG, we adopt the costly state verification framework of Townsend (1979) to deal with

default. If large enough jump arrives such that the expert’s net worth becomes negative, lenders

20The term O(σ) indicates that the difference limη→0 σ
η
t − κ/σ converges to 0 at the same rate as σ as σ → 0.

21In BGG the location of the deterministic steady state is determined by idiosyncratic jump risk, while aggregate
risk is set to zero.
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trigger a costly verification procedure to make sure that capital was really destroyed by a shock

and not stolen. Verification costs are proportional to the balance sheet size.22

We can solve for the equilibrium through the same two steps we took in Section 3. First, we

extend conditions (H), (E) and (EK) to this setting. Second, we derive the law of motion of the

state variable ηt that drives the system.

Step 1. Levered experts have to compensate lenders for imperfect recovery and deadweight

losses of verification in the event of default. Both of these costs, L(xt) and Λ(xt) respectively per

dollar borrowed, are increasing in leverage xt (with L(x) = Λ(x) = 0 if x ≤ 1). So is the interest

r + L(xt) + Λ(xt) the expert has to pay on debt. Function L(xt) depends on the intensity and

distribution of jumps, and Λ(xt) depends in addition on the verification costs.

The jump term kt dJ i
t adds dJ i

t/qt to the return on capital drkt in (5), but does not affect the

expected return. Expert net worth evolves according to

dnt/nt = xt dr
k
t + (1− xt) (r + L(xt) + Λ(xt)) dt− dct/nt, (30)

except that it cannot become negative. If a jump puts nt into the negative territory, it is debt

holders who are responsible for the loss so that

E[dnt/nt] = xtE[drkt ] + (1− xt) (r + Λ(xt)) dt− dct/nt. (31)

Note the absence of (1−xt)L(xt), the expected loss rate of debt holders due to imperfect recovery.

That is, because debt holders have to earn the expected return of r, the expert’s expected cost of

borrowing is r+Λ(xt), where Λ(xt) reflects the deadweight costs of verification. Thus, the experts’

Bellman equation (12) becomes transformed to

ρ = µθ +max
x

(
xE[drkt ]/dt+ (1− x)(r + Λ(x)) + xσθ(σ + σq

t )
)

(EEK)

This equation replaces (E) and (EK) in Proposition 1, and it implies (E) and (EK) if Λ(x) = 0, i.e.

there are no verification costs. In equilibrium, xt = ψt/ηt should solve the maximization problem

in (EEK). As before, θt ≥ 1 and experts consume only when θt = 1. The household optimal

portfolio choice condition (H) remains the same.

22The basic costly state verification framework, developed by Townsend (1979) and adopted by BGG is a two-
period contracting framework. At date 0, the agent requires investment I from the principal, and at date 1 he
receives random output ỹ distributed on the interval [0, ȳ]. The agent privately observes output ỹ, but the principal
can verify it at a cost. The optimal contract is a standard debt contract with some face value D. If the agent
receives ỹ ≥ D, then he pays the principal D and there is no verification. The principal commits to verify if the
agent reports that ỹ < D, and receives the entire output.
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Step 2. Aggregating the experts’ net worth, equation (31) implies that

dNt = ψtqtKt dr
k
t − (ψtqtKt −Nt)(r + Λ(ψt/ηt)) dt− dCt.

With the extra term Λ(ψt/ηt), an analogue of Lemma 2 leads to the formula

dηt
ηt

=
ψt − ηt

ηt
(drkt − r dt−Λ(ψt/ηt) dt− (σ+ σq

t )
2 dt) +

a− ι(qt)

qt
dt+ (1−ψt)(δ− δ) dt− dζt. (32)

Borrowing Costs and Equilibrium Dynamics. Figure 7 illustrates the equilibrium, in which

we add borrowing costs, due to costly verification, of Λ(x) = ξ(x− 1), with ξ = 0, 0.01 and 0.02,

to the example of Section 3, with σ = 10%. The effects of borrowing frictions on equilibrium

dynamics may seem surprising at first. One may guess that these frictions, which make it harder

for experts to get funding, particularly in downturns, cause amplification effects to become more

severe.
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Figure 7: Equilibrium with σ = 10% and Λ(x) = ξ(x− 1), ξ = 0, .01 and .02.

In fact, the opposite is true: while borrowing frictions depress prices and investment, they

actually lead to a more stable equilibrium. The amount of endogenous risk σq
t drops significantly

because expert leverage decreases and, to a lesser extent, because prices in booms are lower.
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Surprisingly, the drift of η rises for high η, despite higher borrowing costs, because the competition

among experts becomes less intense due to lower leverage.

If borrowing costs Λ(x) become large enough as x → ∞, then even as σ → 0, experts cannot

hold all capital in the economy when η is close to 0. This leads to a non-degenerate deterministic

steady state η0 > 0, with constant price q0 and all capital held by experts, i.e. ψ = 1. In the

example in Figure 7, η0 = 0.8165 when ξ = 0.02, very close to the stochastic steady state of

η∗ = 0.8193. As ξ decreases towards 0, η0 converges to 0, while η∗ converges to 0.5472.

Proposition 5 Leverage x0 = 1/η0 at the non-degenerate deterministic steady state of the model

with idiosyncratic shocks is characterized by equation

ρ− r = x0(x0 − 1)Λ′(x0) + Λ(x0), (33)

and the price of capital is characterized by

max
ι

a− ι

q0
+ Φ(ι)− δ = r + Λ(x0) + (x0 − 1)Λ′(x0). (34)

Proof. When σ = 0, then σq
t = σθ

t = 0 and system dynamics is deterministic. Taking the

first-order condition with respect to x in the Bellman equation (EEK), we get

E[drkt ]/dt = r + Λ(x) + (x− 1)Λ′(x), (35)

where x = ψ/η in equilibrium. Furthermore, at η0 we have µθ
t = 0, since it is an absorbing state of

the system. Using (35) and µθ
t = 0, the Bellman equation (EEK) at η = η0 implies (33). Finally,

since µq = 0 at η0, the left hand side of (34) is the expected return on capital, and so (35) implies

(34).

Proposition 5 allows us to make a more direct comparison of our model with BGG and KM,

who explore system dynamics near the deterministic steady state. There are some cosmetic dif-

ferences near the steady state, because our system responds differently to unanticipated positive

and negative shocks near η0. Positive shocks lead to immediate payouts and otherwise do not

affect the system, while negative shocks are amplified and lead to gradual recovery. At the end

of this section, we discuss adjustments to our model that map more directly to BGG and KM, to

replicate their dynamics near the steady state.
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There are also some essential differences away from the steady state. For example, BGG

focus on an environment with small aggregate shocks and large idiosyncratic shocks, in which the

deterministic steady state is nondegenerate. Under these assumptions, leverage stays bounded and

the volatility paradox disappears. The system becomes a collection of stand-alone units, in which

idiosyncratic risks are primary determinants of leverage. These units occasionally fail individually,

in a non-systemic way.

However, in contrast to BGG, the analysis below shows that if the system becomes integrated

and individual experts share idiosyncratic risks, then aggregate risk becomes the primary deter-

minant of systemwide leverage and systemic risk reappears.

