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1 Introduction

Extending forecasting models beyond linear models has for some time been considered one of
the directions in which macroeconomic forecasting models would take resulting in improve-
ments in forecasting these variables.

There are good reasons to think that the true data generating processes of macroeconomic
data are nonlinear. Nearly all economic models of the macroeconomy are very nonlinear. For
example DSGE models of the economy predict complicated nonlinear relationships between
the variables and between past and future variables. Indeed it would be highly surprising if
the relationships between current and future outcomes of variables were truly linear in the
variables.

From the perspective of forecasting, this future of nonlinear models used to predict out-
comes has not materialized despite the availability of relatively long sets of data for es-
timating the models and the feasibility of computational methods to estimate them. In
forecasting macroeconomic data, a number of studies over the last decade or so have found a
very small role for parametric nonlinear models. Nonparametric models have also only found
use for small niche variables, typically not for macroeconomic forecasting applications. Re-
cent surveys of forecasting inflation (Wright (2012) show little influence of nonlinear models
in forecasting these variables.

This paper seeks to go beyond documenting the performance of linear versus nonlinear
models and ask why it is that these models do not appear to forecast well. Such an under-
standing would help in a number of directions. First, understanding why currently employed
nonlinear ;models do not work well will help with understanding the correct direction for
improving forecasting. Given our expectation that the economy is nonlinear it will help in
directing choices over modelling nonlinear behavior.

We suggest and examine a number of possibilities for the relatively poor performance
of nonlinear methods. These are (a) there is not really any evidence of nonlinearity in the
data, it could be that the data just does not show that nonlinear models are appropriate;
(b) the typical choices of functional form are not the correct ones for picking up the types
of nonlinearity in the data. (c) the functional forms might be appropriate however the
gains over standard linear models might be too small for them to be useful in forecasting

macroeconomic variables; (d) the models may be appropriate however estimation issues may



indicate that the models could perform poorly and finally (e) the models may perform poorly
overall however the period of evaluation might be critical in choosing a nonlinear forecasting
model.

In this study we consider only univariate forecasting methods, and focus on parametric
nonlinear forecasting methods. We choose to include only two simple linear models for
comparison, given previous results that show that using autoregressive models as a linear
model baseline are appropriate.

There are some caveats to the results. First, they only extend to the parametric models
considered. Second, they only extend to univariate models, it may well be that for multivari-
ate models the results are different. Finally, there is some evidence that for non aggregated
price data (for example electricity prices) that nonlinear models perform well. Such data is

usually better measured and available at higher frequencies than the data examined here.

2 Overview of Models and Previous Empirical Results

From a parametric modelling perspective, there are only a few nonlinear models typically
considered in practice. These take the form of allowing a number of regimes (autoregressive
models) and differ on how the model moves between them. Such models are detailed in
the next subsection. We also review how well these models have been found to perform for

macroeconomic data in a subsequent subsection.

2.1 Overview of Models

The most common form of parametric nonlinear models used in macroeconomic forecasting
are Threshold autoregressive models or Smooth Transition Threshold autoregressive models.

These models can be written as
k k
Yer1 = Go + Z GjYi—j+1 + (90 + Z ijt—j+1> G(si;:7,¢) + €
j=1 j=1

for various specifications of G(s;;,c) where s, is an observed variable and {¢;, 0;}5_, and
{7, ¢} are unknown parameters. The various forms of the model are due to different speci-
fications of the function G(.). If G(s;7v,¢) = 1(s; > ¢) then the model is a threshold autore-

gressive model (TAR) with the autoregressive model having different coefficients whenever
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s; is above or below c.(v is undefined here). When s, is set to a lag of y; this is known
as a self exciting (SETAR) autoregressive model. The TAR model has an abrupt change
in the coefficients at s; = ¢, smooth transition autoregressive (STAR) models avoid this by
parameterizing G(.) such that it smoothly moves between zero and one as s; varies, with
the parameters 7 and ¢ controlling the speed and position of the transition. Clearly any
cumulative distribution function for G(.) will achieve this goal. Most popular in practice
have been the logistic distribution, so G(s,7,¢) = (1+exp(—(s;—c))) ! or the exponential
G(st,7,¢) =1 —exp{—(s; — ¢)*}. A typical choice for s; is a lag of y;, we will use s; = ;.

Primary justifications for these types of models are that they are theoretically reasonable
in the sense that we could imagine that the model is different for a different part of the sample
space (for example when s; is small there is little government intervention, but when it is
larger the government intervenes), the model remains stationary for many parameterizations,
and the models are not too different from linear ones in that they nest linear models if there
are parameters {7, c} such that G(.) = 0 and hence provide a direct extension of the linear
autoregressive model. However such models are usually not grounded in economic theory
and are essentially ad hoc.

