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Abstract

The importance of adequately modeling credit risk has once again been highlighted in the recent
financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic
conditions, but also by directly triggering each other through contagion. Although credit default swaps
have radically altered the dynamics of contagion for more than a decade, models quantifying their impact
on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized
economic network of corporates and financial institutions. We analyse such a system using a stochastic
setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire
system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to
greater instability of the entire network in times of economic stress. This is particularly pronounced when
CDS are used by banks to expand their loan books (arguing that CDS would offload the additional
risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book
expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very
high default rates in the system. Our approach adds a new dimension to research on credit contagion,
and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.

1 Introduction

The spectacular growth of the global financial system in the past two decades, followed by its near collapse
in 2008, has prompted renewed efforts to assess the risks that may be hidden in the world-wide network
of interconnected financial exposures [1, 2, 3, 4]. Yet, although the rapid global expansion of financial
markets has in no small part been driven by a significant increase in derivatives trading, both in volume and
in complexity, theoretical investigations into the contribution of derivatives to systemic risk, which would
match those dealing with credit risk at a portfolio or economy-wide level [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
are curiously missing.

Credit events tend to cluster in times of economic stress, [17] forcing banks to recognize disproportionately
many defaults in recessions. This is due to two reasons. First, the profitability of firms depends on common
macro-economic variables, such as economic growth, leading to an increase in default rates when macro-
economic conditions are poor. Second, firms are directly linked with each other through business relations.
The default of a large customer or supplier, for instance, will adversely affect the credit position of a firm,
which may then default and in turn influence its customers and suppliers. Such a direct dependency of
defaults is referred to as credit contagion. Both mechanisms underlying clustering of defaults have received
considerable attention in the credit risk literature for more than a decade; see [5, 6, 7], and [7, 8, 9, 10,
11, 12, 13, 14, 15, 16]. Evidence suggests that the dependence on common factors can by itself not explain
observed levels of correlation [18], and that credit contagion, possibly in conjunction with the effect of further
unobserved macro-economic covariates — so-called frailty — is important to explain the data [19, 20].

An entirely new dimension has been added to contagion dynamics in the last two decades through
the emergence of credit default swap (CDS) markets, which have created pervasive new forms of financial
dependencies. However, while contagion has been addressed in models dealing with the pricing of these
instruments (see e.g. [21, 22, 23, 24, 25, 26, 27, 28, 29])). their role as transmitters of contagion and thus as
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sources of systemic risk has not received much attention. Two recent exceptions deserve mention, viz. [30],
who takes a first step by looking at CDS spreads as indicators of contagion, and more importantly and closer
to our main points of concern [31], an empirical study which reconstructs the network of financial exposures
of major financial players in the US, including exposures due to CDS. A series of stress tests performed
by these authors on the reconstructed network of financial exposures clearly demonstrates the destabilizing
potential of CDS. We will return to the findings of this paper in relation to ours in greater detail in our final
concluding section.

There have been considerable efforts in recent years to assess levels of risk in the financial system from
a networks perspective (e.g., [32, 33, 34, 35, 36] and references therein). These have largely concentrated
on analysing networks of mutual financial exposures described by pair-interactions. However, as we shall
see below, the analysis of contagion dynamics in networks with CDS contracts requires the introduction
of networks with hyper-edges corresponding to ‘three-particle interactions’, which have been missing in
conventional network approaches. We note that a completely different perspective on stability of financial
systems is taken in [37] which describes erosion of market stability resulting from a proliferation of financial

instruments.
A CDS is a contract in which a protection buyer pays a periodic fee (the CDS premium) to a protection

seller, to protect itself against a potential loss on an exposure to an individual loan or a bond as a result of
an unforeseen event (see Fig.1, left panel). Such a credit event is generally triggered if the reference entity

on which the loan or bond was written has become unable to pay interest or principal on its debt. If a
credit event occurs, the protection seller has to make a payment to the buyer of the CDS to compensate him
for the loss. A CDS is therefore similar to an insurance contract: it provides protection against an adverse
event in exchange for a periodic fee. Remarkably, a significant fraction of CDS markets is of a different,
speculative nature; in speculative CDS contracts protection buyers need not actually hold a risky exposure
on the reference entity (Fig.1, right panel).
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Figure 1: Left: Mechanics of a CDS contract used for hedging. Right: Mechanics of a speculative CDS.

According to surveys of the International Swaps and Derivatives Association, the global volume of the
CDS market has steadily grown from a value of $918 bn in 2001 to a peak value of $62 trn in 2007, with a
subsequent sharp decline in the wake of the financial crisis to $38 trn in 2008, and further down to $30 trn
in 2009 [38].

While in theory CDS should reduce credit risk, the recent financial crisis has shown that CDS can be a
source of risk in themselves. A case in point is the insurer AIG, which faced bankruptcy after the failure of
Lehman Brothers due to the large payouts it was required to make on its CDS contracts referencing Lehman.
A default of AIG would have forced its counter-parties to recognize large and unexpected losses on assets
they had assumed would not be a source of risk, and would have triggered an avalanche of further defaults
across the financial system. These are precisely the dynamics of contagion — prevented from unfolding only
by a costly government bail out [3].

In view of the significant volume of CDS markets and their well documented prominent role in the
unfolding of the recent financial crisis [3] we are thus led to analyze contagion dynamics and systemic risk in
networks of financial dependencies which include exposures created by CDS contracts as additional contagion
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channels.
We will be looking at an economy composed of interacting heterogeneous networks of ‘firms’ and ‘financial

institutions’. We assume that financial institutions provide credit lines to firms, and that they engage in CDS
contracts among each other, either for the purpose of hedging their exposures to firms, or for speculative
purposes.

To describe the evolution of an interacting network of wealth positions, we set up a discrete-time stochas-
tic process, in which the probability of default of a given entity (a node in this network) at a particular time
step depends on the current, and as we shall see, also the past states of its economic partners, as well as on
common macro-economic variables. We restrict our attention at a time horizon T of one year, divided into
twelve discrete time steps ∆t ≡ 1, each representing a month.

The model considered here is a direct generalization of a model first proposed in [13] to analyze the
influence of economic interactions on credit risk. The two main additional features are (i) the presence of
three-particle interactions created by CDS contracts, and (ii) the non-Markovian nature of contagion effects
in systems with CDS contracts. The stochastic characterization of the economic network, and the heuristic
arguments used to solve the macroscopic system dynamics follow lines of reasoning introduced earlier to
analyse dynamics of neural networks [39], and recently applied in analytic studies of contagion dynamics
in [14, 16]. As shown in [14], one can invoke the generating functional techniques of [40] to demonstrate
that the heuristic reasoning is exact in the large system limit. We shall not repeat those rather involved
arguments in the present case, however.

The remainder of this document is structured as follows. In Sect. 2 we describe a stochastic default
dynamics of the nodes in the network in terms of wealth positions. By analysing wealth positions and the
effect of economic interactions on losses for each node in Sect. 2.1 the default dynamics is shown to capture
contagion effects. For financial institutions these include in particular contagion effects from ‘three-particle’
interactions created by CDS contracts. We proceed to analyze contagion in a synthetic probabilistic setting
specified in Sect. 2.3, which sets up networks of financial exposures as sparse Erdös Renyi random graphs
[41], and their analogues including hyper-edges that randomly link three nodes through CDS contracts. The
macroscopic system dynamics is analysed in Sect. 3 using the law of large numbers and the central limit
theorem to formulate it in terms of a coupled dynamics of the time dependent fractions of defaulted nodes in
each sector. Our system is set up in such a way that the statistics of losses generated by defaults is Gaussian,
and Sect. 3.2 shows how to express losses in terms of fractions of defaulted nodes in each sector. We provide
a detailed system-specification as well as parameter settings for the various scenarios that we have studied
in Sect. 4. Sect. 5 presents our main results in the form of distributions of end-of-year losses per bank and
default rates within the banking sector for various scenarios with and without CDS. We conclude in Sect.
6 with a summary and discussion. Some technical calculations needed for the analysis of the macroscopic
system dynamics are relegated to an appendix.

2 Wealth Positions and Default Dynamics

Generalizing [13], we introduce a heterogeneous economic network comprising firms (F ) and financial in-
stitutions. We consider non-financial corporates in this network as counter-parties to loans and bonds, or
as reference entities in CDS. The default of a firm will have an economic impact on other firms interacting
with it. For the purposes of our analysis we will divide the financial sector into banks (B) and insurers (I).
We reserve for banks the role of directly lending to firms, but assume that both banks and insurers engage
in CDS contracts, with insurers typically acting as protection sellers. Thus, we use the tag “insurer” in a
wide sense, to denote financial institutions other than banks acting as counter-parties in CDS contracts.

