Runs on Money Market Mutual Funds

Lawrence SchmidtAllan TimmermannRuss WermersUC San DiegoUC San DiegoUniversity of Maryland

Motivation

- During the days following Lehman bankruptcy (Sep 14, 2008): large-scale run on prime money market mutual funds
- Money market funds have many bank-like features, but no <u>explicit</u> protections of investor capital (e.g., FDIC insurance)
- Two (not mutually exclusive) mechanisms can lead to runs:
 - Deterioration in fundamentals / bad future returns
 - Externalities (payoff complementarities) induced by the behavior of other investors. Runs become self-fulfilling prophecies
 - Our goal: can we use the data from the crisis to try and distinguish between them? Several advantages to this market
 - High frequency panel data are available
 - We know a lot about <u>investors</u>, <u>funds</u>, and <u>portfolio holdings</u>
- Regulatory implications as well

November 2, 2012

Relevance of Money Market Mutual Funds As "Shadow Banks"

- At the end of 2009:
 - 705 money funds
 - 303 "prime funds"
 - 1,849 shareclasses total; 794 shareclasses in "prime funds"
 - \$3.3 trillion in assets under management
 - \$1.1 trillion government funds
 - \$1.8 trillion non-government funds
 - \$0.4 trillion tax-exempt funds
 - About 35% is held by retail investors (over \$1 trillion)
 - By comparison, M1=\$1.8 trillion

November 2, 2012

Runs on Money Market Mutual Funds

Table 4: Portfolio Holdings of Prime Money Funds (%)

	Total net assets Millions of	U.S. Treasury	Other Treasury I	J.S. government	Repurchase	Certificates of		Commercial		Corporate		Average
Year	dollars	bills	securities	agency issues	agreements	deposit	Eurodollar CDs	paper	Bank notes ¹	notes ²	Other assets ³	maturity Days
1984	\$157,951	5.9%	0.8%	4.1%	3.3%	13.6%	12.0%	47.2%	-	-	13.1%	42
1985	151,849	4.6	1.0	6.1	3.1	10.0	10.2	55.4	-	-	9.5	42
1986	164,610	3.6	1.6	3.6	4.4	10.0	11.6	56.0	-	-	9.3	42
1987	187,087	1.0	0.9	6.5	4.8	16.2	8.9	52.3	-	-	9.4	34
1988	210,897	1.0	0.2	2.8	2.8	15.2	14.1	54.6	-	-	9.4	32
1989	283,939	1.3	0.8	2.0	2.8	14.4	9.3	62.3	-	-	7.1	43
1990	305,189	4.4	2.2	4.7	2.9	6.9	8.9	65.5	-	-	4.7	48
1991	314,346	5.7	2.9	4.2	3.7	10.6	6.9	60.1	-	-	5.8	56
1992	300,310	2.7	2.5	7.5	4.9	10.4	6.9	57.7	-	-	7.4	59
1993	312,701	2.6	2.4	11.9	5.9	8.0	3.2	52.6	-	-	13.3	58
1994	352,972	2.4	1.3	11.4	5.6	6.4	4.5	53.4	2.4%	-	12.7	38
1995	449,829	1.4	0.9	9.2	6.2	8.9	4.5	52.5	3.7	-	12.7	60
1996	543,134	0.7	1.8	8.9	5.1	12.7	4.3	50.7	2.3	-	13.5	56
1997	650,111	0.5	0.7	5.4	5.3	14.7	3.7	51.8	3.2	-	14.8	57
1998	857,340	0.6	0.8	9.5	4.6	12.9	3.6	48.5	3.9	5.8%	9.7	58
1999	1,082,906	0.5	0.3	6.8	4.8	12.8	3.9	49.0	3.1	8.4	10.4	49
2000	1,256,715	0.5	0.1	6.2	4.3	11.6	6.5	50.3	3.6	10.4	6.6	53
2001	1,578,652	0.6	0.3	12.4	6.3	14.8	7.2	41.3	1.5	10.9	4.6	58
2002	1,549,498	1.5	0.3	12.1	8.3	13.7	6.9	39.7	1.4	11.9	4.3	54
2003	1,354,908	1.5	0.4	15.2	8.4	11.5	5.1	35.2	2.0	16.1	4.8	59
2004	1,223,488	0.5	0.1	12.2	8.8	13.9	5.7	33.5	2.6	17.7	5.0	41
2005	1,306,698	0.8	0.1	4.2	12.4	14.3	5.9	38.1	2.3	17.7	4.2	38
2006	1,563,423	0.2	0.2	3.1	10.6	13.7	4.3	39.1	2.2	21.3	5.3	49
2007	1,884,132	1.0	0.2	3.3	11.9	14.9	5.4	36.4	3.9	16.5	6.4	44
2008	1,873,040	2.0	0.5	13.2	8.7	21.2	4.7	33.7	3.1	9.2	3.8	47
2009	1,854,287	2.7	1.2	10.0	8.6	30.8	5.3	27.6	2.8	6.2	4.7	50