From a forecasting perspective, the typical approach is to first test for nonlinearity, and
on rejection of such a test then use the parametric nonlinear form of ones preference. Whilst
tests that are directed at a particular form of G(.) exist (Hansen (19XX) for the TAR
model and Franq et. al. (2010) for the smooth models) a more standard approach is to
use a version of an LM test for the null hypothesis of linearity (following Saikkonen and
Luukkonen (1988)). These are motivated by taking a first or second order expansion of G(.)
around ~ and evaluating at v = 0, which yields either y? or y? and y? (see van Dijk et.
al (2002) for a review, also Terasvirta et. al. (2010) for a derivation and history of these

tests)). The tests often considered are tests on coefficients from regressions of the form

k k
Yiy1 = Op + Z 0jYi—jr1 + Z 5jyt2_j+1 + Ui

j=1 j=1

or
k k k
Yi+1 = 0o + Z 0jYt—j+1 + Z BrVi-ji + Z Boj¥i—j1 + Uar.
j=1 j=1 Jj=1

The test examines Hy : 8;; = 0 for all i,j vs H, : 3;; # 0 for some {i,j}. Nonlinearity is

ij

detected when these tests reject. It is also possible to include cross products of the lagged
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values for y;, however we do not include them in this study.

(we have not included Markov Switching so far).

The family of models described above are time varying parameter models where the time
variation of the parameters is endogenous. An alternative set of models of time variation,
which are essentially nonlinear even though not considered often directly as such, are models
where the parameters break either abruptly or follow an exogenous process. The first of these
comes under the name of breaks, the second often termed simply time varying parameter
models.

- Breaks

-Time Varying parameters

2.2 Previous Empirical Results

In forecasting monthly US data, there is enough evidence to conclude that nonlinear mod-
els do not forecast well. Stock and Watson (2001) examined a large set of monthly US
macroeconomic variables up to 1996 (the data used in this paper is the same data updated
to December 2011, currently for 115 series of their 215). They compared a great number
of forecasting methods that included LSTAR models as well as Neural Net Models. In all
of their rankings (different horizons, different loss functions), LSTAR models typically per-
formed worse than the best linear models (as did for the most part ANN models) and worse
than the baseline autoregressive models. (more detail). They conclude that "most of the
nonlinear forecast methods produce worse forecasts than the linear methods". (more detail).

In a similar study for European monthly data series Marcellino (2004) found better
evidence for the usefulness of STAR and ANN models as well as random coefficient models
(the latter of which did not appear in Stock and Watson’s (2001) study as a forecasting
method). He reports that for this data STAR and ANN models are preferred for forecasting
for 40% of the series. There appears to be no relationship between forecast horizon and
the performance of the nonlinear models, although within the linear models the LSTAR
performs relatively well at the shortest horizon and the ANN model at the longest forecast
horizon. As with most studies Marcellino (2004) finds that when the nonlinear models are
dominated by the linear models they are often quite poor predictors (the difference between

the performance of the models is large).



In summaries of these results, Terastvirta (2006) and Terasvirta et. al. (2010) express
that whilst the STAR methods do not appear to be overall good forecasters, there is still
some chance that for very particular series (European unemployment) they might still be
worth examining and also that they seem to be useful in forecast combinations. However
the general conclusion is that the STAR methods do not perform any better and often worse
than linear methods.

One can also examine this from a different perspective — looking at which models are
favored by various forecasting literatures for different variables. For example for inflation
forecasting a recent survey by Faust and Wright (2012) does not consider STAR models
(due to the lack of a successful forecasting literature for this variable) however do include
two time varying coefficient models. (Stock and Watson reference).

- Handbook chapters, role of nonlinear models e.g. Wright inflation chapter simple models
do better.

- Individual papers, any interest here?

3 Results

A number of models are examined

(a) We have two simple baseline linear models, an AR(1) model and also an AR(p)
model where p is chosen using the BIC criterion. The first of these is included as a very
parsimonious linear model, the second to capture a reasonable parametric linear model. We
compare a number of nonlinear models and models approximating nonlinear models.