Risk Management and Financial Innovation. Next, we explore the impact of financial

innovations that allow experts to share risk better, and in particular hedge idiosyncratic risks.

These products can involve securitization, including pooling and trenching, credit default swaps,

and various options and futures contracts. We find that risk sharing among experts reduces

inefficiencies from idiosyncratic risk on one hand, but on the other hand emboldens them to live

with smaller net worth buffers and higher leverage. This leads to an increase of systemic risk.

Ironically, tools intended for more efficient risk management may make the system less stable.

Assume that all shocks, including idiosyncratic jumps dJ i
t are observable and contractible

among experts, but not between experts and households. Then experts can trade insurance

contracts that cover jump losses dJ i
t on expert i’s capital for the risk premium of ωi

t. We can

similarly allow experts to contract on the aggregate risk dZt.

Proposition 6 If experts can contract on all shocks among each other, then the equilibrium in a

setting with idiosyncratic shocks equivalent to that in the baseline setting. Experts fully hedge their

idiosyncratic risks, which carry the risk premium of zero.

Sketch of Proof. Idiosyncratic risk of any expert i carries the risk premium of zero because it can

be fully diversified among other experts. Given that, experts choose to insure their idiosyncratic

risks enough to make their debt risk-free. With borrowing frictions eliminated, the laws of motion

of ηt and functions q(η), θ(η) and ψ(η) are the same as in the baseline setting with Λ(x) = 0.

Contracts on aggregate risk among expert do not change the equilibrium, as they do not alter the

total aggregate risk exposure of the expert sector.

When experts can contract on idiosyncratic shocks, then they face the cost of borrowing of

only r and equilibrium dynamics ends up being the same as in our baseline model. Thus, in the
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example of Figure 7, for any function Λ(x) the equilibrium becomes transformed to that described

by the blue plot, which corresponds to the parameter ξ = 0.

Clearly, instruments that help experts share risks eliminate the deadweight losses due to costly

state verification in this model. These instruments also lead to greater systemic risk, because

experts endogenously increase leverage by lowering their net worth buffers. If instability harms

the economy, e.g. from (not yet modeled) spillovers to other sectors, then the overall effect on

welfare is not clear. Whichever setting (with or without risk sharing) is better, certainly risk

sharing in combination with a policy that encourages experts to postpone payout leads to even

higher welfare (see Section 6).

The link between financial innovation and aggregate leverage has also been illustrated concur-

rently by Gennaioli, Shleifer and Vishny (2010), who build a two-period model in which agents

ignore the possibility of certain bad events. In particular, they interpret securitization as one

important form of risk-sharing.

Comparison with BGG and KM. One key feature of our model that differs from those of

BGG and KM is that experts choose payouts/consumption endogenously, taking into account

the need for a net worth buffer to absorb future risks. In contrast, in BGG expert payouts are

determined by an exogenous parameter, which determines the rate at which experts are forced

to retire and consume their net worth. In KM, expert leverage is always given by an exogenous

constraint. With these assumptions, BGG and KM do not capture how equilibrium leverage

changes with aggregate risk. Thus, even fully solved versions of these models (not just near the

steady state) would not be able to generate the volatility paradox.

To clarify driving forces behind our results, below we discuss modifications of our continuous-

time model that most closely replicate the discrete-time assumptions of BGG and KM.

In BGG, experts face borrowing costs due to idiosyncratic shocks, and they are equally patient

as households i.e. ρ = r. These assumptions alone would imply that both the deterministic and

stochastic steady states are at η0 = η∗ = 1. Since experts earn higher returns than households, they

would eventually overwhelm the economy unless they consume at a higher rate than households.

To generate a deterministic steady state η0 < 1, BGG assume also that with Poisson intensity

φ > 0 experts are hit by idiosyncratic Poisson shocks that force them to consume their net worth.

We can easily accommodate this feature into our model for comparison with BGG.23

23With these assumptions, the experts’ Bellman equation (EEK) becomes transformed to

r = µθ − φ(θt − 1)/θt +max
x

(
xE[drkt ]/dt− (x− 1)(r + Λ(x)) + xσθ(σ + σq

t )
)
, (EEK′)

where (θt − 1)/θt is the fraction of value experts lose in the event of an exit shock, while the household equation
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Parameter φ directly affects the location of the deterministic steady state in BGG. This is a

convenient feature under log-linearization, which characterizes approximate dynamics only near

the steady state. However, focusing on a particular part of the state space through changes of

an exogenous parameter φ also has serious drawbacks, as it completely changes system dynamics.

The dynamics of the wealth distribution become exogenously determined, instead of endogenously

generated through consumption and investment decisions of individual agents.

In the setting of KM, experts can borrow at rate r, but their leverage cannot exceed x̄. This

can be captured in our model by setting Λ(x) = 0 on [0, x̄] and ∞ on (x̄,∞). This assumption

leads to a deterministic steady state of η0 = 1/x̄, at which experts lever up to the constraint.24

6 Efficiency, Externalities and Macroprudential Policies

The fact that financial frictions lead to systemic instability and excess volatility does not necessarily

prescribe strict financial regulation. Making the system more stable might stifle long-run economic

growth. To study financial regulation one has to conduct a welfare analysis. This section makes

a first small step in this direction.

We start by quantifying welfare. There may be inefficiencies within the financial sector, and

spillovers from the financial sector into the real economy. Since these spillovers may be important,

we design a simple way to include them into our model (see expression (36)).

Then, we study the effects of policies on the equilibrium outcome. We prove a simple result that

a social planner, who faces the same constraints as the market, can attain the first-best efficient

outcome by making decisions for the agents and implementing appropriate transfers. However,

this policy is not realistic or practical as it interferes with the economy in significant ways. We

then consider specific simple policies that are closer to those implemented in reality. These policies

impose small constraints on the agents’ actions, but otherwise let the economy run on its own.

Inefficiencies and Externalities. Incomplete-market settings such as ours are prone to pecu-

niary externalities. These subtle externalities arise because individual market participants take

prices as given, but as a group they affect them. Stiglitz (1982), Geanakoplos and Polemarchakis

(1986), and Bhattacharya and Gale (1987) were among the first to highlight the inefficiency of

(H) remains the same. The law of motion of ηt (32) also remains the same, except that expert consumption is now
exogenously given by dζ = φ dt.

24There are many other interesting modifications of our model, which we do not explore here. For example, one
can assume that margins that depend on the value-at-risk (VaR) as in Brunnermeier and Pedersen (2009) and Shin
(2010). In the former margins increase with endogenous price volatility. These effects can be captured in our model
by assuming that the cost of borrowing is also a function of σq

t .
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pecuniary externalities. In particular, the fire-sale externality is a pecuniary externality that

arises when in crisis (i) experts are able to sell assets to another sector, e.g. vulture investors,

the government or the household sector (in our case) and (ii) the new asset buyers provide a

downward-sloping demand function. When levering up ex-ante, financial experts do not take into

account that in crisis, their own fire sales will depress prices of assets held by other experts. This

effect leads to excess leverage since experts take fire-sale prices as given, i.e. a social planner

would lever up less. Recent applications of this inefficiency due to pecuniary externalities within

a finance context are Lorenzoni (2008) and Jeanne and Korinek (2010).25

As we discussed in Section 3, the sum of utilities of all agents under the first-best outcome

is q̄K. It is attained if experts consume their net worth at time 0, and manage capital forever

thereafter while investing at rate ι(q̄). The maximal equilibrium sum of utilities of all agents is

lower: it is q(η∗)K (see (20)).

