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Abstract

We simulate interbank market contagion, enriching the standard transmission channel based

on credit losses and capital, with new channels like funding liquidity losses, fire assets sales

and active liquidity runs on infected banks, employing a testing dataset of Russian bilateral

interbank exposures. Allowing active liquidity runs on infected banks is crucial to capture

reality with the simulations. We use the simulations to calculate a bank’s potential contribution

to contagion, which serves as our measure of systemic importance. We find that the K-shell

index, a new measure of interconnectedness, is the only robust and reliable predictor of a

individual bank’s potential to spread contagion, rather than size. Coreness should therefore

not be confounded with size.

JEL: C8, G21
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1 Introduction

There is an apparent puzzle at the heart of the 2007-2012 financial crisis. The 2007 estimates of the

likely total losses on subprime mortgages were roughly equivalent to a single day’s movement in the

U.S. stock market (Adrian and Shin, 2008).1 The resulting conventional wisdom in policy circles

up to the summer of 2007 was that the subprime exposure was too small to lead to widespread

problems in the financial system. Yet, reality proved different. The credit crisis developed with

a ferocity that led some observers to characterize it as one of the worst financial shocks that the

United States has confronted since the Great Depression (Mishkin, 2008). The presumption that

subprime exposures did not pose a serious threat to the financial system could be justified by the

1Upwards revised estimates reported in Greenlaw et. al. (2008) still remain small in relative terms.
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"domino" model of financial contagion. This model works through direct credit losses depleting

bank capital. This simplistic "domino" model of contagion turned out to be a poor description of

reality. The crucial variables in this model are credit losses and capital, measuring the simulated

harm done by a bank’s default and the residual banks’ability to either absorb the concurrent losses

or succumb and propagate the shock over the banking network. Simulation studies performed by

several central banks relying on this approach uncovered limited risk of a systemic meltdown (see

Sheldon and Maurer (1998) for Switzerland, Furfine (2003) for the U.S., Upper and Worms (2004)

for Germany, Lelyveld and Liedorp (2006) for the Netherlands, and Degryse and Nguyen (2007)

for Belgium). These estimates of limited systemic risk contrast sharply with the broad financial

disruptions experienced in 2007-2009 (the financial crisis ensuing after the meltdown of securitized

lending and the ultimate collapse of Lehman Brothers), and 2010-2012 (the eurocrisis). The seeming

empirical irrelevance of the early simulations of contagion on the interbank market is explained by

a few crucial factors: Most, though not all, of these papers lack detailed bilateral and time-varying

data on interbank exposures. The early literature relied on credit losses depleting capital and

therefore spreading over a fixed banking network, largely neglecting a plethora of other possible

channels like information contagion, funding liquidity problems, fire sales and asset losses, and the

time-varying topology of the network itself. Most of these early simulation exercises are based

on sample periods devoid of interbank market instability and characterized by a stable network

structure. By consequence these studies exclude the possibility that the structure of the network

itself may be subject to an abrupt phase transition in the run-up to the crisis, moving from liquid

state to illiquid state in a highly non-linear way. In this paper we try to address some of these

problems and propose a new way of simulating and interpreting interbank market contagion. We

use this approach to identify those banks that are super-spreaders of contagion or, in the jargon of

the banking literature, those that are to interconnected to fail. We proceed by showing that these

superspreaders can reliably be identified by one simple network measure borrowed from physics,

that measures the tieredness of the network and the tier in which a bank is situated. This is in line

with the findings of Krause and Giansante (forthcoming). They study how the exogenous failure of

a single bank spreads through the banking system and causes other banks to fail in a theoretically

generated model and find that the determinants of whether contagion occurs include aspects of the

network structure, namely the interconnectedness of nodes in the network and the tiering of the

network.

In a first step we try to identify which channels of contagion are suffi cient to mimic real interbank

market crisis. We start from various channels in the literature, namely the credit loss and capital

channel, the liquidity loss channel, the asset value- fire sales channel, that take the topology of

the network as given, and the funding liquidity losses channel, that includes behavioral aspects

that endogenously affect the topology of the network during the crisis. We run simulations of

these channels using the Russian interbank market as a training data set. The Russian data is

2



very adequate for this exercise because the sample period covers two real, though very different,

crises, and because the data quality is exceptional. We use bilateral and time varying contract data

(maturities, prices, volumes) between all banks and monthly balances and profits and losses of the

banks involved (between 500 and 800 depending on the period). We start from the simplest possible

contagion channel, and simulate the damage to the banking system from killing a single bank.

We repeat this for every bank and for every period and verify whether the results mimic reality,

using the two real banking crises as a benchmark. Then we add increasingly more sophisticated

channels making the contagion mechanism more realistic, till our simulated crises satisfactorily

mimic both real life banking crises. That simulation is thus based on 1) real life time varying

interbank contracts, 2) real life time varying bank level capital, liquidity, reserves and assets and 3)

a sophisticated contagion scenario that mimics real crises. It turns out that we need the behavioral

assumption of contagion through funding liquidity losses of infected banks to correctly simulate

both real interbank market crises in our sample.

In a second step we derive bank specific measures of a bank’s contribution to contagion. Indeed,

since we have identifies in the first step the appropriate channels to simulate contagion, we can now

calculate a bank-specific contribution to contagion, both during real interbank market panics and

during calm periods (i.e. a counterfactual contribution if a crisis were to strike at that moment).

The banks with a very high contribution to interbank market contagion have been labelled as sys-

temically important institutions; It is important to identify them properly as higher loss absorbency

requirements will be introduced for these banks in parallel with the Basel III capital conservation

and countercyclical buffers, between 1 January 2016 and year end 2018 becoming fully effective

on 1 January 2019. The assessment methodology for systemically important banks applies by the

Basel Committee is based on an indicator-based approach and comprises five broad categories: size,

interconnectedness, lack of readily available substitutes or financial institution infrastructure, global

(cross-jurisdictional) activity and complexity. But it is still unclear how precisely to identify these

banks and it has been suggested that size is the main indicator of systemic importance.

We provide a methodology to identify the banks that are too interconnected to fail in a third

step. We show how we can predict this bank-specific contribution to contagion (and hence identify

those that are systemically important) by just looking at the bank’s position in the tiered network,

disregarding all other bank-specific information and network measures. To this purpose we introduce

the concept of K-coreness to the banking literature. It turns out that increasing network complexity

(as expressed as the number of K-shells) precedes crises, and that the bank’s K-shell index (a new

measure of interconnectedness) strongly outperforms any other network indices in explaining a

bank’s contribution to contagion and also outperforms the size of the bank. By just looking at this

one measure, we can explain between 30% and 40% of the bank-specific contributions to contagion.

In short, we believe to have found a simple and robust measure to identify the banks that are

systematically important. Specifically, those that are systemically important turn out to be these
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that are Too-InterConnected-To-Fail, provided one has topological information of the network. We

also show that even information about the 50% largest interbank market contracts (incomplete

information) is suffi cient to identify the systemically important banks.

In other work, we are also experimenting with characterizing the stability of the network itself

by investigating whether any indications of a real phase-transition can be observed in the structure

of the Russian inter-banking network. The theory of phase transitions and percolation theory are

well developed in physics and found their way into network theory (Gai et al, 2011). In companion

papers to this paper, we investigate how we can predict these phase transitions leading to liquidity

freezes and the disintegration of the network. Most network analyses focus on "normal" periods of

operation and stay away from systemic crises. The fact that two major crises hit the Russian banking

system in the time period 1998-2004 that we wish to analyze, offers unparalleled opportunities.

2 Related literature

2.1 The simulation of contagion

Empirical studies of interbank market contagion include Sheldon and Maurer (1999), Blavarg and

Nimander (2002), Upper and Worms (2004), Mistrulli (2007), Elsinger et al. (2006), Gropp et

al. (2006), Lelyveld and Liedorp (2006), Müller (2006), Degryse and Nguyen (2007), Iori et al.