(b) The main approximation models are the "auxiliary’ models typically used for testing
for nonlinearity. There are two of these models. The first augments the AR(p) model (where
p is the same lag length as chosen by the BIC for the AR(p) model) with squared terms for
the lags. So if y;_4 is in the model then so is y? ;. This the the regression often used to test
for nonlinearity. The reasoning for including this model is threefold. First, it is somewhat
odd to find that these predictors are important in sample (so we reject linearity) only to
discard them and put in a particular nonlinear component, as suggested in Van Dijk et. al
for STAR modelling. Second, there are quite a number of possible functional forms that are
suggested by these terms entering the model, and it is unclear which to include. Finally,

if this nonlinear approximation model performs well but the STAR models do not then it
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provides direct evidence that there is nonlinearity but not of the forms typically considered.
Hence it is direct evidence for point XX.

(c) We examine LSTAR and ESTAR models, as well as SETAR models. (issues with
estimation etc.)

(d) To be done

The data is an extended version of the Stock and Watson (2001) dataset (only partially
updated at this point). The data is updated to October 2011, using the same start dates
as the Stock and Watson study. We also employ the same transformations as the original

study.

3.1 Do Parametric Models Outperform or Underperform?

Figure 2 gives the performance of the various methods relative to the autoregressive model
with a lag selected by BIC (for each series and method we compute the squared loss relative
to the autoregressive model, so a number less than one indicates a smaller MSE than the
autoregressive model). On the horizontal axis we present various values for this ratio, and
graph the percentage of series for each method that has a smaller relative MSE than that
number. The point on the vertical axis where these lines cut the vertical line where the x axis
equals one gives the proportion of series for which the method outperforms the autoregressive
model.

A number of points are evident in this picture. First, the impact of the insanity filter
for the LSTAR is very large. Without the insanity filter LSTAR is better than the baseline
model 20% of the time but when it is not better it is often a lot worse. For almost 30%
of the series the MSE is three or more times that of the baseline model. The reason is the
occasional ridiculous forecast (more info on this) However with the insanity filter, the result
is quite different. Now for a third of the series LSTAR has a smaller MSE than the baseline.
That the curve for the filtered LSTAR is highest indicates that it has more series with lower
MSE’s than the other methods for a great range of relative MSE’s. However it is also clear
that when the LSTAR outperforms the baseline, it does so by a small improvement over the
baseline whereas when it is worse, it is often much worse. (numbers to get at this).

To see more clearly how the LSTAR performs only slightly better when it is better and

often much worse when it is not we report a histogram of the relative MSE’s of the unfiltered



Figure 1: Performance of Forecast Methods
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Notes: We plot the proportion of series with a relative MSE for each of the methods relative to the
baseline AR model less than the value given on the x axis. The green line is for the baseline model
(so is a step function), yellow is the (insanity filtered) STAR, purple the unfiltered STAR, blue is

AR(1) model, red and aqua are the approximate nonlinear models



Figure 2: Relative Performance of STAR models
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Notes: The histograms show the average MSE relative to the baseline autoregressive model (top

coded to 3).

and insanity filtered methods. In each case we top code the relative MSE so that any value
above 3 is set to three. The results are shown in Figure 3. The mode is above one but close
to one. However the relative losses are skewed somewhat to larger numbers and the number
of models for which there are large gains over the linear model is very small. This is true of

the LSTAR using the insanity filter and without.

3.2 Evidence for nonlinearity

A first explanation of the relatively poor general performance of nonlinear forecasting models
is that there is no detectable evidence for nonlinearity in the data. Terasvirta et. al. (2010)
argues that the Stock and Watson results should be taken with a grain of salt since they
average over data that shows evidence for nonlinearity and series that do not (as we do above

as well). There are a number of aspects to this — first, are tests for nonlinearity likely to



Figure 3: Power of Tests for nonlinearity

Notes: The highest line is an infeasible upper bound for the test power. The light blue line is the
upper bound for power (infeasible test), Green line is the test based on (2), Red line is test based
on (3) and dark blue line is the test based on testing Hy : 69 = 61 = 0 when c is set to zero and ~y

to 2 divided by the standard deviation of ;.

be useful for finding the types of nonlinearity we are modelling and second do we actually
detect the nonlinearity in the data.

The power of tests for nonlinearity when the true model is a STAR model are somewhat
odd as a result of the properties of the models themselves. As one might expect, power is
generally larger when the coefficients in each regime are more distinct, however for many
samples sizes this relationship is not monotonic. However if one is considering stationary
models there are upper bounds as to the differences between the autoregressive coefficients.
It is also unreasonable to consider massive changes in the constant term, since it is unlikely
that long term averages differ greatly. Power is also affected by the baseline model since it
affects the variation of the regressors. Power also depends strongly on the value for « - for
small v the model is close to linear and power is low. However for large ~ power is also low
as this tends to make the G(.) function such that most of the sample is in a single regime.
To our knowledge there are no analytical local power results for these tests.