In addition to externalities within financial markets, there may be very direct spillovers outside

the financial markets into the real economy. This externality is not so subtle, and here we present

a crude way to incorporate it into our model, in order to be able to quantify the effects of policies

on welfare. Specifically, assume the activities of experts and households who manage capital create

a positive spillover on the labor market that is proportional to total output. Formally, we define

the spillover as

κE

[∫ ∞

0

e−rt(ψta+ (1− ψt)a)Kt dt

]
, (36)

where κ ≥ 0 is a constant. Then crises lower the value of this expression, because the reallocation

of capital to households lowers output, and depressed capital prices lead to lower investment and

growth. Our goal behind expression (36) is to avoid a fully-blown model of spillovers, and instead

have a transparent reduced-form expression that is easy to interpret.26 With the spillovers, the

sum of utilities of all agents under the first-best outcome is ¯̄qK, where

¯̄q = max
ι

(1 + κ)a− ι

r + δ − Φ(ι)
. (37)

Constrained Efficiency. It turns out that a social planner can achieve the first-best efficient

outcome while respecting the same financing frictions with respect to equity issuance that indi-

vidual experts face. To formalize this result, we define a set of constrained-feasible policies, under

which the central planner controls prices and the agents’ consumption and investment choices, but

25Davila (2011) highlights distinctions between various types of pecuniary externalities.
26Such spillover effects can be obtained by explicitly including a labor sector into the model. If so, then equilibrium

wages have to depend on capital productivity, and so expression (36) captures the essence of spillovers that would
arise in such a model.
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treats all experts and households symmetrically.

Definition 2 A symmetric constrained-feasible policy is described by a group of stochastic pro-

cesses on the filtered probability space defined by the Brownian motion {Zt, t ≥ 0}: the price process
qt, investment rates ιt and ιt, capital allocations ψtKt and (1−ψt)Kt, consumptions dCt and dCt,

and transfers dτt such that

(i) representative expert net worth dNt = dτt + ψtKtqt drkt − dCt stays nonnegative,

(ii) representative household net worth is defined by N t = qtKt −Nt,

(iii) and the resource constraints are satisfied, i.e.

dCt + dCt

Kt
= (ψt(a−ιt)+(1−ψt)(a−ιt))dt,

dKt

Kt
= (ψt(Φ(ιt)−δ)+(1−ψt)(Φ(ιt)−δ))dt+σdZt.

Note that since the sum of net worth adds to the total wealth in the economy qtKt, aggregate

transfers across both sectors are zero. Moreover, because of transfers we can set the risk-free rate

to zero, without loss of generality. The following proposition characterizes constrained-feasible

policies that achieve the first-best allocation.

Proposition 7 Constrained-feasible policies that achieve a first-best outcome are those that satisfy

ψt = 1 and ιt = ι(q̄) for all t ≥ 0, and dCt = 0 for all t > 0, although experts may consume

positively at time 0, and transfers dτt are chosen to keep the net worth of experts nonnegative.27

Proposition 7 generates first-best outcomes only in the setting without spillovers. With

spillovers of the form (36), the social planner should choose the investment rate that solves (37).

Proof. The policies outlined in the proposition are constrained feasible because the experts’ net

worth stays nonnegative. They attain first-best outcomes because experts consume only at time

0, because all capital is always allocated to experts and because experts are forced to invest at the

first-best rate of ιt = ι(q̄). Note that after time 0, experts may receive large transfers of wealth to

keep their net worth nonnegative, but they are not allowed to consume any of their net worth.

27One may be wondering whether the suggested policies preserve incentive compatibility. According to our
microfoundation of balance sheets in Appendix A, experts must retain full equity stakes in their projects because
otherwise they would divert some of the capital and use it in another firm, while original outside equity holders
suffer losses. Under any policy of Proposition 7, such a deviation would not enhance the expert’s utility because
the social planner controls the experts’ consumption and sets it to zero for all t > 0. Even if experts could secretly
consume diverted funds, a policy of Proposition 7 would still achieve a first best outcome as long as transfers are
chosen to keep the net worth of a representative expert Nt at zero.
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The main role of transfers is to ensure that the net worth of experts stays nonnegative. Inter-

estingly, this can also be achieved by an appropriate choice of the price process qt. That is, price

stabilization policies that prevents a decline of qtKt after an adverse shock to Kt can enhance

welfare since they reduce the volatility of experts’ net worth. For example, by picking σq = −σ,

the planner can make the experts’ net worth non-random.

Of course, these policies work only if in fact the social planner can completely enforce the

experts’ consumption and investment decisions. If the planner cannot fully control these decisions,

then many well-intentioned policies could backfire. For example, by the logic of our volatility

paradox, price stabilization policies could lead to higher endogenous leverage, and thus a less

stable equilibrium. Next, we investigate the effects of policies that place only mild restrictions on

the equilibrium behavior, such as capital requirements and taxes on dividends.

Policy Experiments. Many policies have been proposed or implemented with the goal of im-

proving financial stability. Some, such as equity infusions, asset purchases or funding subsidies by

the central bank (see Gertler and Kiyotaki (2011)) are aimed at recapitalizing financial institu-

tions in crises. Others are aimed at controlling the overall risk within the financial system. When

considering policies, it is important to understand how they affect the entire equilibrium. For that

purpose, our framework is particularly convenient as it captures the nonlinearities that arise when

the economy enters a crisis regime, and the endogeneity of leverage at the steady state (i.e. in

normal times).

Our policy experiments suggest that good regulation (1) in boom times encourages banks to

retain earnings, so that they can absorb losses more easily in the event of a possible downturn

and (2) in downturns allows banks to take on more leverage, in order to stabilize the market. In

particular, a leverage constraint alone can easily be counterproductive, as it is unlikely to bind in

booms and it leads to fire sales in downturns.28

We performed numerical experiments, in which we imposed various leverage constraints and

restrictions on the experts’ consumption. A leverage constraint prohibits experts from taking on

leverage greater than x̄(η). Generally experts respond to leverage constraints by accumulating

more net worth, so η∗ goes up - an effect that could potentially stabilize the system and increase

welfare. However, in our numerical experiments this effect is small, e.g. a flat constraint that

binds on 70% of the state space (in downturns) increases η∗ by only 2%. Leverage constraints

also create many inefficiencies, including capital misallocation and depressed prices that cause

28Capital requirements restrict leverage by weighing assets according to risk. In our setting, they would restrict
leverage the most in times of highest endogenous risk, and have potentially destabilizing effects.
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Figure 8: Equilibrium without and with restrictions on payouts.

underinvestment. The overall effect on welfare is mostly negative, although some countercyclical

leverage restrictions do appear to mildly improve the spillover measure (36).