(2008), Estrada and Morales (2008), Canedo and Jaramillo (2009), and Toivanen (2009). A general

overview of the empirical methodology and the results obtained in many of the papers mentioned

before can be found in Upper (2007). Upper (2011) gives a very complete overview of the various

possible channels of contagion in the banking system proposed in the rich literature on this topic.

Most of the early papers in the literature model how credit losses can potentially spread via the

complex network of direct counterparty exposures following an initial default. In this paper we

also simulate contagion by starting from credit losses on the interbank market, but we enrich this

channel but also introducing aspects of liquidity, fire sales and network topology into the analysis.

The standard approach is to study how credit losses in the interbank market directly affect the

creditor banks’capital and liquidity and in this way generates further rounds of defaults and credit

losses by propagation over a fixed and often not exactly known network. Our first contribution to

this contagion literature is that we use data on exact bilateral time-varying exposures from a rich

Russian data set in combination with rich monthly information from bank balances and profit an

loss accounts. Our data window of 75 months of bilateral contract data covers two isolated Russian

interbank market crises, that give us two natural experiments to train our simulations.
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2.2 Liquidity, fire sales and systemic risk

Our second contribution is that we move beyond the capital channel in several ways. Next to credit

losses and bank capital, liquidity on the asset side of the balance sheet may play an important

role. Cifuentes et al. (2005) and Shin (2008) for example stress that financial distress at some

financial institutions may have knock-on effects on asset prices and force other financial institutions

to write down the value of their assets. Contagion due to the direct interlinkages of interbank

claims and obligations may thus be reinforced by indirect contagion through the asset side of the

balance sheet —particularly when the market for key financial system assets is illiquid. Next to

asset liquidity, funding liquidity considerations may play a major role on the transmission of shocks

on the interbank market. Rochet and Vives (2004) present a model where large well-informed

investors refuse to renew their credit on the interbank market in the presence of a large adverse

shock. An adverse shock to one bank may create uncertainty about other banks, possibly subject to

the same shock. Since interbank market participants are generally risk averse and have asymmetric

information about each other’s financial health, banks may overreact to any negative news and

withdraw their funds as quickly as possible. Such a generalized liquidity crunch may push a solvent

institution into illiquidity and bankruptcy. This means that during a crisis the topology of the

network not only changes because of defaulting banks, but also because banks reconsider their

relations with otherwise healthy banks. This seems to be in line with the stylized facts of the 2008

interbank market panic, where contagion seems to have mainly run over liquidity linkages rather

than solvency linkages, even if the underlying problem may be insuffi cient capital.

The Bank of England is developing the risk assessment model for systemic institutions (RAMSI)

to sharpen its assessment of institution-specific and system-wide vulnerabilities. RAMSI consid-

ers interbank linkages and macro-banking linkages by analyzing three areas of interconnectedness:

funding feedbacks, asset fire sales, and a real sector-financial sector feedback loop (Aikman et al,

forthcoming). We incorporate the potential impact of funding liquidity contagion and asset fire

sales in our simulations, but refrain from real macro feed-back loops.

Last it may be the case that simulations of idiosyncratic shocks miss the stylized fact, suggested

by historical default data, that large fractions of the financial sector mail fail together (default

clustering of financial institutions) due to both direct and indirect systemic linkages. Therefore it

may be useful also to simulate the impact of correlated bank defaults on the stability of the inter-

bank market, rather than just simulating the impact of idiosyncratic defaults. For the simulations

presented in this paper we have used the method of random attack, but our results are very robust

to initial correlated bank defaults. One may also want to look at the effects of contagion with and

without the financial safety net as in Upper (2011). We did as much in our much earlier Bofit

working paper (Karas et al., 2008), but in this paper we will focus on the transmission channels of

asset fire sales and funding liquidity and on the network aspects of interbank market panics.
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2.3 Networks

Our third contribution is that we also introduce the topology of the network itself into the analysis.

Allen and Gale (2000).demonstrate that the spread of contagion depends crucially on the pattern

of interconnectedness between banks, using a simple network structure with four banks. When

the network is complete, with all banks having exposures to each other such that the amount of

interbank deposits held by any bank is evenly spread over all other banks, the impact of a shock

is readily attenuated. Every bank takes a small ‘hit’and there is no contagion. By contrast, when

the network is ‘incomplete’, with banks only having exposures to a few counterparties, the system

is more fragile. The initial impact of a shock is concentrated among neighboring banks. Once

these succumb, the premature liquidation of long-term assets and the associated loss of value bring

previously unaffected banks into the front line of contagion. In a similar vein, Freixas et al (2000)

show that tiered systems with money-center banks, where banks on the periphery are linked to the

center but not to each other, may also be susceptible to contagion. The generality of insights based

on simple networks with rigid structures to real-world contagion is clearly open to debate (Gai and

Kapadia, 2011). Models with endogenous network formation (e.g. Leitner (2005) and Castiglionesi

and Navarro (2007)) impose strong assumptions which lead to stark predictions on the implied

network structure that do not reflect the complexities of real-world financial networks, while our

data set allows us to approach these real world complexities much closer. It is also important to

distinguish the probability of contagious default from its potential spread, as suggested in Gai and

Kapadia (2011). We try do as much in our simulations of contagion.

Our main interest is not the prediction of systemic risk, but the identification of the systemically

important financial institutions (SIFI). In an interbank network context, these are the banks that

are too interconnected to fail (TICTF). The empirical analysis of which banks contribute most to

the interbank network contagion (who are the super-spreaders or the TICTF banks?) is still in

its infancy. The explanatory variables used to identify these influential spreaders includes typical

social network variables like the degree of a bank in the network (the number of connections), and

various centrality measures like the a bank’s (valued) indegree, (valued) outdegree or betweenness

centrality. We will introduce to this economic literature the concept of K-coreness, measured by the

K-shell decomposition analysis. Kitsak et al. (2010) show that the node’s K-shell index predicts

the outcome of spreading more reliably than the degree of the network or any centrality measures.

We confirm this result in our simulations of contagion on the interbank network.

There have been some earlier empirical characterizations of the bank network topologies. The

first one, an analysis of the Austrian network (Boss et al., 2004) had an incomplete data set and

had to resort to certain approximation techniques (like the principle of maximizing the entropy)

to make the data more complete. Further, the size of the Austrian interbank network was rather

small. We tested our data and small world properties are empirically rejected in our data set. The

second study we wish to mention is the analysis of Cont et al (2011) of the Brazilian network. We
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take the analysis a step further by not only looking at the network topology, but also using network

measures to identify those banks that are too interconnected to fail, i.e..

3 Simulating contagion in a bank network

Every bank is a node in the network and every contract between banks is an edge in the network.

We consider a multidirected network (gross exposures between banks), instead of a directed network

(net exposures between banks) or an undirected one (relations between banks). Consider the matrix

of interbank exposures L at the end of a particular period

L =

 0 y12 y13

y21 0 y23

y31 y32 0


where yij represents gross claims of bank i on bank j; yij = 0 for i = j as banks don’t lend

to themselves. To calculate gross claims yij we sum claims of all maturities of bank i on bank j

outstanding at the end of the period. We further decompose those claims into short maturities, ystij ,

of up to a month, and long maturities, yltij , of more than a month.

We simulate an initial shock (first-round default), and then track how the shock propagates

through the interbank network, possibly resulting in knock-on effects, that is, further rounds of

contagious defaults. We model the initial shock as a sudden failure of a single bank. Various

propagation mechanisms are summarized in Table 1. The insolvency conditions Si identify insolvent

banks, the liquidity conditions Li identify illiquid banks and the infection conditions Ii identify to

which banks the insolvency and liquidity conditions will be applied in the simulations. We will

explain these mechanisms one by one, when we introduce combinations of them in our increasingly

realistic simulations scenarios (see Panel C).