Without analytical local power results, we resort to Monte Carlo results to show these
effects. Figure 1 shows power as we change the difference between the AR coefficients for
various values for v. The Monte Carlo design is a STAR model with a single lag, ¢ = 0.
Power curves for four tests are examined — the highest curve in each figure is the infeasible
test of the null that 6y = 6, = 0 where G(.) is known (this is included to provide an upper
bound on possible power). In addition power curves for feasible tests discussed above are
included. There is not a lot of difference between the power of the feasible tests and the
upper bound. There is also not much difference between the tests. However the points
mentioned above are clear. Reasonable power requires a relatively large gap between the
models in the two regimes. As ~ gets large we see that for large enough gaps between the
regimes power actually begins to decline again.

It is also the case that tests for linearity have power against a wide set of alternatives,
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not just the nonlinearity that is being looked at. For example, depending on the nature
of the time variation in parameters, these tests can also have power against time varying
parameter models even though the variation is not of the form of STAR models.

Empirically, we find evidence of nonlinearity for 47-60% of the sample depending on the
test employed. Correcting for heteroskedasticity and possible time dependence these numbers
fall a bit, but are still showing evidence of nonlinearity for about half the series. The 60%
of rejections arises using the LM test with squared and cubed terms and no standard error
corrections. For the noncorrected tests, all three reject for 40% of the series and all three fail
to reject for 33% of the series, so there is strong agreement between the three tests employed.
(Add in break tests as well). We can compare this with the sample period examined in the
Stock and Watson (2001) study, where there are rejections for 32-52% of the series.

Hence there appears to be relatively strong evidence of nonlinearity in many of the series.
However the precise form of course is difficult to pin down. Rejections do not imply directly
the types of functional forms often chosen in practice (and used here).

Table 1: Tests for Nonlinearity

Full Dataset Up to Dec 1996

OLS OLS(White) OLS(NW) OLS OLS(White) OLS(NW)
Squared terms 47 20 27 32 17 22
Squared and cubed 61 45 52 52 42 43
Approximate logistic 56 41 43 49 32 39

3.3 Functional Form

A second explanation could come down to functional form choices. It may well be that al-
though, as per the previous subsection, there is evidence of nonlinearity that the particular
functional forms chosen by forecasters are poor approximations to the true unknown func-
tional forms. Evidence on this arises from various perspectives. In Monte Carlo analysis we
can examine how well STAR models perform when the nonlinearity is of an alternate form.
Empirically we can examine the relative performance of different functional forms, as well
as examine how well the nonlinear methods do in outperforming baseline models when there
is evidence of nonlinearity vs when there is little evidence for nonlinearity.

In a criticism of the Stock and Watson (2001) results, Terasvirta et. al. (2010) notes
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that they, like the numbers presented above, ignore whether or not the tests for nonlinearity
reject or not and hence pool results over series that appear nonlinear with those that do not.
However for this dataset, rejections of tests for nonlinearity do not appear to be particularly
useful for predicting which variables have a better forecasting performance with LSTAR over
the baseline. The following table gives the proportions of series for various combinations of
rejecting or failing to reject the null hypothesis of linearity and whether or not the relative
MSE is above or below one (so for example for 24% of the series, Relative MSE is less than
one and we reject linearity).
Table 2: LSTAR Forecasts and Nonlinearity Tests
Rel. MSE<1 Rel. MSE> 1 | Test for Linearity

Reject Linearity | 0.24 0.37 0.61
Fail to Reject 0.09 0.30 0.39
Rel. MSE 0.33 0.67

Notes: Four upper left entries are the proportion of series for which the relative MSE
and nonlinearity test outcomes are as indicated. Remaining entries are sums of the rows or
columns.

The table shows that although most of the times the relative MSE is less than one that
linearity is rejected, the chance that this occurs given that linearity is rejected is less than
the chance that the relative MSE is greater than one given that linearity is rejected. Indeed,
better performance of the nonlinear models over the baseline models conditional on rejection
is only slightly larger than the proportion over all the samples. This means that relying on
full sample rejections to guide use of LSTAR would not have been a useful approach. On
the other hand failure to reject is a strong predictor that the relative MSE is likely to be
above one. This is strongly indicating that the functional form is not particularly relevant
for these series.