We also consider policies that encourage experts to retain earnings, i.e. raise the level η∗ where

experts consume. Figure 8 shows the effects of a policy that forces experts to retain all earnings

until η∗ = 0.7 in the example of Section 3 for σ = 10% (in which η∗ = 0.5472 in the absence

of policy interventions). As experts accumulate more net worth, crises become less likely. This

improves welfare, according to the spillover measure (36) plotted on the bottom right panel.29

Aside from improved welfare, the policy leads to a number of other interesting consequences as it

affects the entire equilibrium. As experts are forced to retain more net worth, the price of capital

rises, and even becomes greater than q̄ at the steady state. The marginal value of expert net worth

θ(η) falls and becomes non-monotonic near η∗. As a result, risk premia near η∗ become negative.30

Crises episodes become less frequent, but more severe. The maximal endogenous risk in crises

increases since prices have more room to fall. Moreover, the drift of ηt, which reflects the speed of

29Lower values of η∗, such as 0.56, even improve the welfare within the financial system, plotted on the top right
panel of Figure 8.

30As ηt gets close to η∗, θ(ηt) < 1 and experts wish they could pay out funds. At η∗, experts are able to pay out
some funds, and so θ(ηt) increases. However, payouts are restricted to be just sufficient for ηt to reflect at η∗.
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recovery, is lower as both the price of capital is higher and expert leverage is lower in downturns.

7 Conclusions

Events during the great liquidity and credit crunch in 2007-10 have highlighted the importance

of financing frictions for macroeconomics. Unlike many existing papers in macroeconomics, our

analysis is not restricted to local effects around the steady state. Importantly, we show that

endogenous risk due to adverse feedback loops is significantly larger away from the steady state.

This leads to non-linearities: small shocks keep the economy near the stable steady state, but

large shocks put the economy in the unstable crisis regime characterized by liquidity spirals.

The economy is prone to instability regardless of the level of aggregate risk because leverage

and risk-taking are endogenous. As aggregate risk goes down, equilibrium leverage goes up, and

amplification loops in crisis regimes become more severe - a volatility paradox. In an environment

with idiosyncratic and aggregate risks, equilibrium leverage also increases with diversification and

with financial instruments that facilitate the hedging of idiosyncratic risks. Thus, paradoxically,

tools designed to better manage risks may increase systemic risk.

Policy interventions can make crisis episodes less likely, although many seemingly reasonable

policies can harm welfare. Policies for crisis episodes alone, such as those aimed at recapitaliz-

ing the financial system, can increase risk-taking incentives ex-ante. More surprisingly, simple

restrictions on leverage may do more harm than good, as they bind only in downturns and may

have little impact on behavior in booms. Our numerical experiments suggest that policies, which

encourage financial institutions to retain earnings longer in booms, appear to be most effective.
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Appendix

A Microfoundation of Balance Sheets and Intermediation

This section describes the connection between balance sheets in our model and agency problems.

Extensive corporate finance literature (see Townsend (1979), Bolton and Scharfstein (1990), De-

Marzo and Sannikov (2006), Biais, Mariotti, Plantin and Rochet (2007), or Sannikov (2012) for a

survey of these models). suggests that agency frictions increase when the agent’s net worth falls.

In a macroeconomic setting, this logic points to the aggregate net worth of end borrowers, as well

as that of intermediaries.

Incentive provision requires the agent to have some “skin in the game” in the projects he

manages. When projects are risky, it follows that the agent must absorb some of project risk

through net worth. Some of the risks may be identified and hedged, reducing the agent’s risk

exposure. However, whenever some aggregate risk exposures of constrained agents cannot be

hedged, macroeconomic fluctuations due to financial frictions arise, as these residual risks have

aggregate impact on the net worth constrained agents.

Our baseline model assumes the simplest form of balance sheets, in which constrained agents

(experts) absorb all risk and issue just risk-free debt. Qualitatively, however, our results still

hold if experts can issue some outside equity and even hedge some of their risks, as long as they

cannot hedge all the risks. Quantitatively, the assumption regarding equity issuance matters: if

experts can issue more equity or hedge more risks, then they can operate efficiently with much

lower net worths. This does not necessarily lead to a more stable system, because, as we saw

in Section 5, the steady state in our model is endogenous. Agents who can function with lower

wealth accumulate lower net worth buffers. Thus, we expect that our baseline model with simple

balance sheets captures many characteristics of equilibria of more general models.

To illustrate the connection between balance sheets and agency models, first, we discuss the

agency problem with direct lending from investors to a single agent. Second, we illustrate agency

problems that arise with intermediaries. In this case, the net worth of intermediaries matters

as well. At the end of this section we discuss contracting with idiosyncratic jump risk, which is

relevant for Section 5.

Agency Frictions between an Expert and Households. Assume that experts are able to

divert capital returns at rate bt ∈ [0,∞). Diversion is inefficient: of the funds bt diverted, an expert

is able to recover only a portion h(bt) ∈ [0, bt], where h(0) = 0, h′ ≤ 1, h′′ ≤ 0. Net of diverted
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funds, capital generates the return of

drkt − bt dt

and the expert receives an income flow of h(bt) dt.

If capital is partially financed by outside equity held by households, then households receive

the return of

drkt − bt dt− ft dt,

where ft is the fee paid to the expert. When the expert holds a fraction ∆t of equity, then per

dollar invested in capital he gets

∆t(dr
k
t − bt dt) + (1−∆t)ft dt+ h(bt) dt.

The incentives with respect to diversion are summarized by the first-order condition ∆t = h′(bt),

which leads to a weakly decreasing function b(∆) with b(1) = 0. In equilibrium, the fee ft is

chosen so that household investors get the expected required return of r on their investment, i.e.

ft = E[drkt ]/ dt− bt − r. As a result, the return on the expert’s equity stake in capital (including

the benefits of diversion) is

∆t(drkt − bt dt) + (1−∆t)ft dt+ h(bt) dt

∆t
=

E[drkt ]− r dt

∆t
+rdt+(σ+σq

t )dZt−
b(∆t)− h(b(∆t))

∆t
dt,

where b(∆t)−h(b(∆t))
∆t

is the deadweight loss rate due to the agency problem. The law of motion of

the expert’s net worth in this setting is of the form

dnt

nt
= xt

(
E[drkt ]− r dt

∆t
+ r dt+ (σ + σq

t ) dZt −
b(∆t)− h(b(∆t))

∆t
dt

)
+ (1− xt)r dt− dζt, (38)

where xt is the portfolio allocation to inside equity and dζt is the expert’s consumption rate. It is

convenient to view equation (38) as capturing the issuance of equity and risk-free debt. However,

it is possible to reinterpret this capital structure in many other ways, since securities such as risky

debt can be replicated by continuous trading in the firm’s stock and risk-free debt.

Equation (EK) generalizes to

max
∆

E[drkt ]/dt− r − (b(∆)− h(b(∆)))

∆
= −σθ

t (σ + σq
t ),

and determines optimal equity issuance. Our results suggest that, as risk premia E[drkt ]/dt − r
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rise in downturns, the experts’ equity retention ∆ decreases and deadweight losses increase.31

Our baseline setting is a special case of this formulation, in which there are no costs to the

diversion of funds, i.e. h(b) = b for all b ≥ 0. In this case, the agency problem can be solved only

by setting ∆ = 1, i.e. experts can finance themselves only through risk-free debt. Our analysis

can be generalized easily, but for expositional purposes we keep our baseline model as simple as

possible.

We would like to be clear about our assumptions regarding the space of acceptable contracts,

which specify how observable cash flows are divided between the expert and household investors.