We describe contagion dynamics in terms of a co-evolution of a network of wealth positions. To this end,
we set up a discrete-time stochastic process, in which the probability of default of a node in this network
depends on the current and past states of its economic partners, as well as on common macro-economic
variables. We restrict our attention to a time horizon T of one year, divided into twelve discrete time steps
∆t.
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We denote the wealth position of node i at time t by Wi,t. A node will default at time t + ∆t if its
wealth position at time t falls below zero. We use indicator variables ni,t to record default, and set ni,t = 1
(ni,t = 0) if node i is in the defaulted (non-defaulted) state at time t. Assuming that recovery from default
does not occur within the time-frame of a year, we get a default dynamics of the form

ni,t+∆t = ni,t + (1− ni,t)Θ (−Wi,t) , (1)

where Θ is the Heaviside step function (Θ(x) = 0 for x ≤ 0, and Θ(x) = 1 for x > 0). We follow [13, 14, 16],
and take the wealth to be of the form

Wi,t = ϑi − Li,t + ηi,t , (2)

with ϑi denoting the wealth of i at the start of the risk horizon and Li,t the losses accrued up to time t due
to defaults of nodes interacting with i. The ηi,t in (2) denote fluctuating contributions to the wealth and
are taken to be zero-mean Gaussians. In the present study we adopt a minimal noise-model proposed in the
Basel II document, [42] assuming a combination of economy-wide and idiosyncratic components of the form

ηi,t = σi
(√

ρi ξ0,t +
√

1− ρi ξi,t
)

. (3)

In (3), the parameter ρi describes the correlation of the noise ηi,t and its macro-economic component ξ0,t,
and σi is the standard deviation of the total noise. The Basel II document suggests to link the correlation
factors ρi with unconditional (annual) default probabilities PDi according to

ρi ≃ 0.12
(

1 + e−50PDi

)

. (4)

It is assumed that the {ξi,t} in (3) are independent in i and t, and that the economy-wide noise varies
slowly in comparison with the idiosyncratic noise. To simplify matters, we will assume ξ0,t to be constant

throughout the period of the risk horizon T of one year, ξ0,t ≡ ξ0, and obtain loss-distributions by looking
at how annual losses vary with ξ0.

2.1 Contagion and Losses

A complete characterization of the contagion dynamics requires specifying the dependence of the losses Li,t

on the set of indicator variables {ni,t}.
For firms we assume losses to be generated through defaults of other nodes directly interacting with i,

given by

Li,t = L
(d)
i,t =

∑

j

J
(d)
ij nj,t , i ∈ F . (5)

The coupling J
(d)
ij in (5) quantifies the material impact on the wealth of firm i that would be caused by a

default of node j. Depending on whether j has a cooperative or a competitive relation with i, a default of j

may result in a loss (J
(d)
ij > 0) or a gain (J

(d)
ij < 0). Clearly J

(d)
ij = 0, if there is no direct interaction between

i and j.
We assume that financial institutions engage in several types α of interaction among each other and with

firms, with losses L
(α)
i,t depending on the type α of interaction. The losses could derive from direct economic

interactions (d) as for firms, from exposures due to unhedged loans (u), due to hedged loans where the
financial institution takes the role of either the protection buyer (hb), or protection seller (hs), and finally
from speculative buying (sb) or selling (ss) of CDS. Thus losses of a financial institution due to defaults
within the network of its business partners take the form

Li,t =
∑

α

L
(α)
i,t , i ∈ B ∪ I , (6)

with loss types L
(α)
i,t given as follows.
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• Losses due to direct economic interactions with defaulting entities are defined as for firms:

L
(d)
i,t =

∑

j

J
(d)
ij nj,t (7)

Direct economic interactions could well cross sector boundaries, as firms may provide services to banks
or insurers, banks and insurers could share accounting and payment systems, and so on.

• Unhedged loans generate losses through defaults, but also an income stream from interest payments

received from debtors while they are still alive. For a loan of size J
(u)
ij given to j they amount to

J
(u)
ij ǫij,τ in month τ , 1 ≤ τ ≤ t:

L
(u)
i,t =

∑

j∈F,B

J
(u)
ij

t
∑

τ=1

[

(nj,τ − nj,τ−1)− ǫij,τ
]

(8)

The aggregation of monthly losses through contagion constitutes a telescoping sum, simplifying to
∑t

τ=1 (nj,τ − nj,τ−1) = nj,t. Interest paid up to time t depends on the entire history of each debtor.
We will specify ǫij,τ below.

• Hedged loans generate losses through defaults of reference entity j occurring at a time where the
protection seller k is also in a defaulted state. Protection fee payments also contribute to losses; they
are exchanged only while all three counter-parties involved are still alive, and amount to Jk

ijf
k
ij,τ at

time τ . Hedged loans also generate an income stream from interest payments, as long as the reference
entity is alive:

L
(hb)
i,t =

∑

j∈F,B

∑

k∈B,I

Jk
ij

t
∑

τ=1

[

(nj,τ − nj,τ−1)nk,τ + fk
ij,τ − ǫijτ

]

(9)

In (9), Jk
ij denotes the exposure of i to the reference entity j, which is hedged through a CDS contract

with k ∈ B ∪ I; both fee payments and interest income are proportional to the exposure. We will
specify fk

ij,τ , the amount of fees paid per (hedged) unit loan below. Note: Losses through default of
the reference entity are incurred only if the protection seller is dead at time of default . If the protection
seller defaults only later, compensation payments will have been made, and losses will not have been
incurred.

• A protection seller i for hedged loans, while still alive, incurs losses through default of reference entity
j, and derives an income stream from regular fee payments as long as all counter-parties involved are
still alive:

L
(hs)
i,t =

∑

j∈F,B

∑

k∈B

Jk
ij

t
∑

τ=1

[

(nj,τ − nj,τ−1)(1− ni,τ )− fk
ij,τ

]

(10)

• Speculative protection buyers derive income from credit events, provided the protection seller k is
still alive when the credit event occurs. They incur losses through regular fee payments as long as all
counter-parties involved are still alive. Denoting the size of the speculative exposure by Kk

ij , we have

L
(sb)
i,t = −

∑

j∈F,B

∑

k∈B,I

Kk
ij

t
∑

τ=1

[

(nj,τ − nj,τ−1)(1− nk,τ )− fk
ij,τ

]

(11)

• Speculative protection sellers, while still alive, incur losses from credit events. They derive income from
regular fee payments, as long as all counter-parties involved are still alive:

L
(ss)
i,t =

∑

j∈F,B

∑

k∈B

Kk
ij

t
∑

τ=1

[

(nj,t − nj,τ−1)(1− niτ )− fk
ij,τ

]

(12)
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Note that there are no self-interactions in (5)–(12), i.e., for all i we have that Jii = 0, and Jk
ii = J i

ij = 0 as

well as Kk
ii = Ki

ij = 0 irrespectively of j or k. Also, as CDS contracts have protection buyer and a protection

seller taking symmetrically opposite counter-positions, we must have Jk
ij = J i

kj , and similarly Kk
ij = Ki

kj .
Note also that CDS create three node interactions. Finally, although the structure of losses for speculative
and non-speculative protection sellers is basically the same, we keep them separate, because they differ by
the nature of the counter-parties involved; they may, and in general also will, exhibit different statistics of
exposure sizes and and connectivities.

Due to the history dependence of the fee and interest money-streams and the losses suffered through
contagion effects in exposures involving CDS contagion dynamics in our system will in general be non-

Markovian.

2.2 Interest and Fees

Interest payments are only received while the entity taking out a loan is still alive. In a similar vein, we assume
that a CDS premium is only exchanged as long as all counter-parties involved are still alive, as default of the
reference entity triggers compensation payments, and terminates the contract, while default of the protection
seller effectively removes protection and thus the obligation to pay fees (for non-existing protection), and
finally default of the protection buyer makes the protection buyer unable to pay for protection.

To keep matters simple, we ignore capital repayments and use interest rates that are kept constant
throughout the risk horizon of a year. If ǫij denotes the monthly fraction of the debt paid in interests by j
to i, while j is still alive, interest payments in month τ on a unit loan are given by

ǫij,τ = ǫij(1 + ǫij)
τ−1(1− nj,τ ) . (13)

Hence, if j survives up to and only up to time t∗ ≤ t, then the total interest payed is eij,t =
∑t

τ=1 ǫij,τ =
(1 + ǫij)

t∗ − 1 for all t ≥ t∗.
For the results presented in the present study we simplify matters further by assuming that interest

rates only depend on the sectors of counter-parties, ǫij = ǫss′ , with s = s(i) and s′ = s′(j). Our simplifying
assumptions could easily be relaxed, but are not thought to be crucial for our main purpose of assessing
losses from contagion dynamics, and in particular the tail region of high losses.

As to fees, we assume that fee sizes are heterogeneous, and fluctuate over time to capture the fact that
protection buyers may engage in offsetting contracts, if the credit quality of a counter-party changes. We
use fk

ij,τ to denote the fee per unit exposure paid in month τ in a CDS contract between protection buyer i
and protection seller k, with j as reference entity, and take it to be of the form

fk
ij,τ = (f0 + f ykij,τ )(1− ni,τ )(1− nj,τ )(1− nk,τ ) . (14)

I.e. fees are paid only as long as all three counter-parties involved are still alive Here the term f0 represents
the average monthly fee paid in the economy, while the ykij,τ , taken to be zero-mean, unit variance Gaussians,
are introduced to capture the fluctuations of CDS premia across entities and over time, with f describing
the scale of these fluctuations. We assume the ykij,τ to be identically distributed and independent in i, j, k
and τ .

