Bank Overleverage and Macroeconomic Fragility

Ryo Kato and Takayuki Tsuruga

Bank of Japan and Kyoto University

October 2012

Motivation

- Was the 2007–2008 crisis an unavoidable, unfortunate accident or because of any market failure?
- A few suspects in the run-up to the crisis:
 - 1. Expansion of leverage in the (shadow) banking system
 - 2. Loopholes of the existing regulatory framework
 - 3. Erosion of discipline owing to the "Greenspan put," or expectations for bank bailouts.

Introduction		
0000		
00000		
000		

Questions to be addressed

- We develop a dynamic GE model (OLG model) that explicitly includes banks with **maturity mismatch** (Diamond-Rajan, 2001, 2012)
 - A liquidity shortage precipitating a devastating crisis
- 1. Can a competitive banking sector prevent "inefficient" financial crises?
- 2. Can the existing policy measures reduce the probabilities of financial crises?
 - Bank bailout

Introduction		
0000		

Questions to be addressed

- We develop a dynamic GE model (OLG model) that explicitly includes banks with **maturity mismatch** (Diamond-Rajan, 2001, 2012)
 - A liquidity shortage precipitating a devastating crisis
- 1. Can a competitive banking sector prevent "inefficient" financial crises?
 - No, due to pecuniary externalities and overleverage
- 2. Can the existing policy measures reduce the probabilities of financial crises?
 - Bank bailout

Introduction		
0000		
00000		
000		

Questions to be addressed

- We develop a dynamic GE model (OLG model) that explicitly includes banks with **maturity mismatch** (Diamond-Rajan, 2001, 2012)
 - A liquidity shortage precipitating a devastating crisis
- 1. Can a competitive banking sector prevent "inefficient" financial crises?
 - No, due to pecuniary externalities and overleverage
- 2. Can the existing policy measures reduce the probabilities of financial crises?
 - Bank bailout
 - Highly unlikely

Main results: Illustration

• At normal times: capital accumulation with consumption smoothing

$$K_{t+1} = I(R_t/q_{t+1}) + \underline{I}$$
$$R_t = \frac{\theta_t}{1 - \theta_t} \left(\frac{C_{1,t}}{C_{2,t+1}}\right)^{-1}$$

where θ_t is the iid preference shock (mean=0.5) in HH utility,

$$U = \theta_t \log C_{1,t} + (1 - \theta_t) \log C_{2,t+1}$$

• In a crisis, no investment, no consumption-smoothing, owing to the lack of intertemporal substitution • overview

Introduction			Appendix
			00
00000			0

Plain-vanilla OLG (with iid preference shocks)

Introduction			
00000			

Social optimum: The optimal crises á la Allen and Gale (1998)

Introduction			Appendix
			00
00000			0

Laissez faire economy: Inefficient crises

Introduction			Appendix
			00
0000			0

With "Greenspan put": Even more frequent crises

Introduction	
000	

model

stemic risks and externalities

Policy intervention

Conclusions

Append 00

Related literature

Systemic risks

mic risks and externalities

Policy intervention

Conclusions

Appendi 00

Related literature

Introduction	
000	

Policy interventior

Conclusions

Append 00

Related literature

nodel

ystemic risks and externalities

Policy intervention

Conclusions

Appendi:

Overview of the model

- Each generation has 3 agents who live for 2 periods
 - 1. Households
 - are endowed with a unit consumption good ⇒ deposit in banks
 - supply fixed labor and receive w_t and w_{t+1}
 - are subject to liquidity (preference) shock θ_t
 - choose consumption after the realization of θ_t
 - 2. Entrepreneurs
 - launch long-term projects to produce capital goods
 - sell the capital goods, if completed, for q_{t+1} (one-period gestation)
 - 3. Bankers (à la Diamond and Rajan 2001, 2011)
 - pre-commit to the debt face value D_t before observing θ_t
 - raise funds via short-term debt (demand deposit) and lend them to entrepreneurs (=maturity transformation)
- Consumption goods producing tech., $Y_t = K_t^{\alpha} H_t^{1-\alpha}$

Households

- Liquidity preference θ_t is the only random variable in the model.
- HHs make their decisions **after** observing θ_t .
- Given the deposit face value *D_t* and interest rate *R_t*, households maximize

$$U(C_{1,t}, C_{2,t+1}) = \theta_t \log C_{1,t} + (1 - \theta_t) \log C_{2,t+1}$$

s.t. $C_{1,t} = \begin{cases} w_t + g_t & \text{at normal times} \\ w_t + X & \text{in a crisis} \end{cases}$
 $C_{2,t+1} = \begin{cases} w_{t+1} + R_t (D_t - g_t) & \text{at normal times} \\ w_{t+1} & \text{in a crisis,} \end{cases}$

N.B.: HHs can make their decisions without uncertainty, while the probability of a financial crisis varies endogenously.