We make the following two restrictions on the contracting space

A The allocation of profit is determined by the total value of capital, and shocks to kt or qt

separately are not contractible

B Lockups are not allowed - at any moment of time any party can break the contractual

relationship. The value of assets is divided among the parties the same way independently

of who breaks the relationship

Condition B simplifies analysis, as it allows us to focus only on expert net worth, rather

than a summary of the expert’s individual past performance history. It subsumes a degree of

anonymity, so that once the relationship breaks, parties never meet again and the outcome of the

relationship that just ended affects future relationships only through net worth. This condition

prevents commitment to long-term contracts, such as in the setting of Myerson (2010). However,

in many settings this restriction alone does not rule out optimal contracts: Fudenberg, Holmström,

and Milgrom (1990) show that it is possible to implement the optimal long-term contract through

short-term contracts with continuous marking-to-market.

Condition A requires that contracts have to be written on the total return of capital, and that

innovations in kt, qt or the aggregate risk dZt cannot be hedged separately. This assumption is

clearly restrictive, but it creates a convenient and simple way to capture important phenomena

that we observe in practice. Specifically, condition A creates an amplification channel, in which

market prices affect the agents’ net worth, and is consistent with the models of Kiyotaki and

Moore (1997) and Bernanke, Gertler, and Gilchrist (1999). Informally, contracting directly on kt is

difficult because we view kt not as something objective and static like the number of machines, but

rather something much more forward looking, like the expected NPV of assets under a particular

management strategy. Moreover, even though in our model there is a one-to-one correspondence

31One natural way to interpret this is through a capital structure that involves risky debt, as it becomes riskier
(more equity-like) after experts suffer losses. Many agency problems become worse when experts are “under water.”
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between kt and output, in a more general model this relationship could differ across projects,

depend on the expert’s private information, and be manipulable, e.g. through underinvestment.

More generally, we could assume that aggregate shocks dZt to the experts’ balance sheets

can be hedged partially. As long as it is impossible to design a perfect hedge, and to perfectly

share all aggregate risks with households, the model will generate economic fluctuations driven by

the shocks to the net worth of the constrained agents. Thus, to generate economic fluctuations,

we make assumptions that would otherwise allow agents to write optimal contracts, but place

restrictions on hedging. Experts can still choose their risk exposure ∆t but cannot hedge aggregate

shocks dZt.

Intermediary Sector. It is possible to reinterpret our model to discuss the capitalization of

intermediaries as well as end borrowers.

One natural model of intermediation involves a double moral hazard problem motivated by

Holmström and Tirole (1997). Let us separate experts into two classes of agents: entrepreneurs

who manage capital under the productive technology, and intermediaries who can channel funds

from households to entrepreneurs. Intermediaries are able to, through costly monitoring actions

that are unobservable by outside investors, reduce the benefits that entrepreneurs get from the

diversion of funds. Specifically, the entrepreneurs’ marginal benefit of fund diversion ∂
∂bh(bt|mt) is

continuously decreasing with the proportional cost of monitoring mt ≥ 0, i.e. ∂2

∂b∂mh(bt|mt) < 0.

Thus, for a fixed equity stake ∆t of the entrepreneur, higher monitoring intensity mt leads to

a lower diversion rate bt = b(∆t|mt). Assuming that ∂2

∂b2h(·|mt) < 0, the entrepreneur’s optimal

diversion rate bt is uniquely determined by the first-order condition ∂
∂bh(bt|mt) = ∆t, and is

continuously decreasing in ∆t.

Intermediaries have no incentives to exert costly monitoring effort unless they themselves have a

stake in the entrepreneur’s project. An intermediary who holds a fraction ∆I
t of the entrepreneur’s

equity optimally chooses the monitoring intensity mt that solves

min
m

∆I
t b(∆t|m) +m.

The solution to this problem determines how the rates of monitoring m(∆t,∆I
t ) and cash flow

diversion b(∆t,∆I
t ) depend on the allocations of equity to the entrepreneur and the intermediary.

By reducing the entrepreneurs’ agency problem through monitoring, intermediaries are able

to increase the amount of financing available to entrepreneurs. However, intermediation itself

requires risk-taking, as the intermediaries need to absorb the risk in their equity stake ∆I
t through
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their net worth. Thus, the aggregate net worth of intermediaries becomes related to the amount

of financing available to entrepreneurs. Figure 9 depicts the interlinked balance sheets of en-

trepreneurs, intermediaries and households. Fraction ∆t +∆I
t of entrepreneur risk gets absorbed

by the entrepreneur and intermediary net worths, while fraction 1−∆t−∆I
t is held by households.

Figure 9: Balance sheets structures of entrepreneurs and financial intermediaries.

The marginal values of entrepreneur and intermediary net worths, θt and θIt , can easily differ

in this economy. If so, then the capital-pricing equation (EK) generalizes to

max
∆,∆I

E[drkt ]/dt− r − (b(∆,∆I)− h(b(∆,∆I)))−m(∆,∆I) + (∆σθ
t +∆Iσθ,I

t )(σ + σq
t ) = 0.

Equilibrium dynamics in this economy depends on two state variables, the shares of net worth

that belong to the entrepreneurs ηt and intermediaries ηIt . Generally, these are imperfect substi-

tutes, as intermediaries can reduce the entrepreneurs’ required risk exposure by taking on risk and

monitoring. However, several special cases can be reduced to a single state variable. For example,

if entrepreneurs and intermediaries can write contracts on aggregate shocks among themselves (but

not with households), then the two groups of agents have identical risk premia (i.e. σθ
t = σθ,I

t )

and the sum ηt + ηIt determines the equilibrium dynamics.

Contracting with Idiosyncratic Losses and Costly State Verification. Next, we discuss

contracting in an environment of Section 5, where experts may suffer idiosyncratic loss shocks.

For simplicity, we focus on the simplest form of the agency problem without intermediaries, in

which h(b) = b for all b ≥ 0. As we discussed earlier in the Appendix, in our baseline model this

assumption leads to a simple capital structure, in which experts can borrow only through risk-free

50



debt.

Assume, as in Section 5, that in the absence of benefit extraction, capital managed by expert

i ∈ I evolves according to

dkt = (Φ(ιt)− δ) kt dt+ σkt dZt + kt dJ
i
t ,

where dJ i
t is a compensated loss process with intensity λ and jump distribution F (y), y ∈ [−1, 0].

Then in the absence of jumps, J i
t has a positive drift of

dJ i
t =

(
λ

∫ 1

0

(−y)dF (y)

)
dt,

so that E[dJ i
t ] = 0.

The entrepreneur can extract benefits continuously or via discrete-jumps. Benefit extraction

is described by a non-decreasing process {Bt, t ≥ 0}, which changes the law of motion of capital

to

dkt = (Φ(ι)− δ) kt dt+ σkt dZt + kt dJ
i
t − dBt,

and gives entrepreneur benefits at the rate of dBt units of capital. The jumps in Bt are bounded

by kt−, the total amount of capital under the entrepreneur’s management just before time t.

Unlike in our earlier specification of the agency problem, in which the entrepreneur’s rate

of benefit extraction bt =
dBt

(qtkt) dt
must be finite, now the entrepreneur can also extract benefits

discontinuously, including in quantities that reduce the value of capital under management below

the value of debt.