2.3 Probabilistic Characterization of the Economic Network

We study a synthetic version of the problem using a stochastic setting in which we assume weighted random
graph structures for the interconnected networks of mutual exposures of firms F , banks B, and insurers I,
as shown schematically in Figure 2. We use NF , NB, and NI to denote the numbers of firms, banks, and
insurers, respectively, and we assume each of these numbers to be large.

We take exposures due to direct interaction or from unhedged loans to be of the form

J
(α)
ij = c

(α)
ij





J̄
(α)
rs

C
(α)
rs

+
J
(α)
rs

√

C
(α)
rs

x
(α)
ij



 , (15)
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Figure 2: Schematic representation of a modular financial network of firms, banks and insurers. Full lines
represent direct interactions or exposures due to unhedged loans, dashed triangles represent three-particle
interactions created through CDS.

in which α ∈ {d, u}, and r = r(i) and s = s(j) denote the sectors to which the counter-parties belong

(r, s ∈ {F,B, I}), and C
(α)
rs the average number of connections of type α of a node in sector r to nodes in

sector s. In (15), we isolated connectivities c
(α)
ij ∈ {0, 1} which indicate the presence (c

(α)
ij = 1) or absence

(c
(α)
ij = 0) of an exposure of i to j from its size. The connectivities are taken to be symmetric, c

(α)
ij = c

(α)
ji ,

and chosen independently in pairs according to the probability distribution

P (c
(α)
ij ) =

C
(α)
rs

Ns
δ
c
(α)
ij

,1
+

(

1− C
(α)
rs

Ns

)

δ
c
(α)
ij

,0
. (16)

In the limit of large sector sizes at fixed C
(α)
rs , this specification generates networks of mutual exposures

which form a modular Erdös-Renyi random graph [41], exhibiting Poissonian degree distributions with on

average C
(α)
r,s links of type α from nodes in sector r to nodes in sector s, where r, s ∈ {F,B, I}.

The x
(α)
ij characterizing individual exposure sizes in (15) are pair-wise independent random variables,

with low-order moments given by

x
(α)
ij = 0 , (x

(α)
ij )2 = 1 , and x

(α)
ij x

(α)
ji = κ(α)rs . (17)

Thus J̄
(α)
rs and J

(α)
rs parameterize the mean and standard deviation of type-α exposures (if present) of nodes

in sector r to nodes in sector s, and κ
(α)
rs their forward-backward correlation. We are interested in the limit

where Ns ≫ 1 for all s, and C
(α)
rs ≫ 1 for all r, s; connectivities are also assumed to be sparse in the sense

that C
(α)
rs ≪ Ns. As already noted in [14, 16], it is a remarkable consequence of the absorbing nature of the

defaulted state that the macroscopic system dynamics will be independent of the degree of forward-backward

correlations paremeterized by the κ
(α)
rs .

Analogous specifications are used to describe exposures resulting from CDS contracts which involve three
nodes of the entire network, the protection buyer i, the reference entity j, and the protection seller k. With
reference to Eqs. (9) and (11), the specification from the protection buyer’s perspective reads

Jk
ij = ckij





J̄s
b,r

Cs
b,r

+
Js
b,r

√

Cs
b,r

xkij



 (18)

with b = b(i), r = r(j), s = s(k) denoting the sectors of protection buyer, reference entity and protection
seller, respectively. Here Cs

b,r denotes the average number of CDS contracts with reference entities in r and
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protection sellers in s a buyer (in b) is engaged in. As in (15), we have isolated information about the
existence of contracts from information about their size. We choose the ckij and the xkij to be independent
with

P (ckij) =
Cs
b,r

NrNs
δck

ij
,1 +

(

1−
Cs
b,r

NrNs

)

δck
ij
,0 , (19)

and the first two moments of the xkij to be given by

xkij = 0 , and (xkij)
2 = 1 , (20)

so that J̄s
b,r and Js

b,r parameterise mean and standard deviation of CDS exposures. As CDS contracts
have protection buyer and a protection seller taking symmetrically opposite counter-positions, we must
have Jk

ij = J i
kj , or equivalently ckij = cikj and xkij = xikj . We assume that the average numbers of CDS

contracts financial institution are engaged in are large, Cs
b,r ≫ 1, with connectivities sparse in the sense

that Cs
b,r ≪ NrNs. Fully analogous conventions are used to characterise the statistics of exposures Kk

ij in
speculative CDS contracts.

The sparseness and large average connectivity assumptions used in the present paper are mainly made for
the sake of analytic tractability: they are needed to allow a relatively straightforward heuristic solution of the
macroscopic system dynamics, as described in the following section. Our solution uses methods originally
devised to study the dynamics of sparsely connected neural network [39]. As shown in [14], some of the
decorrelation assumptions used along the way can be fully justified by recourse to generating functional
methods. We note in passing that the scaling of means and variances of interaction parameters with mean
connectivities in Eqs. (15) and (18) entails, that actual values of these mean connectivities will not appear
in final expressions.

3 Solving the Macroscopic System Dynamics

3.1 Equations of Motion at System-Level

To analyze the contagion dynamics at system level, we first combine (1) and (2) to get

nit+∆t = ni,t + (1− ni,t)Θ (Li,t − ϑi − ηi,t) . (21)

Key to the solution is the observation that the losses Li,t appearing in (21) contain contributions from
large numbers of counter-parties. The contributions to these losses are random due to the heterogeneous
specification of the exposures, and due to the fluctuating contributions to the wealth positions. Because of
the sparseness of connectivities and the statistical independence of exposure sizes, individual contributions

to the losses are sufficiently weakly correlated to entail that the losses Li,t and individual loss types L
(α)
i

listed in (7) – (12) are Gaussian by the central limit theorem (CLT). That is,

L
(α)
i,t = L̄

(α)
i,t +

√

V
(α)
i,t ζαi,t , (22)

with ζαi,t i.i.d. Gaussians of zero mean and unit variance. In Sect. 3.2 we will compute the means L̄
(α)
i,t and

variances V
(α)
i,t explicitly and show that they depend only on the sector s to which i belongs, thus L̄

(α)
i,t = L̄

(α)
s,t

and V
(α)
i,t = V

(α)
s,t , and that they are expressible in terms of the fractions

ms,τ =
1

Ns

∑

i∈s

ni,τ , τ ≤ t, (23)

of companies in the various sectors s ∈ {F,B, I} that have defaulted at various times up to time t.

8



The non-Markovian nature of the default dynamics is due to the fact that aggregate fee and interest
payments as well as contagion-losses in CDS contracts depend on the entire history of the counter-parties
involved. For a general non-Markovian stochastic dynamics, one would typically expect that an analysis of
the macroscopic system dynamics would necessitate the evaluation of correlation functions, i.e. of quantities
depending on two time arguments, which would in turn usually require deriving of equations of motion for
them. It is a remarkable fact that this is not needed in the present case, a simplification which is entirely
due to the absorbing nature of the defaulted state in our system, entailing that the required correlation
functions have simple expressions in terms of one-time quantities.

In what follows we will denote averages w.r.t. the fluctuating wealth contributions by angled brackets,
and averages over the heterogeneous composition of the economic network by an over-bar. Performing these
averages in (21) we get

〈nit+∆t〉 = 〈nit〉+ 〈(1− ni,t)Θ (Li,t − ϑi − ηi,t , )〉 (24)

which describes the evolution of the probability 〈nit〉 of node i to have defaulted. Evaluating the average in
the second term in terms of a joint average over the independent the ni,t, Li,t and ξi,t distributions [14, 16],
keeping the economy-wide noise ξ0,t in the noise specification (3) fixed, and exploiting the fact that both
Li,t and the idiosyncratic noise ξi,t in (3) are Gaussian. we get

〈nit+∆t〉 = 〈nit〉+
(

1− 〈ni,t〉
)

Φ





L̄s,t − σi
√
ρi ξ0,t − ϑi

√

Vs,t + σ2
i (1− ρi)



 (25)

in which Φ is the integrated normal density

Φ(x) =

∫ x

−∞

dz√
2π

e−z2/2 . (26)

Note that the probability 〈nit〉 of node i to have defaulted depends on i only through the initial wealth
ϑi, the standard-deviation σi of the noise, and the correlation parameter ρi. We will use the notation
〈nt(σi, ϑi, ρi)〉 ≡ 〈nit〉 to highlight this fact. In terms of this convention then, Eq. (25) for nodes in s with
(σi, ϑi, ρi) = (σ, ϑ, ρ) reads

〈nt+∆t(σ, ϑ, ρ)〉 = 〈nt(σ, ϑ, ρ)〉+
(

1− 〈nt(σ, ϑ, ρ)〉
)

Φ





L̄s,t − σ
√
ρ ξ0,t − ϑ

√

Vs,t + σ2(1− ρ)



 . (27)

Eq. (27) has a simple intuitive interpretation: as the defaulted state is assumed to be absorbing, the proba-
bility of nodes in s with (σ, ϑ, ρ) to be defaulted at time t +∆t is given by the probability that they were
defaulted at time t, plus the conditional probability that they would default at time t+∆t, given the system
state and given that they were not defaulted at time t, multiplied by by probability that they were indeed
not defaulted at time t.