The model		
000		

Entrepreneurs and banks

Entrepreneurs' project

- yields $\omega \in [\omega_L, \omega_H]$ at t + 1, but may be liquidated at t
- leaves only *X*, if liquidated (*X* < 1 is the liquidation value)
- can be sold for $q_{t+1}\omega$, if completed
- if completed, fraction 1γ of output accrues to entrepreneurs
- Banks' liquidation decision
 - Banks are relationship lenders that can collect γ of the output
 - Banks liquidate projects if MRT < gross interest rate *R*_t,

$$\gamma q_{t+1} \omega < R_t X \iff \frac{\gamma q_{t+1} \omega}{X} = MRT_t < R_t$$

• Equivalently, the cut-off level for liquidation,

$$\omega < \tilde{\omega}_{t+1} \equiv \frac{XR_t}{\gamma q_{t+1}}$$

Bank assets

• With $\tilde{\omega}_{t+1} = XR_t / \gamma q_{t+1}$, the bank's asset $A(R_t / q_{t+1})$ is

$$A\left(\frac{R_{t}}{q_{t+1}}\right) = \underbrace{\int_{\omega_{L}}^{\tilde{\omega}_{t+1}} Xh\left(\omega\right) d\omega}_{\text{liquidation}} + \underbrace{\frac{\gamma q_{t+1}}{R_{t}} \int_{\tilde{\omega}_{t+1}}^{\omega_{H}} \omega h\left(\omega\right) d\omega}_{\text{bank's share of projects}}$$
$$= L\left(\frac{R_{t}}{q_{t+1}}\right) + \frac{\gamma q_{t+1}}{R_{t}} I\left(\frac{R_{t}}{q_{t+1}}\right)$$

where $h(\omega)$ is pdf for ω and $L(R_t/q_{t+1})$ is the liquidity supply.

- A' < 0 and I' < 0 (investment) $\Rightarrow K_{t+1} = I(R_t/q_{t+1}) + \underline{I}$
- *L*′ > 0 (liquidity supply)

The mode
000

Systemic risks and externalities

Policy intervention

Conclusions

Appendi 00

Optimal bank leverage

- Banks choose D_t (face value of deposits) before observing θ_t
 - Deposits are non state-contingent debt
 - D_t has a one-to-one relationship with bank leverage $A_t/(A_t D_t)$
 - Choice of leverage (size of liabilities) = choice of D_t
- Banks compete to raise funds from HHs
 - Competition forces banks to maximize the HH expected utility
 - Banks internalize the liquidity mrkt clearing condition
- Liquidity market clearing condition at normal times:

$$\underbrace{L\left(\frac{R_t}{q_{t+1}}\right)}_{\text{supply}} = \underbrace{\theta_t\left(\frac{w_{t+1}}{R_t} + D_t\right) - (1 - \theta_t)w_t}_{\text{demand}} = g_t$$

Optimal bank leverage (2)

- A high *D_t* raises both (i) return for HH and (ii) crisis probability
 - Banks need to strike the right balance b/w risk and return
 - To make the right decision, banks assess their own solvency

$$D_t = A\left(R_t^*/q_{t+1}^*\right)$$

• θ_t^* is defined as the maximum level of the preference shock in which banks can remain solvent with $R_t^*/q_{t+1}^* = A^{-1}(D_t)$.

$$L\left(\frac{R_t^*}{q_{t+1}^*}\right) = \theta_t \left(\frac{w_{t+1}^*}{R_t^*} + D_t\right) - (1 - \theta_t) w_t$$

$$\longleftrightarrow$$

$$\theta_t^* = \frac{L\left(R_t^*/q_{t+1}^*\right) + w_t}{w_t + D_t + w_{t+1}^*/R_t^*}.$$