We assume that there is a verification technology that can be employed in the event of discrete

drops in capital. In particular, if a verification action is triggered by outside investors when capital

drops from kt− to kt at time t, then investors

(i) learn whether a drop in capital was caused partially by entrepreneur’s benefit extraction at

time t and in what amount

(ii) recover all capital that was diverted by the entrepreneur at time t

(iii) pay a cost of (qtkt−)c(dJ i
t ), that is proportional to the value of the investment prior to

verification32

32The assumption that the verification cost depends only on the amount of capital recovered, regardless of the
diverted amount, is without loss of generality since on the equilibrium path the entrepreneur does not divert funds.
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If verification reveals that the drop in capital at time t was partially caused by benefit extrac-

tion, i.e. kt−(1 + dJ i
t ) > kt, then the entrepreneur cannot extract any benefits, as diverted capital

kt−(1 + dJ i
t )− kt is returned to the investors.

We maintain the same assumptions as before about the form of the contract in the absence

of verification, i.e. (A) the contract determines how the total market value of assets is divided

between the entrepreneur and outside investors, and (B) at any moment either party can break

the relationship and walk away with its share of assets. In particular, contracting on kt or qt

separately is not possible. In addition, the contract specifies conditions, under which a sudden

drop in the market value of the expert’s assets qtkt triggers a verification action. In this event,

the contract specifies how the remaining assets, net of verification costs, are divided among the

contracting parties conditional on the amount of capital that was diverted at time t. We assume

that the monitoring action is not randomized, i.e. it is completely determined by the asset value

history.

Proposition 8 With idiosyncratic jump risk, it is optimal to trigger verification only in the event

that the market value of the expert’s assets qtkt falls below the value of debt. In the event of

verification, it is optimal for debt holders to receive the value of the remaining assets net of

verification costs.

Proof. Because jumps are idiosyncratic, they carry no risk premium. Therefore, it is better to

deter fund diversion that does not bankrupt the expert by requiring him to absorb jump risk

through equity rather than triggering costly state verification (which leads to a deadweight loss).

However, verification is required to deter the expert from diverting more funds than his net worth

at a single moment of time.

The division of value between debt holders and the expert in the event of verification matters

for the expert’s incentives only if it is in fact revealed that the expert diverted cash. If no cash

was diverted (i.e. it is clear that the loss was caused by an exogenous jump), the division of

value between debt holders and the expert can be arbitrary (as long as the expected return of

debt holders, net of verification costs, is r) since idiosyncratic jump risk carries no risk premium.

Without loss of generality we can assume that debt holders receive the entire remaining value in

case of verification.

Proposition 8 implies that with idiosyncratic jump risk, debt is no longer risk-free.
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B Stationary Distribution

Suppose that Xt is a stochastic process that evolve on the state space [xL, xR] according to the

equation

dXt = µx(Xt) dt+ σx(Xt) dZt (39)

If at time t = 0, Xt is distributed according to the density d(x, 0), then the density of Xt at all

future dates t ≥ 0 is described by the forward Kolmogorov equations:

∂

∂t
d (x, t) = − ∂

∂x
(µx (x) d (x, t)) +

1

2

∂2

∂x2

(
σx (x)2 d (x, t)

)
.

If one of the endpoints is a reflecting barrier, then the boundary condition at that point is

−µx(x)d(x, t) +
1

2

∂

∂x
(σx(x)2d(x, t)) = 0.

A stationary density stays fixed over time under the law of motion of the process, so the

left-hand side of the Kolmogorov forward equation is ∂d(x,t)
∂t = 0. If one of the endpoints of the

interval [xL, xR] is reflecting, then integrating with respect to x and using the boundary condition

at the reflecting barrier to pin down the integration constant, we find that the stationary density

is characterized by the first-order ordinary differential equation

−µx(x)d(x) +
1

2

∂

∂x
(σx(x)2d(x)) = 0.

To compute the stationary density numerically, it is convenient to work with the function

D(x) = σx(x)2d(x), which satisfies the ODE

D′(x) = 2
µx(x)

σx(x)2
D(x). (40)

Then d(x) can be found from D(x) using d(x) = D(x)
σx(x)2 .

With absorbing boundaries, the process eventually ends up absorbed (and so the stationary

distribution is degenerate) unless the law of motion prevents (39) it from hitting the boundary

with probability one. A non-degenerate stationary density exists with an absorbing boundary at

xL if the boundary condition D(xL) = 0 can be satisfied together with D(x0) > 0 for x0 > xL.

For this to happen, we need

logD(x) = logD(x0)−
∫ x0

x

2µx(x′)

σx(x′)2
dx′ → −∞, as x → xL
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i.e
∫ x0

xL

2µx(x)
σx(x)2 dx = ∞. This condition is satisfied whenever the drift that pushes Xt away from the

boundary xL (so we need µx(x) > 0) is strong enough working against the volatility that may move

Xt towards xL. For example, if Xt behaves as a geometric Brownian motion near the boundary

xL = 0, i.e. µx(x) = µx and σx(x) = σx, with µ > 0, then
∫ x0

0
2µx(x)
σx(x)2 dx =

∫ x0

0
2µ
σ2x dx = ∞.

C Proofs

Proof of Lemma 1. Let us show that if the process θt satisfies (11) and the transversality

condition holds, then θt represents the expert’s continuation payoff, i.e. satisfies (10). Consider

the process

Θt =

∫ t

0

e−ρsns dζs + e−ρtθtnt.

Differentiating Θt with respect to t using Ito’s lemma, we find

dΘt = e−ρt(nt dζt − ρθtnt dt+ d(θtnt)).

If (11) holds, then E[dΘt] = 0, so Θt is a martingale under the strategy {xt, dζt}. Therefore,

θ0n0 = Θ0 = E[Θt] = E

[∫ t

0

e−ρsns dζs

]
+ E

[
e−ρtθtnt

]
.

Taking the limit t → ∞ and using the transversality condition, we find that

θ0n0 = E

[∫ ∞

0

e−ρsns dζs

]
,

and the same calculation can be done for any other time t instead of 0.

Conversely, if θt satisfies (10), then Θt is a martingale since

Θt = Et

[∫ ∞

0

e−ρsns dζs

]
.

Therefore, the drift of Θt must be zero, and so (11) holds.

Next, let us show that the strategy {xt, dζt} is optimal if and only if the Bellman equation (12)

holds. Under any alternative strategy {x̂t, dζ̂t}, define

Θ̂t =

∫ t

0

e−ρsns dζ̂s + e−ρtθtnt, so that dΘ̂t = e−ρt(nt dζ̂t − ρθtnt dt+ d(θtnt)).

If the Bellman equation (12) holds, then Θ̂t is a supermartingale under an arbitrary alternative
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strategy, so

θ0n0 = Θ̂0 ≥ E[Θ̂t] ≥ E

[∫ t

0

e−ρsns dζ̂s

]
.

Taking the limit t → ∞, we find that θ0n0 is an upper bound on the expert’s payoff from an

arbitrary strategy.