The macroscopic system dynamics is obtained by looking at ms,t+∆t, using (21) and (23),

ms,t+∆t =
1

Ns

∑

i∈s

[

ni,t + (1− ni,t)Θ (Li,t − ϑi − ηi,t)
]

, (28)

and evaluating the sum (28) as a sum of averages by appeal to the law of large numbers. With averages
from (25) or (27) we get

ms,t+∆t = ms,t +
1

Ns

∑

i∈s

(

1− 〈nt(σi, ϑi, ρi)〉
)

Φ





L̄s,t − σi
√
ρi ξ0,t − ϑi

√

Vs,t + σ2
i (1− ρi)



 . (29)
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We can appeal once more to the law of large numbers to express the sum in (29) as an average over the
joint (σ, ϑ, ρ)-distribution, finally giving

ms,t+∆t = ms,t +

〈

(

1− 〈nt(σ, ϑ, ρ)〉
)

Φ





L̄s,t − σ
√
ρ ξ0,t − ϑ

√

Vs,t + σ2(1− ρ)





〉

σ,ϑ,ρ

, (30)

where 〈. . .〉σ,ϑ,ρ denotes the average over the (σ, ϑ, ρ)-distribution. Once we have expressed means and vari-
ance of losses in terms of fractions ms,t of defaulted nodes in each sector, Eq. (30) describes the macroscopic
dynamics of the system fully in terms of the coupled dynamics of the ms,t.

3.2 Statistics of Loss-Types

Below we explicitly compute mean and variance for losses of firms or financial institutions due to direct
interactions, and for losses of banks due to unhedged loans. The computation for the other loss types
follows along the same lines, and we will only list the results. The calculation of the various contributions
to loss-variances in particular requires the evaluation of correlations of indicator variables for different
time arguments; these calculations are performed in Appendix A; they exploit the absorbing nature of
the defaulted state and ultimately allow loss-variances to be expressed in terms of one-time quantities. To
simplify notation in the following argument we omit the superscript (d) signifying the direct loss channel
from parameters characterizing mean and standard deviation of exposure-sizes and average connectivities.

Consider direct losses of i, which could be a firm or a financial institution, due to direct interactions.

Denote by s = s(i) the sector of i. Inserting the specification of the J
(d)
ij from (15) into the expression for

direct losses, we have

L
(d)
i,t =

∑

j

J
(d)
ij nj,t =

∑

s′

∑

j∈s′

J
(d)
ij nj,t =

∑

s′

[

J̄ss′

Css′

∑

j∈s′

cijnj,t +
Jss′√
Css′

∑

j∈s′

cij xijnj,t

]

. (31)

We obtain for the mean L̄
(d)
i,t ≡ 〈L(d)

i,t 〉

L̄
(d)
i,t =

∑

s′

[

J̄ss′

Css′

∑

j∈s′

cij〈nj,t〉+
Jss′√
Css′

∑

j∈s′

cij xij 〈nj,t〉
]

. (32)

Assuming that noise averages and compositional averages are sufficiently weakly correlated that we may
factor averages w.r.t. composition, we get

L̄
(d)
i,t ≃

∑

s′

[

J̄ss′

Css′

∑

j∈s′

cij 〈nj,t〉+
Jss′√
Css′

∑

j∈s′

cij xij 〈nj,t〉
]

=
∑

s′

J̄ss′

Ns′

∑

j∈s′

〈nj,t〉 =
∑

s′

J̄ss′ms′,t (33)

Here we have also exploited independence of the cij and the xij and the fact that xij = 0 and cij = Css′/Ns′

in view of (16), when i ∈ s and j ∈ s′. The factorisation of averages used in this argument can be fully
justified in the limit of large system size using the functional techniques in [14].

Note that the first contribution to the direct loss (31) is equal to the mean by the law of large numbers,

L̄
(d)
i,t ≃

∑

s′

J̄ss′

Css′

∑

j∈s′

cij nj,t ,

when evaluated as a sum of averages.
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Following the same line of reasoning, we evaluate the variance of L
(d)
i,t for i ∈ s as

V
(d)
i,t ≃

∑

s′

J2
ss′

Css′

∑

j,j′∈s′

cijcij′ xijxij′ 〈nj,tnj′,t〉 =
∑

s′

J2
ss′

Css′

∑

j∈s′

cij 〈nj,t〉

=
∑

s′

J2
ss′

Ns′

∑

j∈s′

〈nj,t〉 =
∑

s′

J2
ss′ms′,t , (34)

where we have exploited independence of the xij , and n2
j,t = nj,t

Next we look at losses incurred by i ∈ s due to unhedged loans given to entities j ∈ s′, as given by Eq.
(8); in the standard situation we would have s = B and s′ = F . Using analogous factorization properties
for averages, as well as xij = 0, and the expression (13) for interest payments, we get

L̄
(u)
it ≃ J̄ss′

Css′

∑

j∈s′

cij

[

〈nj,t〉 −
t
∑

τ=1

〈ǫi,j,τ 〉
]

= J̄ss′

[

ms′,t − ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1(1−ms′,τ )

]

(35)

The computation of the variance exploits the same factorization and independence properties, giving

V
(u)
i,t ≃ J2

ss′

Ns′

∑

j∈s′



〈nj,t〉+
t
∑

τ,τ ′=1

〈ǫij,τ ǫij,τ ′〉 − 2
t
∑

τ=1

〈nj,tǫij,τ 〉


 .

To proceed, we need

t
∑

τ,τ ′=1

〈ǫij,τ ǫij,τ ′〉 = ǫ2ss′
t
∑

τ,τ ′=1

(1 + ǫss′)
τ−1(1 + ǫss′)

τ ′−1〈(1− nj,τ )(1− nj,τ ′)〉 , (36)

and
t
∑

τ=1

〈nj,tǫij,τ 〉 = ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1 〈nj,t(1− nj,τ )〉 , (37)

which involve two-time correlations of indicator variables. Further evaluation is facilitated by noting that
due to the absorbing nature of the defaulted state we have (1 − nj,τ )(1 − nj,τ ′) = (1 − nj,τ>), where
τ> = max{τ, τ ′} and nj,t(1 − nj,τ ) = nj,t − nj,τ for τ ≤ t, which allows to express the required two-time
quantities by reducing them to single-time quantities. Putting things together we then get

V
(u)
i,t = J2

ss′

[

ms′,t + ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1

[

(1 + ǫss′)
τ−1 + (1 + ǫss′)

τ − 2
]

(1−ms′,τ )

−2ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1(ms,t −ms,τ )

]

(38)

The computation of loss statistics for the remaining loss types listed in (7)–(12) uses analogous factor-
ization and reduction properties. Below we therefore just list general results, referring to Appendix A for the
calculations used to reduce two-time quantities needed for the evaluation of variances to one-time quantities.
Using s = s(i), s′ = s′(j), and s′′ = s′′(k) to denote sectors of counter-parties, we get

• for losses from direct exposures

L̄
(d)
i,t =

∑

s′

J̄s,s′ms′,t (39)

V
(d)
i,t =

∑

s′

J2
s,s′ms′,t (40)
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• for losses from unhedged loans

L̄
(u)
i,t =

∑

s′

J̄s,s′

[

ms′,t − ǫs,s′
t
∑

τ=1

(1 + ǫs,s′)
τ−1(1−ms′,τ )

]

(41)

V
(u)
i,t =

∑

s′

J2
s,s′

[

ms′,t + ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1

[

(1 + ǫss′)
τ−1 + (1 + ǫss′)

τ − 2
]

(1−ms′,τ )

− 2ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1(ms′,t −ms′,τ )

]

(42)

• for losses from hedged loans (conditioned on ni,t = 0)

L̄
(hb)
i,t

∣

∣

∣

nit=0
=

∑

s′,s′′

J̄s′′

s,s′

t
∑

τ=1

[

(ms′,τ −ms′,τ−1)ms′′,τ + f0(1−ms′,τ )(1−ms′′,τ )

− ǫs,s′(1 + ǫs,s′)
τ−1(1−ms′,τ )

]

(43)

V
(hb)
i,t

∣

∣

∣

nit=0
=

∑

s′,s′′

(Js′′

s,s′)
2

t
∑

τ=1

[

(ms′,τ −ms′,τ−1)ms′′,τ

+
[

f2
0 (2τ − 1) + f2

]

(1−ms′,τ )(1−ms′′,τ )

+ǫss′(1 + ǫss′)
τ−1

[

(1 + ǫss′)
τ−1 + (1 + ǫss′)

τ − 2
]

(1−ms′,τ )

+2f0(ms′,τ −ms′,τ−1)
τ
∑

τ ′=1

(ms′′,τ −ms′′,τ ′)

−2
[

1 + ǫs,s′)
τ−1 − 1

]

(ms′,τ −ms′,τ−1)ms′′,τ

−2f0

(

[

(1 + ǫss′)
τ−1 − 1

]

(1−ms′,τ )(1−ms′′,τ )