November 2, 2012

The Public Perception of Money Funds

- Small investors use as a substitute for a checking account to obtain higher yield
- Most investors believe that money funds have at least some implicit backing by the fund complex
 - Some may even believe that they are backed by the Federal Reserve
- Virtually all US money market funds have a fixed NAV of \$1 per share
- Introduces risk of runs since portfolio market value can diverge from NAV (price per share)

November 2, 2012

The Events of September 2008

- 9/15/2008: Lehman Brothers declared bankruptcy
- 9/16/2008: Reserve Primary Fund held 1% Lehman securities
 - Allegations by Ameriprise that institutional investors were "tipped off" before other investors
 - Reserve allowed redemptions at \$1 per share prior to 3 pm; closing 4 pm NAV = \$0.97 per share (now Lehman securities have 3% impact)
 - Fund went from \$62.6 billion on 9/12 to \$23 billion on 9/16 (Actually, later found to be \$54 billion, as State Street suspended redemptions)

November 2, 2012

The Events of September 2008

- 9/19/2008: Treasury announces that it will guarantee certain money fund assets
 - Sets up voluntary insurance program for money funds with a NAV of at least \$0.995 as of 9/19/2008
 - Insurance is triggered when NAV falls below \$0.995
- 9/19/2008: Fed announced "The Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Facility"
 - Fed funding of banks buying asset-backed CP from money funds

November 2, 2012

- October 7, 2008: Fed announced "The Commercial Paper Funding Facility"
 - Provide credit to a special purpose vehicle that would purchase three-month commercial paper from U.S. issuers
 - October 21, 2008: the Federal Reserve announced "The Money Market Investor Funding Facility"
 - Provide credit to a special purpose vehicle to purchase money market instruments

November 2, 2012

October (?) 2008: SEC allowed funds that had "broken the buck" to price assets at amortized cost when commercial paper became too illiquid to price accurately

Change in Daily Assets of Money Market Funds Percent, September 2008

November 2, 2012

Runs on Money Market Mutual Funds

November 2, 2012

Runs on Money Market Mutual Funds

New SEC Rules on Money Funds (Phased in during 2010)

- Improved Liquidity:
 - 10% of portfolio must be easily convertible to cash within one day; 30% within one week

Higher Credit Quality:

- Maximum of 3% of portfolio in "Second Tier" securities (down from 5% previously)
 - Max of 0.5% in single issuer
 - Less than 45 days maturity required for Second Tier Securities
 - Weighted-avg maturity of all securities less than 60 days (down from 90 days)

November 2, 2012

New SEC Rules on Money Funds (Phased in during 2010)

- "Know your investor"
 - Requires funds to forecast the risk of large redemptions based on clientele
- Periodic "stress tests" required (analysis of risk)
- Funds required to analyze credit risk of each security purchased beyond simple outside ratings by, e.g., Moodys
- Collateral for repos must be cash or govt securities
- Funds must disclose portfolios monthly on website; must post "shadow-NAV" (estimated market value) monthly, 60 days after the month-end

November 2, 2012

Past Research on Bank Runs

- Diamond and Dybvig (1983)
 - Self-fulfilling bank run is equilibrium, even if assets are solvent without the run