3.1 Benchmark Scenario 1a: Contagion through Credit Losses

The setup of our benchmark contagion simulation amounts to credit losses depleting bank capital

of creditor banks. The initially failing bank defaults on its interbank obligations. Each remaining

bank suffers a credit loss equal to its total gross claims on the first-round domino multiplied by

the loss-given-default parameter λ. Credit losses deplete the infected creditor banks’capital. If

the suffered credit losses exceed capital an infected institution turns insolvent itself and, in turn,

defaults on its own interbank obligations. In case such second-round defaults occur, the associated

credit losses further deplete the surviving banks’ capital and possibly lead to further rounds of

insolvencies. In this manner contagion propagates through the system until no more failures occur.

Formally, in each round of contagion condition S1 determines insolvent institutions.
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Table 1: Contagion Simulations

Panel A. Simplified bank balance sheet identity

ri +

n∑
j=1

ystij +

n∑
j=1

yltij + si + ai = ci +

n∑
j=1

ystji +

n∑
j=1

yltji + li

ri − excess reserves ci − capital∑n
j=1 y

st
ij − short-term interbank lending

∑n
j=1 y

st
ji − short-term interbank borrowing∑n

j=1 y
lt
ij − long-term interbank lending

∑n
j=1 y

lt
ji − long-term interbank borrowing

si − securities
ai − other assets li − other liabilities

with n− total number of banks,∑n
j=1 yij =

∑n
j=1 y

st
ij+

∑n
j=1 y

lt
ij ,∑n

j=1 yji =
∑n
j=1 y

st
ji +

∑n
j=1 y

lt
ji

Panel B. Conditions for being insolvent (S), illiquid (L) and infected (I)

S1 ci < λ
∑n
j=1 θjyij

S2 ci < λ
∑n
j=1 θjyij +max

{
0, δ

[
ρ
∑n
j=1 θj(y

st
ji + y

lt
ji)− ri −

∑n
j=1(1− θj)(ystij + yltij)

]}
S3 ci < λ

∑n
j=1 θjyij +max

{
0, δ

[ ∑n
j=1 (ystji + y

lt
ji)− ri −

∑n
j=1(1− θj)(ystij + yltij)

]}
L1 ri +

∑n
j=1(1− θj)(ystij + yltij) + (1− δ

1+δ )si < ρ
∑n
j=1 θj(y

st
ji + y

lt
ji)

L2 ri +
∑n
j=1(1− θj)(ystij + yltij) + (1− δ

1+δ )si <
∑n
j=1 (ystji + y

lt
ji)

I1 0 < λ
∑n
j=1 θjyij

I2 0 < ρ
∑n
j=1 θj(y

st
ji + y

lt
ji)

I3 max [0, (1− µ)ci] < λ
∑n
j=1 θjyij +max

{
0, δ

[
ρ
∑n
j=1 θj(y

st
ji + y

lt
ji)− ri −

∑n
j=1(1− θj)(ystij + yltij)

]}
I4 (1− µ)ri < ρ

∑n
j=1 θj(y

st
ji + y

lt
ji)

where:
θj = 1 if bank j has defaulted, and 0 otherwise
λ - loss given default (LGD) on interbank assets
ρ - fraction of lost funding from failed banks that cannot be replaced
δ - fire sale asset haircut: selling assets worth (1 + δ) a bank takes a loss of δ
(1− µ) - fraction of capital ci / reserves ri needed to be destroyed to trigger a run

Panel C. Default rules for different contagion scenarios

Contagion scenario Default rule
1a: credit loss S1 & I1
2a: credit + funding loss (S2 or L1) & (I1 or I2)
3a: credit + funding loss + run on infected {(S2 or L1) & (I1 or I2)} or {(S3 or L2) & (I3 or I4)}
4a: credit + funding loss + run on all S3 or L2
2s, 3s, 4s: same as 2a, 3a, 4a but all ylt = 0
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Some banks in our data set enter the simulations in a state of insolvency, that is, with negative

capital. Without extra constraints all such banks would default in the second-round of the simula-

tion. We think that a more sensible treatment of such negative-capital banks, given they have not

been closed down by the regulator, would be to let them survive unless they are hit by a negative

shock. To that end, we combine the solvency condition S1 with the infection condition I1, requiring

a bank to get infected - that is, to suffer non-zero losses in the contagion exercise - before it dies.

3.2 Scenario 2a: Contagion through Credit and Funding Losses

Scenario 2a adds to scenario 1a the problem of funding liquidity losses, as emphasized in the more

recent literature. As in scenario 1a, the first-round domino fails and the lenders suffer a credit loss.

On top of that, the borrowers suffer a loss of funding previously granted by the first-round domino.

Part of that funding can be replaced on the interbank market. the remainder (fraction ρ) erodes

bank’s liquidity. If liquid assets are insuffi cient to cover the funding loss, the bank starts a fire sale

of securities. The latter sell at a discount relative to their book value resulting in a fire sale haircut.

Default occurs if:

- the bank suffers a credit loss (I1) OR

- the bank suffers a funding liquidity loss (I2)

AND

- combined credit and fire sale losses exceed bank capital (S2), OR

- cash raised through the sale of securities is still insuffi cient to cover the funding loss (L1).

In case such second-round defaults occur, the associated credit and funding losses further deplete

the surviving banks’capital and liquidity, and possibly lead to further rounds of failures. In this

manner contagion propagates through the system until no more failures occur.

Formally, in each round of contagion condition L1 determines illiquid institutions. Its right-hand

side (RHS) represents an irreplaceable funding loss; its left-hand side (LHS) comprises bank’s

liquid assets (excess reserves plus interbank claims on surviving banks) and the market value of

securities after accounting for the fire sale asset haircut δ. If LHS < RHS the bank is illiquid.

Condition S2 determines insolvent institutions. It is similar to condition S1, except for the last

term inside the max function representing fire sale losses. This last term says first, that fire sale

losses can’t be negative, and second, that positive fire sale losses are equal to the fire sale asset

haircut δ on the part of the irreplaceable funding loss (first term in squared brackets) in excess of

liquid assets (next two terms in squared brackets).

Similarly to scenario 1a, we require a bank to get infected - that is, to suffer a non-zero credit

or funding loss through contagion - before it dies. These infection conditions are represented by

conditions I1 or I2. These infection conditions imply that we assume, up till now, that banks do

not reassess their relations with still healthy banks as a consequence of a crisis. The network does
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not, as yet, change endogenously.

3.3 Scenario 3a: Contagion through Credit/Funding Losses and Runs
on Infected Banks

Contagion scenario 3a adds one extra feature to scenario 2a (see Table 1) - term {(S3 or L2) & (I3 or I4)}.
It says: if a bank is strongly infected (conditions I3 or I4), then it is prone to a run, and to survive,

must satisfy stronger conditions for both solvency (S3) and liquidity (L2) to prevent failure. This

strong infection occurs either when combined credit and fire sale losses erode a certain fraction

(1−µ) of bank capital (I3)2 , or when funding losses erode a certain fraction (1−µ) of its liquidity
(I4). Interbank market participants are generally risk averse and would rather be safe than sorry.

In periods of uncertainty and mutual suspicion they might overreact to any negative news and run

on infected institutions by not prolonging outstanding credits and withdrawing funds on current

accounts, even if these banks are still liquid and solvent. The parameter µ controls the sensitivity

of market participants to bad news: higher µ means even small contagious losses make banks vul-

nerable to a broader run. The structure of the network, that is, reacts to the crisis because banks

reconsider their existing links.