+ ǫss′(1 + ǫss′)
τ−1(1−ms′,τ )

τ
∑

τ ′=1

(1−ms′′,τ ′)

)]

(44)

• for losses from protections selling (conditioned on nit = 0)

L̄
(hs)
i,t

∣

∣

∣

nit=0
=
∑

s′,s′′

J̄s′′

s,s′

[

ms′,t − f0

t
∑

τ=1

(1−ms′,τ )(1−ms′′,τ )

]

(45)

V
(hs)
i,t

∣

∣

∣

nit=0
=

∑

s′,s′′

(Js′′

s,s′)
2

[

ms′,t +
t
∑

τ=1

[

f2
0 (2τ − 1) + f2

]

(1−ms′,τ )(1−ms′′,τ )

− 2f0

t
∑

τ=1

τ−1
∑

τ ′=1

(ms′,τ −ms′,τ−1)(1−ms′′,τ ′)

]

(46)
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• for losses from speculative protection buying (conditioned on nit = 0)

L̄
(sb)
i,t

∣

∣

∣

nit=0
= −

∑

s′,s′′

K̄s′′

s,s′

t
∑

τ=1

[

(ms′,τ −ms′,τ−1)(1−ms′′,τ )− f0(1−ms′,τ )(1−ms′′,τ )

]

(47)

V
(sb)
i,t

∣

∣

∣

nit=0
=

∑

s′,s′′

(Ks′′

s,s′)
2

t
∑

τ=1

[

(ms′,τ −ms′,τ−1)(1−ms′′,τ )

+
[

f2
0 (2τ − 1) + f2

]

(1−ms′,τ )(1−ms′′,τ )

− 2f0(ms′,τ −ms′,τ−1)(1−ms′′,τ ) (τ − 1)

]

(48)

• for losses from speculative protection selling (conditioned on nit = 0)

L̄
(ss)
i,t

∣

∣

∣

nit=0
=
∑

s′,s′′

K̄s′′

s,s′

[

ms′,t − f0

t
∑

τ=1

(1−ms′,τ )(1−ms′′,τ )

]

(49)

V
(ss)
i,t

∣

∣

∣

nit=0
=

∑

s′,s′′

(Ks′′

s,s′)
2

[

ms′,t +
t
∑

τ=1

[

f2
0 (2τ − 1) + f2

]

(1−ms′,τ )(1−ms′′,τ )

− 2f0

t
∑

τ=1

(ms′,t −ms′,τ )(1−ms′′,τ )

]

(50)

Note that means and variances of losses incurred by node i depend only on the sector s = s(i) to which
node i belongs, and on the fractions of defaults in the various sectors.

4 System and Scenario Specifications

4.1 System Specifications

For the purposes of the present study we adopt system specifications to reflect generic properties of het-
erogeneous networks of economic players. Some of our assumptions, notably those concerning the nature of
mutual connectivities of various economic players described in Sect. 2.3 above, are even largely dictated by
the demands of analytic tractability. While the present synthetic approach can thus by no means claim to be
microscopically realistic, we believe that our main message, as well as qualitative trends concerning the con-
tribution of CDS to systemic risk, which we extract from a comparison of scenarios with and without CDS,
holds tight and will survive (re-)introducing further microscopic detail, through calibration or otherwise.

We assume that initial wealths ϑi are randomly distributed in each sector, with sector dependent statis-
tics. Specifically, we take the ϑi to be normally distributed with means depending on the sector, ϑ̄F = 2.75,
ϑ̄B = 3.25 and ϑ̄I = 3.75, but standard deviation σϑ = 0.35 independently of the sector. If we take stan-
dard deviations σi of the noise (3) to be uniform throughout the system, σi ≡ 1, this amounts to assuming
heterogeneous unconditional monthly default probabilities pi = Φ(−ϑi) [13]. With the sector means of the
ϑi as specified above, we obtain sector-specific typical monthly default probabilities, which are in the range
10−6 − 10−2 for the firm sector, with values roughly down by a factor 50 for the banking sector, and by
another factor 50 for the insurance sector.
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4.2 Scenario Specifications

We specify scenarios by choosing values of the vectors J
(α)
ss′ = (J̄

(α)
ss′ , J

(α)
ss′ ) which parametererize mean and

variance of exposure size distributions for interactions of type α between sectors s and s′ via Eq. (15),
as well as the J

s
br = (J̄s

br, J
s
br) and K

s
br = (K̄s

br,K
s
br) which encode this information for the statistics of

non-speculative and speculative CDS exposures involving nodes in sectors b, r, and s via Eq. (18).

We define a baseline-scenario by considering a network consisting of firms and banks only, choosing J
(d)
FF =

(1, 1) and J
(d)
BB = (0, 0.5) for direct interactions within the firm and banking sectors, and J

(u)
BF = (1, 0.5) for

unhedged lending by banks to firms. We assume that there are no CDS contracts in the baseline-scenario.

Other scenarios will be compared with the baseline. In all scenarios we keep J
(d)
FF and J

(d)
BB unchanged,

and we choose monthly interest to be at 0.5% uniformly across sectors. In scenarios with CDS, we choose
parameters describing average and variance of CDS spreads in Eq. (S.14) as f0 = 0.0008 (amounting to an
annual average spread of 1%, or 100 bp), and f2 = 0.0002, respectively.

The following list contains parameter settings for the different scenario’s considered in the present project,
inasmuch as they change between scenarios.

S0 baseline scenario: J
(u)
BF = (1, 0.5)

S1 doubling unhedged lending to firms: J
(u)
BF = (2, 1)

S2 doubling unhedged lending by adding inter-bank lending: J
(u)
BF = J

(u)
BB = (1, 0.5).

S3 hedging one third of base-line exposures with banks: J
(u)
BF = (0.67, 0.33), JB

BF = (0.33, 0.17)

S4 hedging two thirds of base-line exposures with banks: J
(u)
BF = (0.33, 0.17), JB

BF = (0.67, 0.33)

S5 hedging one third of base-line exposures with insurers: J
(u)
BF = (0.67, 0.33), J I

BF = (0.33, 0.17)

S6 hedging two thirds of base-line exposures with insurers: J
(u)
BF = (0.33, 0.17), J I

BF = (0.67, 0.33)

S7 totally hedged exposure doubled in size compared to base-line, all additional exposure hedged with

insurers: J
(u)
BF = (0, 0), JB

BF = (0.5, 0.25), J I
BF = (1.5, 0.75)

S8 totally hedged exposure tripled in size compared to base-line, all additional exposure hedged with insur-

ers: J
(u)
BF = (0, 0), JB

BF = (0.5, 0.25), J I
BF = (2.5, 1.25)

S9 adding speculative CDS of a volume matching that of the base-line exposure (banking sector only):

J
(u)
BF = (1, 0.5), KB

BF = (1, 0.5)

S10 adding speculative CDS of a volume twice that of the base-line exposure (banking sector only): J
(u)
BF =

(1, 0.5), KB
BF = (2, 1)

S11 adding speculative CDS in equal measure with banks and insurers: J
(u)
BF = (1, 0.5), KB

BF = K
I
BF =

(0.25, 0.125):

S12 adding speculative CDS in equal measure with banks and insurers: J
(u)
BF = (1, 0.5), KB

BF = K
I
BF =

(0.5, 0.25)

S̃0 modified baseline scenario with non-zero average for direct inter-bank exposures: J
(d)
BB = (0.25, 0.5),

keeping all other parameters fixed as in the baseline scenario.

S̃9 modified version of S9 with a non-zero average for direct inter-bank exposures J
(d)
BB = (0.25, 0.5), keeping

all other parameters fixed as in S9.
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Figure 3: Left: Loss distributions for the baseline-scenario (S0, red full line), compared to scenarios with

increased exposures: doubling average exposures by choosing J
(u)
BF = (2, 1) (S1, green long-dashed), or

J
(u)
BF = J

(u)
BB = (1, 0.5) (S2, blue short-dashed). Right: Distribution of the fraction of defaulted banks in

the baseline scenario (S0, red), compared to situations where either one third (S3, green long-dashed) or
two thirds (S4, blue short-dashed) of the average baseline-exposure to firms are hedged by CDS within the

banking sector . The corresponding loss curves are shown in the inset, and they lie exactly on top of each
other, as hedging via CDS is modelled as a zero-sum game in our description.

S̃10 modified version of S10 with a non-zero average for direct inter-bank exposures J
(d)
BB = (0.25, 0.5),

keeping all other parameters fixed as in S10.

5 Results

We proceed to illustrate contagion and the statistics of losses in our system, both with and without CDS. We
concentrate on end-of-year losses per node in the banking sector, given by L = L̄B,T = 1

NB

∑

i∈B LiT , and on

the defaulted fraction of banks m = mB,T = 1
NB

∑

i∈B niT . It is worth emphasising the difference between
the distribution of individual losses LiT — shown to be Gaussian — and the distribution of losses per bank
as displayed in Figs. 3-7 below. As the banking sector is taken to be large, the losses per bank are given by
the average loss per bank in the banking sector by the law of large numbers. This average itself depends
on the random variable ξ0 which parameterizes macro-economic conditions. Although the ξ0-distribution
was itself assumed to be Gaussian, it generates distributions of losses per bank displayed in Figs 3-7 below,
which are manifestly non-Gaussian. This is due to the non-linear feedback through contagion dynamics that
exists in the system.