Problem LF

• In a laissez-faire economy, banks maximize HH expected utility

$$\max_{D_t} \int_{0^t}^{\theta_t^*} \left[\theta_t \log\left(w_t + L_t\right) + (1 - \theta_t) \log\left(w_{t+1} + R_t \left(D_t - L_t\right)\right)\right] f\left(\theta_t\right) d\theta_t \\ + \int_{\theta_t^*}^{1} \left[\theta_t \log\left(w_t + X\right) + (1 - \theta_t) \log\left(\underline{w}\right)\right] f\left(\theta_t\right) d\theta_t$$

s.t.
$$D_t = A \left(R_t^* / q_t^* \right)$$

 $L_t = \theta_t \left(\frac{w_{t+1}}{R_t} + D_t \right) - (1 - \theta_t) w_t$
 $\theta_t^* = \frac{L \left(R_t^* / q_{t+1}^* \right) + w_t}{w_t + D_t + w_{t+1}^* / R_t^*}$

where w_t and \underline{w} : wages at normal times and in a crisis \rightarrow sp \rightarrow FOC

Systemic risks and externalities

olicy intervention

Conclusions

Appendi:

Social planning banks

- Motivation
 - Can a LF banking sector achieve the best outcome in the absence of Arrow securities?
 - Assume that social planning banks can internalize all the price effects,
 - but they need to choose D_t before observing θ_t ,
 - HHs can make their decisions after observing θ_t
 - Focus on the constrained optimum where banks can only use non state-contingent debt.

Problem SP

• The social planning banks maximize HH expected utility

$$\max_{D_{t}} \int_{0}^{\theta_{t}^{*}} \{\theta_{t} \ln (F_{H,t} + L_{t}) + (1 - \theta_{t}) \ln [F_{H,t+1} + R_{t} (D_{t} - L_{t})] \} f(\theta_{t}) d\theta_{t}$$

+
$$\int_{\theta_{t}^{*}}^{1} [\theta_{t} \ln (F_{H,t} + X) + (1 - \theta_{t}) \ln \underline{F}_{H}] f(\theta_{t}) d\theta_{t}$$

s.t.
$$D_{t} = A \left(R_{t}^{*} / F_{K,t+1}^{*} \right)$$
$$L_{t} = \theta_{t} \left(\frac{F_{H,t+1}}{R_{t}} + D_{t} \right) - (1 - \theta_{t}) F_{H,t}$$
$$\theta_{t}^{*} = \frac{L \left(R_{t}^{*} / F_{K,t+1}^{*} \right) + F_{H,t}}{F_{H,t} + D_{t} + F_{K,t+1}^{*} / R_{t}^{*}}$$

 q_{t+1} and w_{t+1} in LF are replaced with $F_{K,t+1}$ and $F_{H,t+1}$ here.

	Systemic risks and externalities		
	0000		

Main result 1: Overleverage

Proposition

LF banking sector tends to be overleveraged.

- Intuition: Focus on "solvency constraint"
 - LF banks take capital prices as given when assessing solvency

$$D_t = A\left(R_t^*/q_{t+1}^*\right)$$

• SP banks internalize all the price change effects

$$D_t = A\left(R_t^* / F_{K,t+1}^*\right)$$

- Changes in q_{t+1}^* distort the LF banks' assessment of their solvency
- Crisis probability is likely to be higher in the LF than in the SP economy
- Pecuniary externalities welfare

Intuition behind excessive risks

- To determine D_t, banks need to calculate balance sheet on the brink of a crisis: D_t = A (R_t^{*}/q_{t+1}^{*})
- Banks' assets depends on the price of illiquid assets *q**

	Systemic risks and externalities		
	0000		

Intuition behind excessive risks

- When a single bank increases *D*_t, it increases illiquid assets to be solvent
- Each bank takes price of illiquid assets as given

	Systemic risks and externalities		
	0000		

Intuition behind excessive risks

- However, the increased illiquid assets decrease the prices *q**
- Banks over-estimate the value of their own assets

Policy intervention

Conclusions

Appendix 00

Bank bailouts: Interpretation

- Government/the central bank (GC hereafter) commits to emergency liquidity provision.
- Anatomy of a crisis in the model:
 - A high θ_t ⇒ liquidity shortage ⇒ high interest rate (price of liquidity) ⇒ bank insolvency
 - Emergency liquidity provision to rein in the interest rate
- Bank bailout →Commitment to a low interest rate policy
- Can this intervention reduce crisis probabilities? **Highly unlikely.**

Policy intervention

Conclusions

Appendi:

Bank bailouts: Implementation

• Need financing: Bank levy (e.g., U.K. practice)

 $(1+\tau)D = A\left(R_t^*/q_{t+1}^*\right)$

leaves τD_t of funds. Now, what can be done with the funds?

Option BL: Waste them **Option BB:** Use them for bank bailouts:

Liquidity supply =
$$L\left(\frac{R_t}{q_{t+1}}\right) + M_t$$
,
 $M_t \leq \tau D_t$.