The solvency and liquidity conditions S3 and L2 are visually very similar to, respectively,

conditions S2 and L1. The difference is that a bank prone to a funding liquidity run must have

enough capital and liquidity to cover an irreplaceable funding loss equal to its total interbank

obligations. That intuition explains the absence of fraction ρ in S3 and L2: none of the lost funds

can be replaced in case of a run. It also explains the absence of default indicator θ in S3 and L2:

the loss of funding from both failing and surviving banks must be covered.
3

3.4 Scenario 4a: Contagion through Credit/Funding Losses and Runs
on All Banks

The initial failure creates a panic-like environment destroying all trust in the banking system, in

effect, contaminating all banks. Contagion propagates similarly to scenario 3a, but with all banks

assumed strongly infected from the start. It is our empirical version of liquidity hoarding by all

banks.
2Any non-zero loss suffi ces in case bank capital is negative to start with.
3For µ = 100% all infected banks are also strongly infected.
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3.5 Scenarios 2s, 3s, 4s

Interbank crises are a short-term phenomenon, typically lasting for weeks or, at most, months.

Within such a short period banks can run on each other by not prolonging/withdrawing short-

term, but not long-term funds. The same argument can be extended to the loss of funding from

defaulting institutions: in the short run it is only short-term, not long-term funding that is lost.

On the contrary, credit losses equally apply to interbank assets of all maturities.

Scenarios 2s, 3s and 4s repeat their respective counterparts 2a, 3a and 4a but taking into account

maturity differences of interbank claims. Specifically, each yltji mentioned explicitly in conditions

S1− S3, L1− L2, I1− I4 of Table 1 is treated as zero. Such treatment allows banks to withdraw
only short-term funds from each other. In the rest of the paper we report the simulations with

all contracts, but all simulations with only short maturities are available on request and yield very

similar results.

3.6 Simulation parameters

λ, ρ, δ, µ are exogenous parameters. They can take any value desired. In the reported simulations

we have assumed them to be equal for all banks. Unless stated otherwise we consider two parameter

sets:

1. λ = ρ = δ = µ = 50%

2. λ = ρ = δ = µ = 100%

The latter set represents very adverse market conditions, probably close to a truly worst-case

scenario:

- loss given default of 100%;4

- no replacement of funding losses;

- a 50% loss on securities sale: selling assets worth (1+ δ) = (1+ 100%) = 2 a bank takes a loss

of δ = 1, that is, a 50% loss;

- extreme sensitivity of market participants to bad news. News about losses of any magnitude

makes banks vulnerable to a run.

Any other combination of parameters is of course possible, probably slightly more realistic, and

available on request, but these simple assumptions performed very well. Although a loss given

default of 100% seems exaggerated, we need to take into account we consider immediate contagion,

not the ultimate result months or years later after working out all claims in bilateral settlements

4The assumption that a bank loses (a large portion of) its total gross claims on the defaulting institution is
consistent with the evidence on actual recovery rates. The CBR reports that only 3% of interbank claims on failed
institutions were recovered in the process of bank liquidation in the period 2001-2003 (Vedomosti, 2003, N 121 (921)
). In other words, loss given default on interbank claims was almost 100%.
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or court. For a bank’s liquidity and solvency indeed the loss is initially complete. Throughout the

simulations we never allow foreign banks to fail, adding some exogenous stability to the Russian

banking market. This is in line with reality, where foreign banks were in times of crisis always bailed

out by their parents and never failed. We do, however, allow foreign banks to run on domestic banks:

claims on and debts to foreign banks enter the calculation of domestic banks’interbank positions.

This is also in line with reality.

In each period we let every bank perform the role of the exogenously failing initial domino and

track the resulting contagion effects as defined above. We calculate two measures of contagion

excluding the initial domino: the percentage of failed banks; and the share of failed assets in

system-wide assets. For each month for each initially failed bank we get 28 estimates of contagion:

7 scenarios * 2 parameter sets * 2 contagion measures. The method can of course very easily

accommodate any other combination of parameters or even a parameter grid search to expand the

set of results, but it seems to us that the direction of the results is abundantly clear with the current

set of results. All other combinations of scenarios and parameters can be easily implemented and

are available on request.

One can argue that the haircut should be endogenised. Indeed the haircut in a given round

of the simulations is endogenous to the number of failing banks and the share of lost assets in

previous rounds. This problem of endogenous haircuts has a unique solution, which was provided

by Eisenberg and Noe (2001) and applied by Müller (2006). We find however that even the relatively

high constant haircut of 50% we apply has only minor effects on the simulation outcome. We also

think we have reasons to believe that a truly endogenous haircut will only reinforce the results.

Indeed, if we make the haircut an increasing function of the number of failing banks and/or the

share of last assets, we arrive at relatively lower haircuts in calm periods and higher haircuts in

crisis periods, no matter the precise functional form. This further magnifies the differences between

these two periods in the simulations results. Introducing this endogenous haircut would therefore

leave our analysis exposed to the criticism that our results are due to the specific functional form

of this endogenization. Since we are able to identify the crisis periods very accurately with the

simplifying assumption of a constant haircut, and since these results can only further improve by

the endogenization of haircuts, we choose to present results with constant haircuts.

4 Russian Interbank Market

4.1 Data Description

Mobile and Banksrate.ru, two highly respected private financial information agencies, provided us

with, respectively, monthly bank balances and monthly reports "On Interbank Loans and Deposits”
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(offi cial form’s code 0409501) for the period 1998m7 - 2004m10.5 Both types of information are a

part of standard disclosure requirements and must be supplied to the regulator on a monthly basis.

The latter report provides information on banks’gross interbank positions split by counterparty,

enabling us to reconstruct the exact matrix of interbank exposures at the end of each month (for

further details see Appendix 9.1). Balance sheets of foreign banks and off-balance-sheet positions

are not available.

In our contagion exercise we use five items from bank balance sheets:

1. excess reserves, ri, defined as correspondent accounts with the Bank of Russia plus correspon-

dent accounts with other banks

2. securities, si, defined as government plus non-government securities

3. capital, ci

4. interbank assets,
∑n
j=1 yij

5. interbank liabilities,
∑n
j=1 yji

Figures 1 and 2 present the distributions of those five variables over time. All variables are

expressed as a percentage of total assets; each observation represents a measure for a single bank

in a specific month.

By analogy with the spreading of contagious disease, we can think of excess reserves, securities

and capital as characterizing the strength of a bank’s immune system: the higher those ratios are,

the less likely a bank is to succumb to contagion and die. In particular, a high capital buffer allows

to absorb large credit and fire sale losses, while a high liquidity buffer (reserves + securities) protects

against funding losses and runs.

Figure 1 shows that in all years, average (median) capital buffers stay within a comfortable

range of 23-25% (resp. 18-22%) of total assets. The distribution tends to narrow down: over time

we observe fewer banks with very low or very high capital ratios. Remarkably, in every single

year there operate a few institutions with negative capital; in our contagion exercise losses of any

magnitude would lead to default of those institutions.

Liquidity buffers are, on average, also adequate. While the average share of securities in total

assets decreases from 19% in 1998 to 13% in 2004, the average share of reserves first rises from 11%

in 1998 to 18% in 2000-2001, and then falls to 14% in 2004. As a result average liquidity buffers

(reserves and securities combined) are somewhat lower in 1998 and 2004 compared to the years in

between.6 In all years there are banks with both near zero as well as near 100% liquidity buffers.

5For more information on the data providers see their respective websites at www.mobile.ru and www.banks-
rate.ru. Karas and Schoors (2005) provide a detailed description of the Mobile database.