Postlewaite and Vives (1987)

- Extend DD to show that a run can occur in a given bank even if there is no information on the probability of that bank's failure
- Goldstein and Pauzner (2005) and Jacklin and Bhattacharya (1988)
 - Model information-based bank runs

Literature (cont)

Also relevant:

- Models for currency attacks / regime change (global games)
- liquidity spirals, interactions between "market liquidity" and "funding liquidity": Brunnermeier and Pedersen (2009)
- Many models feature multiple equilibria
- Even when equilibria are unique, small changes in fundamentals can lead to large changes in outcomes
- Angeletos, Hellwig, and Pavan (2007): Dynamics/learning make the set of possible outcomes extremely rich
- Implication: runs need not be spread equally among firms
 - Thus, regulation might be optimally focused on certain firms

Contributions of this Study

- Empirical study of the money fund "panic" of September 2008
 - Which funds and which investors had correlated outflows?
 - Deep pocket vs. shallow pocket complexes
 - Liquid vs. illiquid funds
 - Institutional vs. retail investors
 - Was this a pure DD panic, or were the redemptions based on information about solvency?

Money Fund Data

Extensive panel dataset of the vast majority of money market mutual funds

- Data from iMoneyNet
 - Daily total net assets (TNA) of individual share classes
 - Money funds that predominantly cater to institutional investors
 - Money funds that predominantly cater to retail investors
 - Some holdings statistics:
 - % Maturing within 7 days
 - % Treasury
 - % Commercial paper
 - % "First Tier," "Second Tier" holdings
 - First Tier = highest short-term credit quality possible
 - Second Tier = second highest credit quality possible

November 2, 2012

Runs on Money Market Mutual Funds

Methods

- We envision a four-pronged approach
 - <u>Aggregate level</u>: look at dynamics of flows between Prime Institutional and Prime Retail funds, before and during crisis
 - Cross-sectional event study analysis: how did the relationship between cumulative flows and fund-level variables evolve over the crisis?
 - Panel analysis: Are the dynamics of fund-level flows likely panic-driven or linked to fundamentals?
 - <u>Out-of-sample exercise</u>: Could we have identified the funds with biggest outflows using pre-crisis data?

November 2, 2012

Methods (cont'd)

- Today, I'll focus on #2 and #3 [cross-sectional event study, with a breakdown into fundamentals vs. "panic" (unobservables)]
- Rather than focus on conditional expectations, I'll look at conditional quantiles. Why?
 - Potentially different welfare implications
 - Empirically relevant: Some funds almost wiped out, median fund lost a little, many had net inflows
 - Multiple equilibria \rightarrow tail outcomes may be more informative
- Specifically, we'll analyze the 10th, 50th, and 90th conditional quantiles of flow distributions

November 2, 2012

#20

Rolling AR(1) Coefficients for Daily Fund-Level Log Flows

-

Retail: Crisis Period

Rolling Transition Matrix Graph

Ranked Terciles are Based on Previous Day Flow Probability of Following Week Flow Terciles (T1 is biggest outflow tercile)

November 2, 2012

Runs on Money Market Mutual Funds

Basic Econometric Model

- Dependent variable $Y_{i,t+j} = \log(TNA_{i,t+j}/TNA_{i,t})$
- Variables of interest, $X_{i,i}$ categories from McCabe (2010)
 - <u>Portfolio risk proxies</u>: 7 day yield (DCY7), weighted average maturity, fund rating
 - Investor risk proxies: expense ratio, % complex TNA in Prime Inst funds, volatility of historical flows
 - <u>Sponsor risk proxies</u>: bank affiliation, other non-money fund AUM (not yet completed)