Conversely, if the Bellman equation (12) fails then there exists a strategy {x̂t, dζ̂t} such that

nt dζ̂t − ρθtnt dt+ E[d(θtnt)] ≥ 0,

with a strict inequality on the set of positive measure. Then for large enough t,

θ0n0 = Θ̂0 < E[Θ̂t]

and so the expert’s expected payoff from following the strategy {x̂t, dζ̂t} until time t, and {xt, dζt}
thereafter exceeds that from following {xt, dζt} throughout.

Proof of Proposition 1. Using the laws of motion of θt and nt as well as Ito’s lemma, we can

transform the Bellman equation (12) to

ρθtnt dt = max
x̂t≥0,dζ̂t≥0

(1− θt)nt dζ̂t + rθtnt dt+ nt Et[dθt] + x̂tθtnt

(
Et[dr

k
t ]− r dt+ σθ

t (σ + σq
t ) dt

)
.

Assume that ntθt represents the expert’s maximal expected future payoff, so that by Lemma 1

the Bellman equation holds, and let us justify (i) through (iii). The Bellman equation cannot

hold unless 1 ≤ θt and Et[drkt ]/dt − r + σθ
t (σ + σq

t ) ≤ 0, since otherwise the right hand side of

the Bellman equation can be made arbitrarily large. If so, then the choices dζ̂t = 0 and x̂t = 0

maximize the right hand side, which becomes equal to rθtnt dt+ θtntµθ
t dt. Thus,

ρθtnt dt = rθtnt dt+ θtntµ
θ
t dt ⇒ (E)

Furthermore, any dζ̂t > 0 maximizes the right hand side only if θt = 1, and x̂t > 0 does only if

Et[drkt ]/dt− r + σθ
t (σ + σq

t ) ≤ 0. This proves (i) through (iii). Finally, Lemma 1 implies that the

transversality condition must hold for any strategy that attains value ntθt, proving (iv).

Conversely, it is easy to show that if (i) through (iii) hold then the Bellman equation also holds

and the strategy {xt, dζt} satisfies (11). Thus, by Lemma 1, the strategy {xt, dζt} is optimal and

attains value θtnt.
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Proof of Lemma 2. Aggregating over all experts, the law of motion of Nt is

dNt = rNt dt+ ψtqtKt(dr
k
t − r dt)− dCt. (41)

where Ct is are aggregate payouts. Furthermore, note that d(qtKt)/(qtKt) are the capital gains

earned by a world portfolio of capital, with weight ψt on expert capital and 1− ψt on household

capital. Thus, from (5) and (6),

d(qtKt)

qtKt
= drkt −

a− ι(qt)

qt
dt

︸ ︷︷ ︸
expert capital gains

− (1− ψt)(δ − δ) dt︸ ︷︷ ︸
adjustment for household held capital

,

since household capital gains are less than those of experts by δ − δ. Using Ito’s lemma,

d(1/(qtKt))

1/(qtKt)
= −drkt +

a− ι(qt)

qt
dt+ (1− ψt)(δ − δ) dt+ (σ + σq

t )
2 dt.

Combining this equation with (41) and using Ito’s lemma, we get

dηt = (dNt)
1

qtKt
+Nt d

(
1

qtKt

)
+ ψtqtKt(σ + σq

t )
−1

qtKt
(σ + σq

t ) dt =

(ψt − ηt)(dr
k
t − r dt− (σ + σq

t )
2 dt) + ηt

(
a− ι(qt)

qt
+ (1− ψt)(δ − δ)

)
dt− ηtdζt,

where dζt = dCt/Nt. If ψt > 0, then Proposition 1 implies that E[drkt ] − r dt = −σθ
t (σ + σq

t ) dt,

and the law of motion of ηt can be written as in (15).

Proof of Proposition 2. First, we derive expressions for the volatilities of ηt, qt and θt. Using

(15), the law of motion of ηt, and Ito’s lemma, the volatility of qt is given by

σq
t q(η) = q′(η) (ψ − η)(σ + σq

t )︸ ︷︷ ︸
ση
t η

⇒ σq
t =

q′(η)

q(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)

︸ ︷︷ ︸
ση
t η

The expressions for ση
t and σθ

t follow immediately from Ito’s lemma.

Second, note that from (EK) and (H), it follows that

a− a

q(η)
+ δ − δ + (σ + σq

t )σ
θ
t ≥ 0, (42)

with equality if ψ < 1. Moreover, when q(η), q′(η), θ(η) > 0 and θ′(η) < 0, then σq
t , σ

η
t > 0 are
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increasing in ψ while σθ
t < 0 is decreasing in ψ. Thus, left hand side of (42) is decreasing from

a−a
q(η) + δ − δ at ψ = η to −∞ at ψ = η + q(η)

q′(η) , justifying our procedure for determining ψ.

We get µη
t from (15), µq

t from (EK) and µθ
t from (E). The expressions for q′′(η) and θ′′(η) then

follow directly from Ito’s lemma and (15), the law of motion of ηt.

Finally, let us justify the five boundary conditions. First, because in the event that ηt drops

to 0 experts are pushed to the solvency constraint and must liquidate any capital holdings to

households, we have q(0) = q. The households are willing to pay this price for capital if they

have to hold it forever. Second, because η∗ is defined as the point where experts consume, expert

optimization implies that θ(η∗) = 1 (see Proposition 1). Third and fourth, q′(η∗) = 0 and θ′(η∗) =

0 are the standard boundary conditions at a reflecting boundary. If one of these conditions were

violated, e.g. if q′(η∗) < 0, then any expert holding capital when ηt = η∗ would suffer losses at

an infinite expected rate.33 Likewise, if θ′(η∗) < 0, then the drift of θ(ηt) would be infinite at

the moment when ηt = η∗, contradicting Proposition 1. Fifth, if ηt ever reaches 0, it becomes

absorbed there. If any expert had an infinitesimal amount of capital at that point, he would face

a permanent price of capital of q. At this price, he is able to generate the return on capital of

a− ι(q)

q
+ Φ(ι(q))− δ > r

without leverage, and arbitrarily high return with leverage. In particular, with high enough

leverage this expert can generate a return that exceeds his rate of time preference ρ, and since he

is risk-neutral, he can attain infinite utility. It follows that θ(0) = ∞.

Note that we have five boundary conditions required to solve a system of two second-order

ordinary differential equations with an unknown boundary η∗.

Proof of Proposition 3. Since q′(η∗) = θ′(η∗) = 0, the drift and volatility of η at η∗ are given

by

µη
t (η

∗)η∗ = (1− η∗)σ2 +
a− ι(q(η∗))

q(η∗)
η∗ > 0 and ση

t (η
∗)η∗ = (1− η∗)σ.

Hence, D′(η∗) = 2µη
t (η

∗)η∗/(ση
t (η

∗)η∗)2D(η∗) > 0, where D(η) = d(η)(ση
t (η)η)

2. Furthermore,

because in the neighborhood of η∗,

ση
t (η)η =

(1− η)σ

1− (1− η)q′(η)/q(η)
.

33To see intuition behind this result, if ηt = η∗ then ηt+ε is approximately distributed as η∗ − ω̄, where ω̄ is the
absolute value of a normal random variable with mean 0 and variance (ση

t )
2
ε As a result, ηt+ε ∼ η∗ − ση

t

√
ε, so

q(η∗)−q′(η∗)ση
t

√
ε. Thus, the loss per unit of time ε is q′(η∗)ση

t

√
ε, and the average rate of loss is q′(η∗)ση

t /
√
ε → ∞

as ε → 0.
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is decreasing in η, it follows that the density d(η) must be increasing in η.