6The medians follow the same pattern.
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Figure 1: Summary Statistics: Reserves, Securities & Capital

Next to the strength of banks’immune system, the spread of contagion is also determined by

the size and structure of banks’bilateral exposures. As shown in Figure 2 most Russian banks

have a small to moderate exposure to the interbank market of up to 10% of total assets; yet some

banks have an exposure in excess off 50%. The average Russian bank is a net borrower on the

interbank market : the average share of interbank assets in total assets fluctuates around 4-5%,

while the average share of interbank obligations varies from 6 to 8%. The average net liability

position has remained rather stable over time. Though average capital and liquidity buffers seem

large in comparison with average interbank positions, contagion can still find its way through banks

with low buffers and/or large exposures.
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Figure 2: Summary Statistics: Interbank Assets & Liabilities

4.2 Market Structure

This section discusses the interbank market structure. In each period we assign banks to one of the

three groups:

1. domestic big B - top 40 banks in terms of total assets

2. domestic small S - all remaining domestic banks

3. foreign F

We further compose a matrix G of group-wise exposures split by maturity
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G =

 SSst, SSlt SBst, SBlt SF st, SF lt

BSst, BSlt BBst, BBlt BF st, BF lt

FSst, FSlt FBst, FBlt FF − unknown


where BBst (BBlt) represents short-term (long-term) loans from big domestic banks to other

big domestic banks, SB - from small to big, FB - from foreign to big, etc. Figures 3 - 6 plot

those group-wise exposures over time: Figures 3 and 5 report interactions between domestic and

foreign banks (FS, FB, SF,BF ); Figures 4 and 6 focus on interactions between domestic banks

(SS, SB,BS,BB). On the vertical axis we indicate the time period (month) and the number of

domestic banks active on the interbank market during that period.

The length of each bar represents total claims outstanding at the end of the respective month

between domestic and foreign banks (Figure 3) and between domestic banks (Figure 4). In both

figures bar lengths considerably increase over the sample period: almost 7-fold in Figure 3 and 12-

fold in Figure 4. However, while the latter increase is fairly gradual over time, the former is largely

concentrated in the first 7 and the last 20 months of the sample period. All claims combined (not

shown) rise at a pace comparable to that of nominal GDP (claims rise by a factor of 7.4 versus 6.5 for

GDP).7 Now compare the lengths of bars across Figures 3 and 4. Clearly, total outstanding claims

involving a foreign counterparty have always been a factor of 2 to 5 larger than those involving

only domestic banks, indicating the crucial stabilizing role of foreign banks in providing interbank

market funding to the Russian banking system, at least in 2004 and 2008. In 2008, the shock in

foreign interbank markets turned this dependence on foreign banks into a weakness, rather than a

strength and exposed the Russian banking system to a sudden stop problem.

The differently colored components of each bar in Figures 3 and 5 clarify what types of foreign

transactions are particularly wide-spread. Focusing on Figure 5, where interbank claims are pre-

sented as shares of total, the first 4 colored components counting from the left, from white to black,

represent loans from foreign banks, FS and FB. Together they visibly dominate the remaining 4

components representing loans to foreign banks, SF and BF . In turn, of all loans from foreign

banks the overwhelmingly dominant share has at least a month to maturity (FSlt and FBlt), of

which the major part is absorbed by big banks (FBlt). In contrast, loans to foreign banks largely

have short-term nature: a particularly large component is BF st, the second color counting from

the right. Overall, the prevalence of dark colors in Figure 5 highlights that most of cross-border

interbank activity is performed by the 40 biggest domestic banks. The only notable exception is

long-term lending FSlt to small banks, the second color counting from the left. All this again

clearly illustrates the dependence of the Russian interbank market on foreign wholesale funding.

While most of cross-border interaction falls on big Russian banks, purely domestic activity is far

less concentrated. The two most right components in Figure 6, representing transactions between

7Source: Rosstat
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Figure 3: Foreign - Domestic Interbank Interactions Split by Maturity
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Figure 4: Small - Big Domestic Interbank Interactions Split by Maturity
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Figure 5: Foreign - Domestic Interbank Interactions Split by Maturity
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Figure 6: Small - Big Domestic Interbank Interactions Split by Maturity
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big banks (BBst, BBlt), are only dominant in the few months of low interbank market activity

following the August 1998 crisis. Starting from year 2000 the other components (BS, SB, SS) are

roughly on par with BB. Further, loans originating from small banks (the left 4 colors from white

to black) are generally comparable in magnitude to loans originating from big banks (the right 4

colors, again from white to black). In terms of maturity short-term claims prevail in all categories.

4.3 Interbank Market Crises

The 2004 ’mini-crisis’ started with an unexpected failure of a single bank. The bank was fairly

small, and was not an important interbank market player; its failure occurred at the time when

Russian economy (including its banking system) was in good shape. Yet that single failure caused

panic and a near collapse of the whole interbank market.

In May 2004 the Central Bank of Russia (CBR) deprived Sodbusinessbank of its license on

accusation of money-laundering (the first case of this kind in Russia). A few days later the head

of the Federal Service for Financial Monitoring (FSFM) Mr. Zubkov announced that his Service

suspected about a dozen banks in money laundering and sponsorship of terrorism, without naming

the ’dirty dozen’. Several inconsistent ‘black lists’ began circulating the banking community as

bankers tried to guess which banks were suspected by the FSFM. Mutual suspicion led to a drying

up of liquidity on the interbank market, putting pressure on the hundreds of smaller banks that are

highly dependent on it. The crisis of confidence provoked runs on several large banks among which

were Guta Bank and Alfa Bank. Being severely hit by the liquidity shock and abrupt withdrawal of

a number of large depositors, Guta Bank found itself on the edge of bankruptcy and was acquired

by the state-owned Vneshtorgbank at a symbolic price.

The 2004 turmoil, taking place during a favorable macroeconomic environment, contrasts sharply

with the crisis of 1998, which resulted from a fundamental systemic shock directly jeopardizing the

solvency of multiple banks. The government’s desperate need for money in the run-up to the 1996

presidential elections led to very high yields on treasury bills (GKOs). In the beginning of 1996 the

average lending rate on loans to the real economy was 60% per annum, while the yield on GKOs

was around 100% per annum. Moreover, incomes from GKO investment were tax deductible. In

the second half of 1996 Russian banks began borrowing actively on foreign markets (currency loans

from foreign banks and Eurobonds). The huge difference between domestic and foreign interest

rates in combination with relatively stable ruble exchange rate, guaranteed by the ruble corridor

policy (a crawling currency band), ensured huge profits. When the GKO market was opened to

foreigners in 1997, the desire of foreign investors to hedge their ruble investments was met by

Russian counterparts, who took short positions in forward contracts on foreign currency. The

Russian banks, involved in this trade, carried a huge amount of fundamentally uncovered currency

risk. In the beginning of 1998 the share of foreign currency denominated liabilities significantly
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exceeded ruble denominated liabilities. In a vain attempt to reduce the currency mismatch in their

books, banks began extending foreign currency denominated loans to domestic borrowers. In fact,

by shifting currency risk to their borrowers banks substituted it by credit risk, because after the

ruble devaluation most of the borrowers defaulted.

The Asian crisis and dwindling yields on GKOs made Russian government debt securities less

attractive to foreigners and provoked capital outflows. Protecting the ruble from devaluation, the

CBR lost the lion’s share of its international reserves. At the same time the Russian government

faced problems to roll over its GKO debt. In August 1998 the CBR’s exchange rate policy became

untenable. Although GKO yields soared to 100% per annum and more, banks were liquidating their

positions. On 17 August 1998, Russia abandoned its exchange rate regime, defaulted on its domestic

public debt and declared a moratorium on all private foreign liabilities, which was equivalent to an

outright default. The Russian bank sector was hit severely by the uncovered forward contracts on

foreign currency, the government default on GKOs and the subsequent bank runs (Perotti, 2002).