Assume

$$Y_{i,t+j} = X'_{i,t}\beta_m + \varepsilon_{m,t+j}, \qquad P[\varepsilon_{m,t+j} < 0 | \Gamma_t] = 0.5$$

$$Y_{i,t+j} = X'_{i,t}\beta_m - \exp[X'_{i,t}\beta_l] + \varepsilon_{m,t+j}, \qquad P[\varepsilon_{l,t+j} < 0 | \Gamma_t] = 0.1$$

$$Y_{i,t+j} = X'_{i,t}\beta_m + \exp[X'_{i,t}\beta_u] + \varepsilon_{m,t+j}, \qquad P[\varepsilon_{u,t+j} < 0 | \Gamma_t] = 0.9$$

November 2, 2012

	Common Shock					
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis)		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	-0.0270	0.1124	0.2260	-0.0125		
• • • • •	[0.070]	[0.019]	[0.014]	[0.345]		
$y_{i,t-1} - \bar{y}_{t-1} < 0$	-0.0057	0.2369	0.5761	0.0796		
• .,. = •. =	[0.335]	[0.032]	[0.043]	[0.005]		
AVGYIELD	0.0002	-0.0007	-0.0064	-0.0007		
	[0.128]	[0.080]	[0.000]	[0.022]		
EXPR	-0.0000	ó.0009	0.0033	0.0012		
	[0.348]	[0.049]	[0.054]	[0.003]		
FLOWSTDEV	0.0001	-0.0002	-0.0040	-0.0011		
	[0.284]	[0.343]	[0.117]	[0.086]		
PIPERC	-0.0002	-0.0006	-0.0002	-0.0005		
	[0.066]	[0.206]	[0.365]	[0.194]		
LOGTNA	0.0002	-0.0026	-0.0133	-0.0013		
	[0.019]	[0.000]	[0.000]	[0.016]		

	Left Tail Exposure					
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	0.1064	-0.0211	0.0038	0.0545		
	[0.000]	[0.405]	[0.572]	[0.003]		
$ y_{i,t-1} - \bar{y}_{t-1} < 0 $	0.0693	0.0369	-0.0154	0.0819		
	[0.000]	[0.106]	[0.284]	[0.003]		
AVGYIELD	-0.0217	0.1283	0.2314	0.0490		
	[0.334]	[0.080]	[0.095]	[0.238]		
EXPR	-0.1978	-0.5379	-0.2021	-0.2998		
	[0.012]	[0.004]	[0.144]	[0.002]		
FLOWSTDEV	0.5162	0.4453	0.3451	0.3044		
	[0.000]	[0.003]	[0.003]	[0.000]		
PIPERC	0.0588	0.1092	0.2902	0.0818		
	[0.089]	[0.107]	[0.010]	[0.106]		
LOGTNA	-0.0040	0.0507	0.0632	-0.1031		
	[0.625]	[0.188]	[0.161]	[0.063]		

	Right Tail Exposure					
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis)		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	0.0108	0.1168	-0.0066	0.0591		
	[0.125]	[0.098]	[0.322]	[0.068]		
$ y_{i,t-1} - \bar{y}_{t-1} < 0 $	0.0595	0.0716	0.0584	0.0538		
	[0.000]	[0.075]	[0.135]	[0.003]		
AVGYIELD	-0.0229	-0.0121	0.1080	0.0090		
	[0.332]	[0.456]	[0.119]	[0.559]		
EXPR	-0.2059	-0.0918	-0.0290	-0.1761		
	[0.000]	[0.180]	[0.177]	[0.043]		
FLOWSTDEV	0.6262	0.5556	0.4517	0.4205		
	[0.000]	[0.002]	[0.007]	[0.000]		
PIPERC	0.0924	0.1509	0.0057	0.0486		
	[0.026]	[0.066]	[0.356]	[0.407]		
LOGTNA	0.0551	0.0846	0.2846	-0.0374		
	[0.156]	[0.268]	[0.064]	[0.312]		