In what fallows we will discuss our results by way of comparison with those pertaining to the baseline-

scenario S0 without CDS, consisting of a network of firms and banks only, with direct interactions within
the firm and banking sectors and levels of unhedged lending by banks to firms as specified above.

As shown in Fig. 3, doubling the size of bank’s loan books will approximately double their typical earning
(the location of the maximum of the loss distribution at negative losses), but will also double the size of
maximal losses. The second panel of Fig. 3 compares the baseline-scenario with a situation where either
one third or two thirds of the baseline exposures of banks to firms are hedged by CDS within the banking

sector . The main panel shows that the additional contagion channels created by CDS lead to an increase
of probabilities for large fractions of defaults, although the overall exposure to firms remained unchanged in

these scenarios. The corresponding loss curves are shown in the inset, and they lie exactly on top of each
other, as hedging via CDS is modelled as a zero-sum game in our description.

Figure 4 investigates the effect of hedging inside the banking sector more systematically. Starting from
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Figure 4: Left: Average fraction 〈m〉 of defaulted banks as a function of the fraction fh of the baseline-
scenario exposure to firms that is hedged within the banking sector, the remainder remaining unhedged.
The inset shows the value of the probability density function P (m) evaluated at m = 0.8 (upper curve) and
m = 0.9 (lower curve) as a function of fh. Right: Fraction at Risk at the 99% confidence level as a function
of the fraction of baseline-scenario exposure to firms hedged within the banking sector

the baseline scenario, we look at the behaviour of a set of risk-measures as a function of the fraction fh
of baseline exposures of banks to firms which are hedged inside the banking sector, the remaining fraction
remaining unhedged. The left panel shows the average fraction 〈m〉 =

∫

dm mP (m) of defaulted banks. This
average fraction initially decreases as a function of fh, but starts to rise again as fh is increased beyond
fh ≃ 0.4, with the average fraction in the fully hedged situation being more than 3.5% higher than that in
the fully unhedged baseline scenario! Looking at the probability density function P (m) of the fraction of
defaulted banks at a given level m, it shows a monotone increase as a function of fh at large m, rising to
almost twice the baseline level at full hedging fh = 1 for m = 0.8, with only a minute initial drop, and to
three times the baseline level at full hedging for m = 0.9.

Alternatively, and in close analogy to the Value at Risk (VaR) concept, we are led to introduce the notion
of Fraction at Risk (FaRq), by which we denote the fraction of failed nodes in excess of the average fraction,
which is not exceeded at a given confidence level q. Specifically, given a confidence level q, one defines the
q-quantile mq of m via Prob{m ≤ mq} = q, and in terms of these

FaRq = mq − 〈m〉 . (51)

The right panel of Fig 4 exhibits the behaviour of FaRq at the 99% confidence level as a function of
the fraction fh of baseline exposures to firms which is hedged inside the banking sector. Its behaviour is
qualitatively similar to that of the average fraction 〈m〉, exhibiting a minimum at a slightly smaller value
fh ≃ 0.3, and rising to a level which at full hedging is 10% above baseline level. Note once more that the
loss distribution is independent of the level of hedging within the banking sector.

In the first panel of Fig. 5, we compare the loss distribution for the baseline-scenario with a situation
where either one third or two thirds of the baseline-exposure to firms are hedged by CDS, but now with
protection provided by the insurance sector , thereby supposedly deflecting all potential losses from the
hedged component into the insurance sector. The idea of CDS being that they would provide protection
against losses, one might thus naively expect that hedging a fraction fh of original exposures with insurers
would lead to a saturation of maximal losses inside the banking sector at the residual fraction 1 − fh of
exposures, which remains unhedged. The figure clearly shows that this naive expectation is incorrect: for
both, fh = 1/3, and fh = 2/3, we find that the loss distribution gives non-negligible weight to losses in excess

of the naively expected saturation level, which would be at a fraction 1− fh of the baseline exposures. This
is due to the fact that under very adverse economic conditions the providers of protection may eventually
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Figure 5: Left: Loss distributions for the baseline-scenario (S0, red full line), compared to scenarios where
either one third (S5, green long-dashed) or two thirds (S6, blue short-dashed) of the average exposure to
firms are hedged by CDS, but now with protection provided by the insurance sector , which reduces the tail
risk of large losses, but does not completely eliminate it. Right: Here the baseline-scenario (S0, red full line)
is compared with situations where banks have completely hedged their exposures through CDS and used
this to either double (S7, green long-dashed) or triple (S8, blue short-dashed) the size of their loan books.

also collapse, rendering loans effectively unhedged.
The second panel compares the baseline scenario with situations where banks use complete hedging via

CDS to double or triple the size of their loan books, hedging half the original exposure within the banking
sector, and the remainder with insurers. The figure clearly reveals an incentive for such a strategy, namely
typical earnings that are increased in proportion to the loan-book expansion. However, once the expansion
becomes significant, there is a noticeable risk of incurring significantly higher losses within the banking sector
as well, despite the fact that the majority of the exposures is hedged with insurers. Any losses observed
in excess of half the baseline exposure would in these scenarios naively be expected to be absorbed by the
insurers. The figure once more clearly shows that they are not. Observed excess losses do in fact increase
with the expansion of loan-books, as this leads insurers being exposed to larger risk, and thereby to larger
default rates in the insurance sector, effectively removing protection and reflecting a sizeable fraction of
losses back into the banking sector. While deflecting losses into the insurance sector appears to ‘effectively’
reduce the size of the maximum loss, it does in principle not do this completely. It just considerably reduces
the probability of incurring losses close to maximal. In other words, the tail risk of extreme losses cannot
be eliminated completely.

Had the corresponding expansion of loan books happened with protection through CDS entirely within

the banking sector, this would — according to results discussed above — have exposed the banking sector as
a whole to the full risk, with maximum losses at twice or three times the original exposure level, just as in
the corresponding unhedged case, as we have seen that hedging through CDS is a zero-sum game and does
not affect the loss distribution at system level. A loss-distribution for the case of loan-books expanded by a
factor of two is actually displayed in the left panel of Fig. 3.

Let us finally turn to speculative CDS, which nowadays account for approximately two thirds of the total
CDS market. It follows from Eqs (47) and (49) that speculative CDS contracts, too, amount to zero-sum
games. Thus, any speculative CDS taken out inside the banking sector only reshuffle losses within the sector,
without altering the distribution of losses per node. This is illustrated in the inset of the left panel of Fig.
6. Yet, although speculative CDS amount to zero-sum games and thus do not alter the distribution of losses
per node in the sector, there is a marked effect on the distribution of the fraction of defaulted banks, which
develops significantly fatter tails at high default fractions once exposures taken on via speculative CDS
become sizeable, as shown in the main left panel of Fig. 6. As was the case with CDS used for hedging,
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Figure 6: Left: Distribution of the fraction of defaulted banks in the baseline scenario (S0, red full line),
compared to situations where speculative CDS of a volume matching that of the base-line exposure (S9,
green long-dashed) or twice that of the base-line exposure (S10, blue short-dashed) have been taken out
within the banking sector. The corresponding loss curves are shown in the inset, and they lie exactly on
top of each other, as losses due to speculative CDS, too, are modelled as a zero-sum game. Right: Loss
distributions for the baseline-scenario (S0, red full line), compared to situations with additional speculative
CDS taken out in equal measure with banks and insurers with K

B
BF = K

I
BF = (0.25, 0.125) (S11, green

long-dashed), or KB
BF = K

I
BF = (0.5, 0.25) (S12, blue short-dashed).

this result clearly exhibits the contagious and destabilizing effect of speculative CDS on a systemic level, for
which the additional contagion channels created by these contracts must be held responsible.

By contrast, to the extent that speculative CDS are taken out with insurers as protection sellers, these
create income for the banking sector, in particular in times of economic stress, which then suppresses the
loss distribution at large losses. This is clearly borne out by the results shown in the right panel of Fig.
6. However, this income is provided by inducing equally large losses within the insurance sector which is
chosen to take the counter-position, and concentrating on losses within the banking sector therefore paints
a picture too rosy for the financial sector as a whole.