The crisis completely paralyzed the interbank market. The recovery took more than a year.

5 Simulation Results

5.1 Scenario 1a: Contagion through Credit Losses

Figure 7 reports the results of our contagion simulations for scenario 1a with λ = 100%. The length

of each bar represents the frequency of contagion - the number of first-round dominos that generate

non-zero contagion in a particular month. That number can range from a minimum of zero to a

maximum of all institutions active on the interbank market in the corresponding month; the latter

is reported on the vertical axis next to the time period.

The colors in Figure 7 represent the damage done by contagion, measured as a percentage

of failed assets (excluding the initial domino) in system-wide assets. We assign all instances of

contagion into four categories based on their damage: from minor damage of up to 1% of system-

wide assets (light gray) to substantial damage of above 10% (black). The left black number next

to each bar signifies the maximal simulated damage, that is, the worst-case scenario. The right

gray number indicates the percentage of system-wide assets that belongs to initially weak nodes,

here defined as banks with negative capital. The latter are a particularly easy target for contagion:

given their initially negative capital even minor losses result in their failure. Both numbers are

rounded to a full percentage point.

The results of this simulation show very little signs of trouble, just like the early contagion

literature failed to predict the 2007-2012 problems with models solely based on credit losses and

capital buffers. On average the frequency and the damage of contagion are very low: only about

2% of initial failures lead to contagion and even the worst-case damage rarely affects more than
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Figure 7: Percentage of Failed Assets (Scenario 1a, λ = ρ = δ = µ = 100%)
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5% of system-wide assets. Interestingly the model does seem to capture the timing, though not

the severity, of the 1998 crisis. Indeed both the frequency and the inflicted damage of contagion

are comparatively pronounced during and right after the August 1998 crisis. In these months we

observe that 6-7% of the initial failures lead to contagion and several of the contagious banks inflict

serious damage on the system, as shown by the dark colors on the bars in these months. The worst-

case scenario damage hovers around or even above 10% during and in the immediate aftermath

of the 1998 crisis. On the other hand, we also observe that the frequency and the damage fall

gradually fall to zero over time and remain absolutely flat during the sever 2004 crisis. In addition

these simulation give no indication of the coming August 1998 melt-down: the frequency and the

damage are remarkably low in July 1998.

These results are largely driven by the weakness of some nodes in the network. Indeed, when we

compare the simulation results from the very adverse environment parameter set (see Figure 7) to

the ones from the more moderate parameter set (see Figure 8), we see that the parameters (in this

scenario largely the loss given default λ) do not seem to affect the results much at all in terms of

frequency of damage inflicted by contagion, suggesting that most of the action in the results comes

from weak nodes that succumb to contagion regardless of the magnitude of the loss. There are

indeed only a few occasions where the, in the worst case scenario, there are more failing banks than

weak banks (the black number on the bar exceeds the gray number), showing beyond doubt that

contagion has the potential to kill some banks with positive capital buffers. Still, most worst-case

scenarios exhibit the opposite pattern, signifying that the contagion simulated in this way is not

potent enough even to kill off all the weak nodes in the network. Turning our attention to the

number of failed banks in Figures 10/9, we observe the inflicted damage is substantially lower than

in our previous result figures focusing at the share of assets lost (Figures 7/8), indicating that in

this scenario the damage, if any, mostly comes from a few failing big banks rather than many small

ones.

5.2 Scenario 2a: Contagion through Credit and Funding Losses

We know enrich our analysis with funding liquidity losses that run over the network. We will from

now on show only one figure with results, namely the figure showing failed assets for the extreme

parameter set. The other figures, equivalent with the ones of the previous section, are readily

available on request. Figure 11 replicates Figure 7 for scenario 2a with λ = ρ = δ = µ = 100%.

Results are very comparable to the previous scenario. The main difference seems to be that the

inclusion of funding liquidity losses improves the ability of our simulation to capture the severity

of the 1998 meltdown. Indeed, during and after the 1998 crisis there are about four times as many

instances of contagion and the damage inflicted by contagion is much more severe as indicated by

the size of the black bars in the figure. But the 2004 crisis still passes below the radar of our
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Figure 8: Percentage of Failed Assets (Scenario 1a, λ = ρ = δ = µ = 50%)
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Figure 9: Percentage of Failed Banks (Scenario 1a, λ = ρ = δ = µ = 50%)
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Figure 10: Percentage of Failed Banks (Scenario 1a, λ = ρ = δ = µ = 100%)
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Figure 11: Percentage of Failed Assets (Scenario 2a, λ = ρ = δ = µ = 100%)
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simulations, suggesting that an important transmission channel of interbank market contagion is

still missing, though we allow funding liquidity losses.

5.3 Scenario 3a: Contagion through Credit/Funding Losses and Runs
on Infected Banks

In scenario 3a we make the structure of the network endogenous, by enriching our previous sim-

ulation with the possibility of rational liquidity runs: If a bank is relatively strongly infected by

credit or liquidity losses, then it is prone to a liquidity run by others, and to survive, they must

have suffi cient capital and liquidity to cover an irreplaceable funding loss equal to its total inter-

bank obligations. We essentially assume that banks run on infected banks, which seems to be what

happened in 2008, 2010 and 2011 in European banking markets. Figure 12 reports our results for

scenario 3a with λ = ρ = δ = µ = 100%. Its layout is similar to Figure 11 with the exception

that the initially weak nodes here consist of both insolvent and illiquid banks. We define banks as

initially illiquid if their interbank liabilities exceed their liquid assets; the latter consist of reserves,

securities and interbank assets.

There are two really striking observations. First of all, the severity of the 1998 crisis is now

much better captured, with up to 300 instances of contagion and huge proportions of severe inflicted

damage (the black parts of the bars). Second, and probably most important, the 2004 crisis is on

the radar screen too now, with even more instances of contagion and higher inflicted damage of the

system. Also, even in calm times, there are always at least some instances of possible contagion.

These very accurate capturing of reality seems to suggest that the modeling of liquidity runs is

crucial to understanding and simulating interbank market instability.

5.4 Scenario 4a: Contagion through Credit/Funding Losses and Runs
on All Banks

Figure ?? replicates Figure 12 for scenario 4a with λ = ρ = δ = µ = 100%. The only difference is

that we assume that banks run on each other in any case, whether there is a considerable infection

or not. It is, in effect, our way of simulating the impact of a completely blind liquidity hoarding

on the interbank market. Not surprisingly, the lion’s share of the banking system now succumbs

to contagion in most any time period and the interbank market essentially ceases to exist, which

possible makes these results less interesting for understanding or anticipating interbank market

instability. The results are available on request, but not shown here to economize on space.