Table 6: Fund-Level Panel Quantile Regressions - Prime Institutional

	Common Shock					
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis)		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	-0.0273	0.0951	0.2055	0.0012		
	[0.068]	[0.013]	[0.023]	[0.617]		
$y_{i,t-1} - \bar{y}_{t-1} < 0$	-0.0057	0.2390	0.5723	0.0813		
	[0.353]	[0.039]	[0.056]	[0.007]		
AVGYIELD	0.0002	-0.0006	-0.0078	-0.0007		
	[0.126]	[0.090]	[0.000]	[0.034]		
EXPR	-0.0000	0.0007	0.0033	0.0012		
	[0.363]	[0.052]	[0.058]	[0.002]		
FLOWSTDEV	0.0001	-0.0002	-0.0033	-0.0013		
	[0.282]	[0.297]	[0.117]	[0.070]		
PIPERC	-0.0002	-0.0003	-0.0001	-0.0002		
	[0.086]	[0.283]	[0.463]	[0.323]		
LOGTNA	0.0002	-0.0028	-0.0127	-0.0012		
DOOTINA	[0.045]	[0.000]	[0.000]	[0.016]		
MULTCAT	0.0000	-0.0001	0.0019	0.0010		
MODICAL	[0.476]	[0.484]	[0.130]	[0.040]		
LACOTHER						
<i>LAGOTHER</i>	0.0003	0.0011	0.0002	0.0003		
	[0.021]	[0.041]	[0.247]	[0.343]		
Left Tail Exposure						
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis)		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	0.1073	-0.0175	0.0100	0.0373		
	[0.000]	[0.387]	[0.485]	[0.013]		
$ y_{i,t-1} - \bar{y}_{t-1} < 0 $	0.0699	0.0390	-0.0173	0.0700		
	[0.000]	[0.150]	[0.319]	[0.010]		
AVGYIELD	-0.0191	0.1573	0.2337	0.0575		
	[0.360]	[0.082]	[0.097]	[0.169]		
EXPR	-0.1978	-0.3824	-0.1960	-0.3044		
	[0.015]	[0.013]	[0.218]	[0.000]		
FLOWSTDEV	0.5108	0.4688	0.4026	0.3201		
	[0.000]	[0.001]	[0.001]	[0.000]		
PIPERC	0.0525	0.1207	0.3097	0.0760		
	[0.108]	[0.141]	[0.023]	[0.192]		
LOGTNA	-0.0069	0.1575	0.1259	-0.1222		
	[0.639]	[0.168]	[0.105]	[0.047]		
MULTCAT	-0.0265	-0.1041	0.0487	-0.0900		
	[0.213]	[0.120]	[0.405]	[0.066]		
<i>LAGOTHER</i>	0.0212	-0.0193	-0.2457	-0.0094		
	[0.300]	[0.336]	[0.035]	[0.359]		
	[0.000]	[0.000]	[0.000]	[0.000]		
Variable	(Reaching)		Exposure (Cricic)	(Doot Chale)		
Variable	(Baseline)	(Pre-Crisis)	(Crisis)	(Post-Crisis)		
$y_{i,t-1} - \bar{y}_{t-1} > 0$	0.0120	0.1204	-0.0163	0.0500		
	[0.136]	[0.093]	[0.313]	[0.066]		
$ y_{i,t-1} - \bar{y}_{t-1} < 0 $	0.0599	0.0660	0.0544	0.0516		
	[0.000]	[0.073]	[0.149]	[0.004]		
	50.004 P		0.1365	0.0075		
AVGYIELD	-0.0215	0.0016	To 4 0.01			
	[0.310]	[0.476]	[0.139]	[0.517]		
AVGYIELD EXPR	[0.310] - 0.2006	[0.476] -0.0836	-0.0371	-0.1502		
EXPR	[0.310] -0.2006 [0.001]	[0.476] -0.0836 [0.148]	-0.0371 [0.156]	-0.1502 [0.031]		
	[0.310] -0.2006 [0.001] 0.6445	[0.476] -0.0836 [0.148] 0.5120	-0.0371 [0.156] 0.4280	-0.1502 [0.031] 0.4628		
EXPR	[0.310] -0.2006 [0.001]	[0.476] -0.0836 [0.148]	-0.0371 [0.156]	-0.1502 [0.031] 0.4628 [0.000]		
EXPR	[0.310] -0.2006 [0.001] 0.6445	[0.476] -0.0836 [0.148] 0.5120	-0.0371 [0.156] 0.4280	-0.1502 [0.031] 0.4628		
EXPR FLOWSTDEV	[0.310] -0.2006 [0.001] 0.6445 [0.000]	[0.476] -0.0836 [0.148] 0.5120 [0.002]	-0.0371 [0.156] 0.4280 [0.011]	-0.1502 [0.031] 0.4628 [0.000]		
EXPR FLOWSTDEV	[0.310] -0.2006 [0.001] 0.6445 [0.000] 0.0749	[0.476] -0.0836 [0.148] 0.5120 [0.002] 0.1282	-0.0371 [0.156] 0.4280 [0.011] 0.0312	-0.1502 [0.031] 0.4628 [0.000] 0.0402		
EXPR FLOWSTDEV PIPERC	$\begin{matrix} [0.310] \\ -0.2006 \\ [0.001] \\ 0.6445 \\ [0.000] \\ 0.0749 \\ [0.034] \end{matrix}$	[0.476] -0.0836 [0.148] 0.5120 [0.002] 0.1282 [0.079]	-0.0371 [0.156] 0.4280 [0.011] 0.0312 [0.442]	-0.1502 [0.031] 0.4628 [0.000] 0.0402 [0.524]		
EXPR FLOWSTDEV PIPERC	[0.310] -0.2006 [0.001] 0.6445 [0.000] 0.0749 [0.034] 0.0532	[0.476] -0.0836 [0.148] 0.5120 [0.002] 0.1282 [0.079] 0.0672	-0.0371 [0.156] 0.4280 [0.011] 0.0312 [0.442] 0.2399	-0.1502 [0.031] 0.4628 [0.000] 0.0402 [0.524] -0.0525		
EXPR FLOWSTDEV PIPERC LOGTNA	[0.310] -0.2006 [0.001] 0.6445 [0.000] 0.0749 [0.034] 0.0832 [0.186] -0.0700	[0.476] -0.0836 [0.148] 0.5120 [0.002] 0.1282 [0.079] 0.0672 [0.261] -0.0586	-0.0371 [0.156] 0.4280 [0.011] 0.0312 [0.442] 0.2399 [0.071] -0.0824	-0.1502 [0.031] 0.4628 [0.000] 0.0402 [0.524] -0.0525 [0.325] -0.0730		
EXPR FLOWSTDEV PIPERC LOGTNA	[0.310] -0.2006 [0.001] 0.6445 [0.000] 0.0749 [0.034] 0.0532 [0.156]	[0.476] -0.0836 [0.148] 0.5120 [0.002] 0.1282 [0.079] 0.0672 [0.261]	-0.0371 [0.156] 0.4280 [0.011] 0.0312 [0.442] 0.2399 [0.071]	-0.1502 [0.031] 0.4628 [0.000] 0.0402 [0.524] -0.0525 [0.325]		