It would be fair to argue that the results just shown for the effect of speculative CDS taken out within
the banking sector are to some extent counter-intuitive — to find the probability of large default rates in
the banking sector growing with the volume of speculative CDS, without seeing a corresponding effect in
loss distributions. In the way these scenarios are set up, this is a consequence of the fact that CDS contracts
amount to a zero-sum game, in conjunction with assuming that there will on average not be a negative

feedback of defaults within the banking sector by choosing J
(d)
BB = (0, 0.5). This could, however, be regarded

as a too optimistic assumption. Indeed, if one were to assume that wealth positions of banks will be on
average negatively affected by other defaults in the banking sector, this picture changes as demonstrated
in the left panel of Fig. 7. Despite the fact that the money-streams associated with CDS contracts still
amount to a zero-sum game, the additional defaults created by contagion through these speculative CDSs
now induce additional losses per node within the banking sector, as a default of a bank is now assumed on

average have a detrimental effect on the wealth position of other banks via direct economic interactions, by

taking J
(d)
BB = (0.25, 0.5). The right panel investigates this effect more systematically by looking at how the

value at risk (VaR) of the loss distribution for the banking sector evolves with the volume of speculative
CDS taken out inside the sector. Measuring this volume in units of the unhedged baseline-exposure, we
put K

B
BF = fh(1, 0.5). The lower curve takes the baseline-scenario as its starting point, for which there

is on average no negative feedback of defaults within the banking sector, i.e. J
(d)
BB = (0, 0.5). By contrast,

we take the modified base-line-scenario with on average negative feedback of defaults inside the banking
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Figure 7: Left: Loss distributions for the modified baseline-scenario (S̃0, red full line), compared to similarly
modified situations where speculative CDS of a volume matching that of the base-line exposure (S̃9, green
long-dashed) or twice that of the base-line exposure (S̃10, blue short-dashed) have been taken out within the

banking sector. Despite the fact that (speculative) CDS amount to a zero-sum game, there is now an effect
on loss distributions due to direct economic interactions within the banking sector, which are on average
cooperative. Right: Value at risk at the 99% confidence level as a function of the volume fh of additional
speculative CDS (in units of the unhedged baseline-exposure) taken out within the banking sector. Lower

curve: results for J
(d)
BB = (0, 0.5) as in S0. Upper curve: results using the results for J

(d)
BB = (0.25, 0.5) as in

S̃0.

sector, i.e. J
(d)
BB = (0.25, 0.5), as the starting point for the upper-curve. The points at fh = 1 and fh = 2 on

the lower curve would represent scenarios S9 and S10, respectively; on the upper curve they represent the
corresponding modified scenarios S̃9 and S̃10. For the lower curve without negative feedback, speculative
CDS taken out inside the banking sector do not change the loss-distribution and hence leave the VaR
invariant. The upper curve on the other hand shows that, as soon as there is negative feedback of defaults
through direct interactions inside the banking sector, the increased probability of large default rates created
by speculative CDS exposures does modify the loss distribution for the sector, leading to a substantial rise
in the VaR.

Analogous negative feedback effects could be created by assuming that firms will on average be adversely

affected by defaults in the banking sector by choosing J
(d)
FB = (J̄

(d)
FB, J

(d)
FB) with J̄

(d)
FB > 0. This would then

lead to higher default rates in the firm sector, which in turn would create further losses in the financial
sector through additional loans that will have to be written off. In the scenarios looked at within the present

study we have so far not included this kind of negative feedback by taking J
(d)
FB = (0.0), though post-crisis

debates revolving around the reluctance of banks to lend to firms could well justify introducing it.

6 Summary and Discussion

In summary, we have proposed a model which allows us to analyze contagion dynamics and systemic risk

in networks of financial dependencies which include exposures created by CDS contracts as additional
contagion channels. The model generalizes earlier work [13, 14, 16] on the influence of economic interactions
on credit risk. The main additional features are (i) the presence of three-particle interactions, and (ii) the
non-Markovian nature of contagion dynamics in systems with CDS contracts.

We have investigated a synthetic version of the problem using a stochastic setting in which we assume
weighted Erdös-Renyi random graph structures [41] describing the interconnected networks of mutual ex-
posures of the economic players, taken to include firms F , banks B, and insurers I, and analogous random
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graph structures containing hyper-edges linking three network nodes through CDS contracts.
Our main result can be summarized as follows: while CDS can help to reduce losses under normal or

favourable conditions – the terms ‘normal’ and ‘favourable’ being defined here with respect to the distribution
of the macro-economic component ξ0 of the noise – they cannot completely eliminate the tail risk of very
large losses, and may in fact amplify contagion and losses in times of stress, in particular if CDS are used to
expand loan portfolios under the (wrong) assumption that hedging would essentially offload any additional
risks from banks’ balance sheets.

Our results complement those of a recent empirical study of Markose et al. [31], who reconstruct the
network of CDS-exposures of 26 major US banks and an additional so-called outside-entity which repre-
sents total CDS exposures of these 26 banks to non-US financial institutions; data used are as recorded
in the 4th quarter of 2008. Interactions that would link these exposures to the economic fate of reference
entities outside the network of these 26(+1) banks are not included in the study. The network of CDS
exposures is constructed using market share as a proxy, and is dominated by the market share of three
major players. A series of stress tests performed by these authors which involve simulating consequences
of a failure of any of the major players within the reconstructed network of CDS exposures shows severe
knock-on effects when payouts on CDS referencing these failed entities are taken into account (Experiment
2 in [31]), clearly demonstrating the destabilizing effect of CDS within that specific system. As Markose et
al. look at one specific system, the relative importance of various properties which characterize the financial
systems macroscopically is difficult to ascertain. In particular it remains open how far conclusions based on
general statistical characteristics of large networks (such as a “small-world” or clustering property, or the
May-Wigner stability criterion [43]) can carry for a network containing just 27 nodes.

Our investigation takes a more generic approach than [31]. In particular we also model the effect of eco-
nomic links between the financial sector and the ‘real economy’, and we look at stability and at distributions
of losses and default rates of the entire economic system throughout economic cycles.

In the present study, we have restricted our attention to looking at loss distributions and distributions of
default rates in the banking sector. Indeed, we have used the insurance sector in the present study only to
act as a buffer which can absorb losses which are then no longer ‘seen’ in the banking sector, though only to
the extent that insurers survive such loss-taking. As it stands, we have not yet modelled insurers as directly
connected also to the real economy (the firm sector), which would allow to model more credible income
mechanisms for them. We would therefore at this stage regard it as premature to attach much significance
to details of loss-distributions inside the insurance sector, which is why we have not included them here.

We are under no illusion to believe that the simple probabilistic networks of direct and CDS exposures
as set in the present study up would provide a realistic description of economic dependencies. For the sake
of analytic tractability our study has so far been restricted to a situation where the average number of direct
mutual exposures and — in the case of financial institutions — also the average number of CDS contracts
they are involved in is large, entailing that relative fluctuations about these average numbers tend to be
small. Future work will have to include introducing more realistic network topologies, exhibiting in particular
stronger heterogeneity of economic players. Including these will considerably complicate the mathematical
analysis, though it appears that the tools developed in [44] could be adapted to treat situations with more
realistic levels of heterogeneity. Numerical simulations would naturally provide another route that could be
taken as an alternative. Finally, there are other contagion mechanisms which we have so far omitted; they
include the role of capital costs and of losses on SPV credit enhancements induced by breakdown of CDS
cover [31], as well as knock-on effects created by liquidity risks [35].

Yet, in spite of the many simplifying assumptions still contained in the present study, we are confident
that our main message concerning the contribution of CDS to systemic risk, which we extract from a com-

parison of scenarios with and without CDS, holds tight and will survive (re-)introducing further microscopic
detail, through calibration or otherwise.

We believe that our model adds a new dimension to research on credit contagion, and that it could even-
tually feed into a rational underpinning of an improved regulatory framework for credit derivative markets.
Such potential could in particular derive from results of the form indicated in Fig 4 which demonstrate
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that there might be levels of hedging with are optimal with respect to a certain set of risk measures, or
those in Fig 7 which quantify the destabilizing effect of speculative CDS exposures. However, further work
is needed to see whether and in which form these features will survive the introduction of more realistic
network topologies and exposure statistics.
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A Correlations Needed for Loss Variances

In this appendix we collect the calculation of two-time correlations that are needed for the calculations of
variances for the various loss types, as we have encountered them in the calculation of the interest-interest
contribution (36) and the contagion interest contribution (37) to the loss variance for unhedged loans. We
will derive only contributions of individual counter-parties, or pairs of counter-parties, where necessary for
losses that involve CDS-contracts.