29



13
33

41
36

37
28

36
40

34
54

25
22

15
15

12
13

11
10

23
12

9
12

10
11

7
8

9
7

7
5

8
8

7
7

9
6

7
6

8
8

6
4

7
6

7
6

6
6

6
5

5
6

6
4

4
5
5

5
5

8
8

7
10

12
8

9
5

10
10

16
12

14
18

16
16

8
10

26
21

19
20

27
29

29
40

19
18

15
14

14
14

11
12

23
13

12
12

12
12

10
9

10
10

10
9

8
8

7
7

8
8

8
6

6
7

7
6

7
7

7
6

7
7

7
6

6
6

6
5

5
5
5

5
5

5
5

5
3

5
6

6
4

7
7

8
7

7
7

7
9

0 100 200 300 400 500
Instances of Contagion

1998m07   856
1998m08   137
1998m09   152
1998m10   633
1998m11   618
1998m12   101
1999m01   628
1999m02   606
1999m03   641
1999m04   669
1999m05   618
1999m06   646
1999m07   643
1999m08   663
1999m09   669
1999m10   713
1999m11   707
1999m12   654
2000m01   680
2000m02   713
2000m03   691
2000m04   735
2000m05   722
2000m06   718
2000m07   717
2000m08   713
2000m09   723
2000m10   733
2000m11   733
2000m12   708
2001m01   752
2001m02   772
2001m03   777
2001m04   796
2001m05   783
2001m06   794
2001m07   792
2001m08   799
2001m09   796
2001m10   819
2001m11   832
2001m12   776
2002m01   828
2002m02   840
2002m03   823
2002m04   839
2002m05   807
2002m06   845
2002m07   847
2002m08   850
2002m09   841
2002m10   863
2002m11   845
2003m01   832
2003m02   893
2003m03   864
2003m04   890
2003m05   879
2003m06   879
2003m07   910
2003m08   919
2003m09   902
2003m10   918
2003m11   898
2003m12   840
2004m01   864
2004m02   874
2004m03   863
2004m04   907
2004m05   897
2004m06   819
2004m07   802
2004m08   823
2004m09   821
2004m10   832

0­ 1­ 5­ 10­

Figure 12: Percentage of Failed Assets (Scenario 3a, λ = ρ = δ = µ = 100%)
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6 Are the influential spreaders of contagion Too Big To Fail

or Too Interconnected To Fail?

We view the interbank market as a network. The nodes represent banks and the links (arcs)

represent interbank exposures. The degree of a node is the number of connections it has to other

nodes. The conventional wisdom in the literature is that the centrality of a node in the network is

a good predictor for the node’s potential to spread contagion. Kitsak et. al. (2010) challenge that

wisdom for a variety of social networks. Kitsak et al. (2010) show that the node’s K-shell index,

which is the result from a K-core decomposition analysis, predicts the outcome of spreading more

reliably than the degree of the network or any centrality measures. We introduce this concept of

K-coreness to the banking literature.

We run regressions of the form:

Cit = α+ β′Bankit + λt + εit (1)

where i = 1, ..., N and t = 1, ..., T . N is the number of domestic banks active on the interbank

market. The panel is unbalanced, so T , the number of observations per bank, varies across insti-

tutions. Time dummies, λt, control for macroeconomic and banking sector developments common

across banks.

The left-hand side variable, Cit, is a measure of contagion produced by the first-round failure

of bank i in period t. We employ various contagion measures corresponding to different scenarios

presented in section 3. As all those measures are censored at zero for a substantial fraction of banks,

we opt for the Tobit model. Bankit represents a vector of bank-specific variables hypothesized to

determine bank ability to initiate contagion. Those variables include size (measured as bank assets

divided by system-wide assets) as well as a range of descriptors of bank’s relative position in the

interbank network, namely several centrality indices and an index of coreness. Defaulting top

debtors (lenders) are likely to produce most contagion: they deliver major credit (resp. funding)

losses and infect a large number of counterparties on their liability (resp. asset) side. To capture this

spreading capacity we employ five centrality indices (see Table 2). All indices consider transactions

between domestic banks only, and are computed for each month separately; all indices range from

0 to 1.

Next to centrality indices we compute an index of coreness, K-shell index. Figure 13 illustrates

the procedure. For each month we start by removing all nodes with degree=1. After removing all

the nodes with degree=1, some nodes may be left with one link, so we continue pruning the system

iteratively until there is no node left with degree=1 in the network. The removed nodes, along with

the corresponding links, are assigned a K-shell index of 1. In a similar fashion, we iteratively remove

the next K-shell equal to 2, and continue removing higher K-shells until all nodes are removed. As
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Table 2: Centrality Indices

Index Formula Description

Valued
Outdegree

0 ≤ V Oi =
∑n

j=1 yij

System-wide Assets ≤ 1
bank share in system-wide

interbank assets

Valued
Indegree

0 ≤ V Ii =
∑n

j=1 yji

System-wide Liabilities ≤ 1
bank share in system-wide

interbank liabilities

Non-valued
Outdegree

0 ≤ NOi =
∑n

j=1(yij>0)

n−1 ≤ 1 % of market participants a bank has
as counterparties on its asset side

Non-valued
Indegree

0 ≤ NIi =
∑n

j=1(yji>0)

n−1 ≤ 1 % of market participants a bank has
as counterparties on its liability side

Betweenness
Centrality

see Miura (2011) whose Stata
Graph Library we use

% of shortest paths linking institutions
other than bank i passing through bank i

where yij− gross claims of bank i on bank j
(yij > 0) evaluates to 1 if bank i has claims on bank j; and 0 otherwise
(n− 1)− max number of links a bank can have
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Figure 13: Example of K-core Decomposition (assigned K-core indices in the boxes)

a result, each node is associated with one index of coreness, and the network can be viewed as the

union of all K-shells, most like the onion is the union of its shells. Every bank is assigned to its shell

by its K-shell index. The resulting classification of a node can be very different from the degree, for

example for banks at the center of a far-away local banking hub, that may have a relatively high

degree, but a very low measure of coreness.

In Figure 14 we have a first look at the simulation results in function of coreness. We start from

the simulation results of scenario 3a that are far superior in capturing actual interbank market

instability. The first thing to observe is that the Russian interbank network became more complex

and layered over time, ranging from a low of only two shells in December 1998 to a high of not less

than 12 shells in April 2004. This increasing complexity of the network over time also drives the large

difference between scenario 2a and 3a. Indeed, the fact that the interbank liquidity run scenario

does so well in capturing the 2004 crisis is related to the increased complexity of the interbank

market in 2004 that magnifies the potential impact of liquidity runs on the stability of the system.

Also, we clearly observe how individual bank coreness is very strongly related to potential damage to
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interbank market stability. Higher K-shell indices are firmly related to darker colors (more contagion

damage to the system) in every period of our sample, indicating that the failure of banks at the

core of the system is essential in the phase transition of the interbank market from liquid to illiquid.

In Table 3 we present the estimates of (1). In columns (1) and (4) we introduce all our bank level

explanatory variables, with the exception of our index of bank K-coreness. In columns (2) and (5)

we repeat this exercise, but only introducing our index of bank K-coreness as explanatory variable.

According to all information criteria, the simple regression including only the K-shell index clearly

outperforms the other regressions. In columns (3) and (6) we include all variables. The estimates of

the K-shell index are very robust, while the point estimate, significance and even signs of the other

network variables are heavily affected by the inclusion of the K-shell index. We conclude beyond

reasonable doubt that the K-shell index is superior to other network variables in understanding

an individual’s bank potential contribution to interbank market contagion, confirming the earlier

results of Kitsak et al. (2010) in a banking environment.

The size of the bank shows up as a determinant of the bank level contribution to contagion when

we try to explain the individual failing bank’s contribution to the share of lost assets (column 4),

but that the importance of size falters when we introduce the K-shell index in column 6, forcefully

making the point that the coreness of a bank is not necessarily the same as its size.

To ensure these conclusions are robust across time, we re-estimate equation (1) for each time

period separately and collect the t-statistics. Figure 15 presents the distribution of those t-statistics

for each coeffi cient. For better visibility all t-statistics above 10 are assigned a value of 10. The

results are overwhelmingly clear. In every period considered, the bank’s coreness is the best pre-

dictor of individual banks’contribution to potential interbank market contagion. Bank coreness

is remains highly significant in every time period, and the significance reaches very high levels (t-

statistic > 10) in a considerable number of time periods.