Table 9: Fund-Level Panel Quantile Regression - Prime Institutional with Cross-Category Variables

Yield as a Predictor of Runs

November 2, 2012

Runs on Money Market Mutual Funds

Fitted Model-Implied Effect of 10% Shift in Prior-Day Flow

Figure 11: Impact of lagged flows for Prime Institutional funds in baseline specification

November 2, 2012

Runs on Money Market Mutual Funds

Marginal Fitted Effects of 1 Sigma Shift on Flow Distribution During Sep 17-19

Figure 14: Marginal Effect of Explanatory Variables on Cumulative Flow Distributions During Crisis Period - Institutional Funds

What Did We Learn?

- September 2008 period unique for study of "shadow bank runs"
- Prime funds exhibit many characteristics of runs
 - Flows highly autocorrelated with one-day lagged flows
- Highest autocorrelations in flows to funds catering to institutions
- Some correlation in flows for retail funds, but Treasury intervention appears to have precluded further retail runs
- Run-like behavior in institutional shareclasses with risky fundamentals and "hot money" clientele in the early days (pre-crisis)
 - An information effect rather than pure panic?
- Higher autocorrelations during later days of the crisis
 - Investor panic or model misspecification?
- Many unanswered questions, but we now have a framework to study money fund runs

November 2, 2012