The dynamics near η = 0 is more difficult to characterize because of the singularity there. We

will do that by conjecturing, and they verifying, that asymptotically as η → 0,

µη
t = µ̂+ o(1) and ση

t = σ̂ + o(1),

i.e. ηt evolves as a geometric Brownian motion, and that

ψ(η) = Cψη + o(η), q(η) = q + Cqη
α + o(ηα) and θ(η) = Cθη

−β + o(η−β)

for some constants Cψ > 1, Cq, Cθ > 0, α, β ∈ (0, 1). We need to verify that the equilibrium

equations hold, up to terms of smaller order. Using the equations of Proposition 2, we have

ση
t =

(Cψ − 1)σ + o(1)

1−O(ηα)
⇒ σ̂ = (Cψ − 1)σ,

σq
t =

αCqηα

q
σ̂ + o(ηα) = o(1), σθ

t = −βσ̂ + o(1),

(17) ⇒ βσ̂σ = κ ⇒ σ̂ = (Cψ − 1)σ =
κ

βσ
and (43)

µ̂ = −σ̂(σ − βσ̂) +
a− ι(q)

q
+ δ − δ = − κ

βσ

(
σ − κ

σ

)
+

a− ι(q)

q
+ κ.

We can determine µq
t from the household valuation equation

a− ι(qt)

qt
+ Φ(ι(qt))− δ + µq

t + σσq
t = r

instead of that of experts, because we already took into account (17). By the envelope theorem,

a− ι(q(η))

q(η)
+ Φ(q(η))− δ =

a− ι(q)

q
+ Φ(q)− δ

︸ ︷︷ ︸
r

−
a− ι(q)

q2
(Cqη

α + o(ηα)) + o(ηα).

Therefore,

µq
t =

a− ι(q)

q2
Cqη

α − αCqηα

q
σ̂σ + o(ηα).

Our conjecture is valid if equations

µqq(η) = q′(η)µη
t η +

1

2
q′′(η)(ση

t η)
2 and µθθ(η) = θ′(η)µη

t η +
1

2
θ′′(η)(ση

t η)
2
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hold up to higher-order terms of o(ηα) and o(η−β), respectively. Ignoring those terms, we need

a− ι(q)

q
Cqη

α − αCqη
ασ̂σ = αCqη

αµ̂+
1

2
α(α− 1)Cqη

ασ̂2 and

(ρ− r)Cθη
−β = −βCθη

−βµ̂+
1

2
β(β + 1)Cθη

−βσ̂2. (44)

These equations lead to

a− ι(q)

q
− α

κ

β
= α

(
− κ

βσ

(
σ − κ

σ

)
+

a− ι(q)

q
+ κ

)
+

1

2
α(α− 1)

κ2

β2σ2
and

ρ− r = −β

(
− κ

βσ

(
σ − κ

σ

)
+

a− ι(q)

q
+ κ

)
+

1

2
β(β + 1)

κ2

β2σ2
⇒

α

(
κ2

βσ2
+ κ

)
+

a− ι(q)

q
(α− 1) +

1

2
α(α− 1)

κ2

β2σ2
= 0 and (45)

ρ− r = κ− β

(
a− ι(q)

q
+ κ

)
+

(1− β)κ2

2βσ2
(46)

We can solve for β, Cψ and α in the following order. First, equation (46) has a solution β ∈ (0, 1).

To see this, note that as β → 0 from above, the right hand side of (46) converges to infinity. For

β = 1, the right hand side becomes

−
a− ι(q)

q
< 0.

We have a − ι(q) > 0, since the net rate of output that households receive at η = 0 must be

positive. Second, equation (43) determines the value of Cψ > 1 for any β > 0. Lastly, equation

(45) has a solution α ∈ (0, 1). To see this, note that the left hand side is negative when α = 0 and

positive when α = 1.

This confirms our conjecture about the asymptotic form of the equilibria near η = 0. Arbitrary

values of constants Cq and Cθ are consistent with these asymptotic dynamics. The value of Cq

has to be chosen to ensure that functions q(η) and θ(η) reach slope 0 at the same point η∗, and

the Cθ, to ensure that θ(η∗) = 1.

We are now ready to characterize the asymptotic form of the stationary distribution bear η = 0.

We have D′(η) = 2µ̂/σ̂2 D(η)/η, so

D(η) = CD η2µ̂/σ̂
2

and d(η) = D(η)/(σ̂η)2 = Cd η
2µ̂/σ̂2−2. (47)

59



Equation (44) implies that

2(ρ− r)

σ̂2
= −β

2µ̂

σ̂2
+ β(β + 1) ⇒ 2µ̂

σ̂2
− 2 = β − 1− 2(ρ− r)

κ2
σ2β.

We see that 2µ̂/(σ̂2)− 2 < 0, and so d(η) = Cd η2µ̂/σ̂
2−2 → ∞ as η → 0. Furthermore, if

2µ̂

σ̂2
− 2 > −1 ⇔ 1− 2(ρ− r)

κ2
σ2 > 0 ⇔ 2(ρ− r)σ2 < κ2,

then the stationary density exists and has a hump near η = 0. Otherwise if 2(ρ− r)σ2 ≥ κ2, then

the integral of d(η) is infinity, implying that the stationary density does not exist and in the long

run ηt ends up in an arbitrarily small neighborhood of 0 with probability close to 1.

Lemma 3 Under the logarithmic utility model, the stationary density exists if

2σ2(κ+ r − ρ) + κ2 > 0

and has a hump at 0 if also ρ > r + κ, where κ = (a− a)/q(0) + δ − δ.

Proof. Note that asymptotically σq
t → 0 as η → 0. Thus, from equation (25),

ψt = ηt
κ

σ2
+ o(ηt).

Therefore, equation (27) implies that

ση
t =

κ

σ
+ o(1) and µη

t = (ση
t )

2 + κ+ r − ρ+ o(1).

The Kolmogorov forward equation (see (47)) implies that asymptotically the stationary density

of ηt takes the form

d(η) = Cdη
βd , where βd = 2

(
µη
t

(ση
t )2

− 1

)
= 2σ2κ+ r − ρ

κ2
.

Thus, unlike in the risk-neutral case, the stationary density is nonsingular if 2σ2(κ+r−ρ)+κ2 > 0

and has a hump at 0 if ρ > r + κ.

Proof of Proposition 4. From the proof of Lemma 3,

ψt = ηt
κ

σ2
+ o(ηt)
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under logarithmic utility. Under risk neutrality,

ψt = Cψηt + o(ηt), where Cψ =
κ

βσ2
+ 1.

The variable β is determined by equation (46), which implies that β = 1+O(σ2) when σ is small.

Thus,

ψt = ηt
( κ

σ2
+O(1)

)
+ o(ηt).

In both cases,

ση
t =

ψt − ηt
ηt

(σ + σq
t ),

and σq
t → 0 as η → 0. Thus,

ση
t =

κ

σ
+O(σ)

as η → 0.
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