We further investigate this point by looking into the weighted K-shell index K(α), which is

defined as the K-shell index calculated with only αth percentile of largest links, in our case the

α% largest interbank loans. Our standard K-shell index is then expressed as K(100).When we

apply this to our framework and repeat the estimations of the previous paragraph, we find that

if we use K(50),thus neglecting the 50th percent smallest contracts, the explanatory power of the

regressions diminishes considerably (indicating indeed that interconnectedness matters rather than

size) but also that the K-shell index still strongly outperforms any of our other variables in every

period, suggesting that our method has potential with even less than complete data and that it

may therefore be applicable in reality by the guardians of systemic stability (results available on

request). We have also experimented with other more elaborate versions of the weighted K-index,

involving the normalization of the interbank contracts. The results (available on request) were

robust though less strong than the results with the unweighted K-shell index, again suggesting that

interconnections matter more than size and that even incomplete information on interconnections
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Table 3: Identifying Influential Spreaders

C = Share of failed banks C = Share of failed assets
VARIABLES (1) (2) (3) (4) (5) (6)

NI 1.11*** -0.71*** 2.88*** -2.00***
(8.6) (-5.6) (7.7) (-5.4)

NO 2.32*** 0.17* 5.55*** -0.22
(11.2) (1.9) (9.9) (-1.0)

VI 0.38** 0.30*** 1.15** 0.93***
(2.6) (3.0) (2.5) (2.9)

VO 0.09 0.10* 0.33* 0.35
(1.6) (1.7) (1.7) (1.6)

Betw -0.74*** 0.56*** -1.89*** 1.59***
(-6.9) (5.4) (-6.4) (5.3)

Size 0.04 -0.02 0.11* -0.04
(1.5) (-1.4) (1.6) (-0.7)

K-shell index 0.01*** 0.01*** 0.02*** 0.02***
(47.6) (33.2) (42.6) (32.1)

Constant -0.04*** -0.05*** -0.05*** -0.11*** -0.14*** -0.14***
(-21.6) (-29.4) (-29.4) (-20.5) (-27.7) (-27.9)

Observations 56,782 56,782 56,782 56,782 56,782 56,782
AIC -35266 -39023 -40119 3026 -443.9 -1297
BIC -34532 -38334 -39376 3760 245.0 -554.1
ML (Cox-Snell) R2 0.268 0.315 0.328 0.233 0.278 0.289
McKelvey-Zavoina’s R2 0.328 0.397 0.409 0.287 0.355 0.365

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

36



­5
0

5
10

t­s
ta

tis
tic

s

K­core NI NO VI VO Betw Size

Figure 15: Influential Spreaders over Time: (% of Failed Assets; Scenario 3a, λ = ρ = δ = µ =
100%)

may be helpful.

It seems clear that if policymakers want to steer clear from crises driven by liquidity runs, they

should take into account individual bank coreness in the design of capital rules and in the design

of liquidity support in times of crisis. Requiring higher capital from core banks and in exchange

providing them ample liquidity in times of crisis seems a wise policy to increase the stability of

the interbank market. In judging a bank’s coreness, it seems advisable that bank policy makers

should take into account the tieredness and complexity of the banking system, rather than just bank

size. The K-shell index seems to be the best measure currently available to make this judgment.

Less than complete data on interconnections may suffi ce to draw the right conclusions, making the

K-shell index a realistic tool for the guardians of systemic stability.
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7 Conclusion

We provide a new way of simulating the impact of interbank market contagion on the stability

of the interbank market. We not only look at credit losses and capital, but also turn attention

to funding liquidity losses, fire sales of assets and active liquidity runs on infected banks that

change the network topology during a crisis. Employing a Russian training data set of time-

varying bilateral interbank exposures with contract data, and monthly balances and profit and loss

accounts, we show that especially allowing active liquidity runs on infected banks turns out to be

essential to properly capturing reality with our simulations. We then use the simulation technique

to calculate the individual banks’contributions to contagion in specific months and use this as a

measure of systemic importance. We proceed by trying to predict individual banks’contribution

to the simulated contagion, relying only on the bank’s position in the network, throwing away the

information on bank capital, liquidity, reserves, assets, and the individual contract data. We find

that there is one and only one robust and reliable predictor of a bank’s potential to spread contagion,

namely its coreness to the banking system as measured by the K-shell index. It clearly outperforms

bank size in the regressions. If we use a weighted version of the K-shell index, giving more weight

to size in its calculation, the measure still outperforms bank size, but does clearly worse than the

unweighted one, stressing again that a bank’s systemic importance is not to be confounded with tis

size. We therefore claim to have found a simple and robust way to identify those banks that now

commonly referred to as systemically important, even in fairly big and complex networks. It seems

clear that policymakers should take this information into account in their design of capital rules and

in the design of liquidity support in times of crisis. Requiring higher capital from core banks and in

exchange providing them ample liquidity in times of crisis seems to have the benefit of increasing

the stability of the interbank market. This requires that the supervisors have information on the

topology of the network. Further theoretical and empirical research is needed to study possible

trade-offs.
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9 Appendices

9.1 Data on Interbank Exposures

The sample period is 1998m7 - 2004m10. The data on bilateral interbank exposures comes from

reports "On Interbank Loans and Deposits” (offi cial form’s code 0409501), a part of standard

disclosure requirements supplied to the regulator on a monthly basis. Each record in the database

identifies the lender, the borrower, the contract type (see Table 4 for an overview), the time period,

the beginning and the end of period balances, the debit and credit turnovers, the interest rate and

the maturity date. After dropping transactions with missing entries we are left with about 3,7 mln

records.

Table 4: Types of Interbank Market Contracts

Interbank Liabilities Interbank Assets
Loans from Deposits of Loans to Deposits with

Maturity home foreign home foreign home foreign home foreign
(1) (2) (3) (4) (5) (6) (7) (8)

overdraft 31301 31401 32001 32101
< 1 day 31302 31402 31502 31602 32002 32102 32202 32302
2-7 d 31303 31403 31503 31603 32003 32103 32203 32303
8-30 d 31304 31404 31504 31604 32004 32104 32204 32304
31-90 d 31305 31405 31505 31605 32005 32105 32205 32305
91-180 d 31306 31406 31506 31606 32006 32106 32206 32306
0,5-1 y 31307 31407 31507 31607 32007 32107 32207 32307
1-3 y 31308 31408 31508 31608 32008 32108 32208 32308
> 3 y 31309 31409 31509 31609 32009 32109 32209 32309
demand 31310 31410 31501 31601 32010 32110 32201 32301
bankcards 31510 31610 32210 32310
overdue 31702 31703 31702 31703 32401 32402 32401 32402

Note: The table reports account numbers from the bank chart of accounts corresponding to
contract types of different maturity and counterparty’s origin. A loan is a contract initiated
by the borrower, while a deposit is initiated by the lender.

Each transaction between two domestic banks should, in principle, be recorded twice in the

database: on the asset side of the lender and the liability side of the borrower. This pattern does

not always hold:

1. some claims recorded by lenders can not be traced in the borrowers’data and vice versa

2. often records made by two counterparties seem to refer to the same transaction but differ in

one or two details: the specified account number, interest rate, maturity date etc.
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We do not see a safe way to combine lenders’and borrowers’data into one comprehensive dataset

without the risk of counting some transactions twice. Instead we opt to rely on lenders’data in

what follows, but redo all the analyses using borrowers’data as a robustness check.8 None of our

conclusions are sensitive to this choice.

The two most frequently encountered contract types accounting for more than 60% of all data-

base records are accounts 32002 and 32003 - loans between domestic banks for up to a week (see

Table 4). Most of those loans, however, are of little interest to us, as they are both granted and

repayed within one month leaving a zero end-of-period exposure. For this paper instead we focus

on transactions with a non-zero end-of-period balance. That leaves us with about 370,000 records,

which are somewhat more equally distributed across the different contract types (see Figure 16).

8Transactions involving a foreign counterparty are always recorded once in the database - by the domestic bank.
For those transactions we always use all the available data.
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Figure 16: Distribution of Interbank Transactions by Contract Type
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