 M_t : emergency liquidity provision to rein in R_t which continues until the budgetary resource is depleted. • operation

• **BB** implies that GC commits to keep $R_t \leq R_t^*$ by injecting liquidity.

	Policy intervention	
	000	

Main result 2: The intervention and crisis risks

• The commitment to a low interest policy would **raise**, rather than reduce, the crisis risks

	Option BL	Option BB			
Leverage and probabilities					
D_t	1.03	1.04			
Prob. of crisis (%)	6.84	7.06			
Bank capital and GDP					
Bank capital (%)	13.94	13.35			
Y_{t+1}	5.46	5.46			
Notes: $\tau = 0.03$.					

- Implications:
 - · Policy measures should aim at ex-ante de-leveraging of banks
 - Conversely, the "Greenspan put" may have fueled risk-taking

Conclusion

- We develop the dynamic GE model that explicitly includes a banking sector with maturity mismatch
- 1. The Laissez-faire banking sector take on excessive risks systemically
 - Precipitating crises more frequently
 - The general equilibrium creates pecuniary externalities because of the lack of state-contingent debt
 - Pecuniary externalities distort the MC of increasing the debt
- 2. Policy implication
 - Expectations of bank bailout may have fueled risk-taking of the banking sector

model

vstemic risks and externalities

Policy interventior

Conclusions

Appendi

The way forward

- 1. Create richer dynamics with boom-bust cycles, by including bubbles or "news shocks"
- 2. Further exploration of policy options
 - Capital adequacy requirement with prompt corrective action
 - G-SIFI surcharge, counter-cyclical capital requirement and other macro-prudential tools
 - Optimal policy designs

odel

ystemic risks and externalities

Policy intervention

Conclusions

Appendi

Banks and economic welfare

- Arrow security: The first-best allocation
 - Complete markets
 - No default, no crisis

- Banks: The second-best allocation
- Incomplete markets
- Bank's solvency constraint
- Non-zero probability of default and crisis
- Autarky: No financial transaction

HH's decision and liquidity demand

• Normal times: consumption Euler eq. and budget constraint

$$R_{t} = \frac{\theta_{t}}{1 - \theta_{t}} \left(\frac{C_{1,t}}{C_{2,t+1}}\right)^{-1}$$
$$C_{1,t} + \frac{C_{2,t+1}}{R_{t}} \leq D_{t} + w_{t} + \frac{w_{t+1}}{R_{t}}$$

HH's liquidity demand = withdrawal of deposit

$$g_t = C_{1,t} - w_t = \theta_t \left(\frac{w_{t+1}}{R_t} + D_t \right) - (1 - \theta_t) w_t$$

Crisis: No financial intermediation

$$C_{1,t} = w_t + X, \ C_{2,t+1} = w_{t+1}$$

Systemic risks and externalities

Conclusions

First order condition

$$\underbrace{\begin{bmatrix} \theta_{t}^{*} \log\left(\frac{w_{t}+L_{t}^{*}}{w_{t}+X}\right) + (1-\theta_{t}^{*}) \log\left(\frac{w_{t+1}^{*}+R_{t}^{*}\left(D_{t}-L_{t}^{*}\right)}{\underline{w}}\right) \end{bmatrix}}_{\text{Loss at a crisis}} \underbrace{\frac{d\pi_{t}}{d\theta_{t}^{*}}\theta_{LF,t}^{*'}}_{\text{Mrg.change in }\pi_{t}}$$

$$= \underbrace{\int_{0}^{\theta_{t}^{*}} \left[\frac{1}{m_{t}}\left(1-\frac{w_{t+1}}{R_{t}^{2}}R_{LF,t}^{\prime}\right) + (1-\theta_{t})\frac{1}{R_{t}}R_{LF,t}^{\prime}\right]f\left(\theta_{t}\right)d\theta_{t}}_{\text{MB of increasing }D_{t}}$$

- Marginal cost (MC) of *D*_t
 - Loss at a crisis (decline in utility in a crisis) times (marginal) change in $\pi_t = \int_{\theta_t^*}^1 f(\theta_t) d\theta_t$: how frequently do crises take place?
- Marginal benefit (MB) of D_t = Expected (marginal) return from banks

Introduction		
0000		
00000		

Numerical results: Dynamics

- The threshold θ_t precipitating a crisis is lower in LF than in SP
- The 2nd and 3rd crises should be prevented, but the 1st should not