Key identities that will be used repeatedly are

nj,τnj,τ ′ = nj,τ< , (1− nj,τ )(1− nj,τ ′) = (1− nj,τ>) (52)

with τ< = min{τ, τ ′}, and τ> = max{τ, τ ′}
We begin with the correlations required for the interest-interest, fee-fee, and interest-fee contributions

as they are independent of loss-type in which they occur
The interest-interest contribution to variances requires the evaluation of

Vǫ−ǫ =
t
∑

τ=1

t
∑

τ ′=1

〈ǫijτ ǫijτ ′〉 = ǫ2ss′
t
∑

τ,τ ′=1

(1 + ǫss′)
τ−1(1 + ǫss′)

τ ′−1〈(1− nj,τ )(1− nj,τ ′)〉

Using (52) we can rewrite this as

Vǫ−ǫ = ǫ2ss′
t
∑

τ=1

(1 + ǫss′)
τ−1

[

τ−1
∑

τ ′=1

(1 + ǫss′)
τ ′−1〈(1− nj,τ )〉+

t
∑
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(1 + ǫss′)
τ ′−1〈(1− nj,τ ′)〉

]

= ǫss′
t
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(1 + ǫss′)
τ−1

[

(1 + ǫss′)
τ−1 − 1

]

〈(1− nj,τ )〉

+ǫss′
t
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(1 + ǫss′)
τ ′−1

[

(1 + ǫss′)
τ ′ − 1

]

〈(1− nj,τ ′)〉

Exchanging τ ↔ τ ′ in the last line allows to combine the result into

Vǫ−ǫ = ǫss′
t
∑

τ=1

(1 + ǫss′)
τ−1

[

(1 + ǫss′)
τ−1 + (1 + ǫss′)

τ − 2
]

〈(1− nj,τ )〉 (53)
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Next, consider the fee-fee contribution

Vf−f =
t
∑

τ=1

t
∑

τ ′=1

〈fk
ij,τf

k
ij,τ ′〉 = f2

0

t
∑

τ=1

t
∑
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〈(1− ni,τ )(1− nj,τ )(1− nk,τ )(1− ni,τ ′)(1− nj,τ ′)(1− nk,τ ′)〉

+f2
t
∑

τ=1

〈(1− ni,τ )(1− nj,τ )(1− nk,τ )〉

For the dynamics we need it only conditioned on ni,t = 0, hence ni,τ = 0, t ≤ τ . Using (52) we get

Vf−f

∣

∣

∣

ni,t=0
=

t
∑

τ=1

[f2
0 (2τ − 1) + f2] 〈(1− nj,τ )(1− nk,τ )〉 (54)

The fee-interest contribution finally (for the dynamics needed only conditioned on ni,t = 0, i.e. the
protection buyer in (hb)/(sb) positions or the protection seller in (hs)/(ss) positions being alive) is evaluated
along similar lines, giving

Vf−ǫ = f0

t
∑

τ=1

[

[(1 + ǫss′)
τ−1 − 1]〈(1− nj,τ )(1− nk,τ )〉+

τ
∑

τ ′=1

(1 + ǫss′)
τ−1〈(1− nj,τ )(1− nk,τ ′)〉

]

(55)

The remainder is specific to individual loss positions.
For unhedged loans (u)
— the contagion-interest contribution to the variance requires

V
(u)
c−ǫ = ǫss′

t
∑

τ=1

(1 + ǫss′)
τ−1〈nj,t(1− nj,τ )〉 = ǫss′

t
∑

τ=1

(1 + ǫss′)
τ−1〈(nj,t − nj,τ )〉 (56)

For the protection buyer position (hb) in hedged loans
— the contagion-contagion contribution to the variance requires

V
(hb)
c−c =

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)(nj,τ ′ − nj,τ ′−1)nk,τnk,τ ′〉

=
t
∑

τ=1

τ
∑

τ ′=1

〈nk,τ ′

[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

+
t
∑

τ=1

t
∑

τ ′=τ+1

〈nk,τ

[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

Using (52) we find that all terms but the τ ′ = τ contribution in the square bracket of the first sum cancel,
and similarly all terms in the square brackets of the second sum, giving

V
(hb)
c−c =

t
∑

τ=1

〈(nj,τ − nj,τ−1)nk,τ 〉 (57)

— the contagion-fee contribution is of the form

V
(hb)
c−f

∣

∣

∣

ni,t=0
=

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)nk,τf
k
ij,τ ′〉 = f0

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)nk,τ (1− nj,τ ′)(1− nk,τ ′)〉

= f0

t
∑

τ=1

t
∑

τ ′=1

[

〈(nj,τ − nj,τnj,τ ′)(nk,τ − nk,τnk,τ ′)〉 − 〈(nj,τ−1 − nj,τ−1nj,τ ′)(nk,τ − nk,τnk,τ ′)〉
]

= f0

t
∑

τ=1

τ
∑

τ ′=1

〈(nj,τ − nj,τ ′)(nk,τ − nk,τ ′)〉 − f0

t
∑

τ=1

τ−1
∑

τ ′=1

〈(nj,τ−1 − nj,τ ′)(nk,τ − nk,τ ′)〉 ,
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where we exploit the fact that there are no τ ′ > τ contributions, and further that the τ ′ summation in the
first sum in the last line also effectively extends only to τ − 1, hence

V
(hb)
c−f

∣

∣

∣

ni,t=0
= f0

t
∑

τ=1

τ−1
∑

τ ′=1

〈(nj,τ − nj,τ−1)(nk,τ − nk,τ ′)〉 (58)

— the contagion-interest contribution is

V
(hb)
c−ǫ =

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)nk,τ ǫij,τ ′〉

= ǫss′
t
∑

τ=1

t
∑

τ ′=1

(1 + ǫss′)
τ ′−1〈(nj,τ − nj,τ−1)nk,τ (1− nj,τ ′)〉

= ǫss′
t
∑

τ=1

τ−1
∑

τ ′=1

(1 + ǫss′)
τ ′−1〈

[

nj,τ − nj,τ−1 − nj,τnj,τ ′ + nj,τ−1nj,τ ′

]

nk,τ 〉

=
t
∑

τ=1

〈(nj,τ − nj,τ−1)nk,τ 〉 [(1 + ǫss′)
τ−1 − 1] (59)

Here we have exploited the fact that the contributions inside the square bracket in the next-to-last line
vanish for τ ′ ≥ τ .
For the protection seller position (hs) in hedged loans we obtain simplified versions of those for the
(hb) position. Results are needed conditioned on ni,t = 0.
— the contagion-contagion contribution is obtained by omitting the nk,τ factors in the corresponding (hb)
formula, giving

V
(hs)
c−c

∣

∣

∣

ni,t=0
=

t
∑

τ=1

〈(nj,τ − nj,τ−1)〉 = 〈nj,t〉 (60)

— the contagion-fee contribution gives

V
(hs)
c−f

∣

∣

∣

ni,t=0
= f0

t
∑

τ=1

τ−1
∑

τ ′=1

〈(nj,τ − nj,τ−1)(1− nk,τ ′)〉 (61)

For the protection buyer position (sb) in speculative CDS contracts
— the contagion-contagion contribution to the variance requires

V
(sb)
c−c =

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)(nj,τ ′ − nj,τ ′−1)(1− nk,τ )(1− nk,τ ′)〉

=
t
∑

τ=1

τ
∑

τ ′=1

〈(1− nk,τ )
[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

+
t
∑

τ=1

t
∑

τ ′=τ+1

〈(1− nk,τ ′)
[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

Using (52) we find that all terms but the τ ′ = τ contribution in the square bracket of the first sum cancel,
and similarly all terms in the square brackets of the second sum, giving

V
(sb)
c−c =

t
∑

τ=1

〈(nj,τ − nj,τ−1)(1− nk,τ )〉 (62)
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— for the contagion-fee contribution we have

V
(sb)
c−f

∣

∣

∣

ni,t=0
=

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)(1− nk,τ )f
k
ij,τ ′〉

= f0

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)(1− nk,τ )(1− nj,τ ′)((1− nk,τ ′)〉

= f0

t
∑

τ=1

τ−1
∑

τ ′=1

〈(1− nk,τ )
[

nj,τ − nj,τnj,τ ′ − nj,τ−1 + nj,τ−1nj,τ ′

]

〉

+
t
∑

τ=1

t
∑

τ ′=τ

〈(1− nk,τ ′)
[

nj,τ − nj,τnj,τ ′ − nj,τ−1 + nj,τ−1nj,τ ′

]

〉

= f0

t
∑

τ=1

τ−1
∑

τ ′=1

〈(nj,τ − nj,τ−1)(1− nk,τ )〉 = f0

t
∑

τ=1

〈(nj,τ − nj,τ−1)(1− nk,τ )〉 (τ − 1) (63)

where we have exploited the fact that terms in square brackets in the (τ ′ ≥ τ)-sum cancel.
For the protection seller position (ss) in speculative CDS contracts
— we need a contagion-contagion contribution (for the dynamics only conditioned on the seller being alive);
it is a simplified version of the corresponding (sb) result obtained by omitting the (1−nk,τ ) and (1−nk,τ ′)
factors.

V
(ss)
c−c

∣

∣

∣

ni,t=0
=

t
∑

τ,τ ′=1

〈(nj,τ − nj,τ−1)(nj,τ ′ − nj,τ ′−1)〉

=
t
∑

τ=1

τ
∑

τ ′=1

〈
[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

+
t
∑

τ=1

t
∑

τ ′=τ+1

〈
[

nj,τnj,τ ′ + nj,τ−1nj,τ ′−1 − nj,τnj,τ ′−1 − nj,τ ′nj,τ−1

]

〉

=
t
∑

τ=1

〈(nj,τ − nj,τ−1)〉 = 〈nj,t〉 , (64)

where arguments concerning cancellations in square brackets are as for the corresponding (sb) case, and
the last step exploits properties of a telescoping sum.
— the contagion-fee contribution to the variance (conditioned on the seller being alive) gives, (exploiting
telescoping sums from the start)

V
(ss)
c−f

∣

∣

∣

ni,t=0
= f0

t
∑

τ=1

〈nj,t(1− nj,τ )(1− nk,τ )〉 = f0

t−1
∑

τ=1

〈(nj,t − nj,τ )(1− nk,τ )〉 (65)
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