We can also examine if approximations to nonlinear models outperform the chosen non-
linear functional form. The general approach to employing the nonlinear models such as
LSTAR is to run an auxiliary regression and test the usefulness of squared and potentially
cubed lagged values of the data as predictors. On finding that these predictors are useful,
they are then discarded for the chosen nonlinear model. Rather than discard them, we could
use these approximate models for forecasting since they have been found to be predictive

in sample. An argument against these variables is that the models they imply are typically
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nonstationary, although from a purely predictive perspective this is not a real problem. An-
other reason for considering these variables is that rejections using this type of LM test do
not imply a particular functional form for the nonlinearity — many different functions are
potentially consistent with the rejection. Finally, polynomials in the predictors are one form
of a sieve type specification.

Comparing this forecasting approach with LSTAR when the true model is an LSTAR
model also gives some indication as to (a) how big the losses are when using an approximate
specification and (b) how likely it is that estimation error is playing a role in the forecasting
performance of the LSTAR model. We can examine this in Monte Carlo simulations for a
variety of sets of parameters specifying the LSTAR models. Results ...

Empirically, we find that LSTAR is for the most part a better predictor than the approx-
imate nonlinear models. We can see this in two ways. First, consider the results presented
in Figure 2 earlier. Here we see that the (insanity filtered) LSTAR model tends to have a
greater proportion of series with relative MSE at any point compared to the approximate
methods (the curve for the LSTAR is higher than that for the approximate methods). It is
also clear from this Figure that there is no difference between the approximate method that
includes the cubed terms and the one that does not.

A second way to see the result is presented in Figure 4. Using the baseline of the
approximation method with cubed terms included a histogram of the LSTAR MSE relative
to this baseline is presented. Clearly LSTAR often improves upon the approximation method,
and when it does the improvement is larger than that the loss when it fails to improve.

A similar table as in Table 2 using the cubic approximation model shows that full sample
rejection with this statistic has an even smaller predictive power in terms of when the method

will outperform the autoregressive model than it does for the LSTAR model.

3.4 Gains too small for effect to make a difference

It is also possible that we have reasonable evidence of nonlinearity in the data, and that also
the LSTAR is a reasonable approximation to this nonlinearity, however the gains in MSE
from using LSTAR model are just relatively small and overwhelmed by sampling error. In
such cases we might see results such as those above (tests for nonlinearity reject) however

gains are small and elusive from using nonlinear models.
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Figure 4: Relative Performance of Approximate Nonlinear model to STAR model
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Notes: The histogram shows the relative MSE of the approximate nonlinear method (cubed term

version) relative to the (insanity filtered) LSTAR model.

One approach to examining this is to examine the size of the gains in a Monte Carlo
experiment. Figure XX reports results comparing the baseline autoregressive model (with
a single lag) against the feasible and infeasible STAR models (for the infeasible STAR, we
assume that vy and c are set to their known values, so all estimates come from a linear
regression), as well as the approximate nonlinear models that use squared and cubed lags
as predictors. We set T = 600, let ¢, = « for various values of «, and 0y = m/ VT leaving
¢y = 01 = 0. So the difference between the autoregressive models in each of the regimes
for the STAR model is through differences in the constant term. What we see is that for
v small (here 1), there are basically no differences between the forecasting performance of
the various methods (these are the results in each of the left hand side panels). This is
despite the fact that tests for nonlinearity here when the STAR model is the true dgp have
considerable power. For much larger v the nonlinear models do offer some improvement over
the baseline autoregressive models, with the difference between the various nonlinear models
being small.

- require information on the values of v in the data. Small or large, how do they relate

to when the LSTAR does well or poorly
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Figure 5: Relative Performance of methods when dgp is STAR
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AR(1) model. Numbers less than one indicate improvement over the baseline AR(1) model.
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3.5 Estimation Issues

Another potential explanation is that even if the functional form is reasonable, issues with
the estimation of the parameters may be such that the models are still outperformed by the
more parsimonious linear models. There are a number of theoretical issues. First, if v is
close to zero then even if the STAR model is correctly specified it is nearly not identified
and we can expect unusual behavior of the estimates. This may cause the forecasts to be
poor. In the case that « is large there are also problems, since the likelihood becomes flat in
some of the parameters. Terasvirta et al. (2010) argue that this is not so much a problem
as the model produces similar results however it is also closer to a linear model in the sense
that most of the observations are near one regime.

We can examine for reasonable models in Monte Carlo whether or not the STAR models
outperform simpler alternatives when the STAR model is correctly specified, and if so how
large the difference is. To do this we refer to the experiment in Figure 4 in the previous
subsection. The results show that for 7" = 600, estimation issues do not appear to be a major
problem for estimating the STAR model. Results for the feasible and infeasible STAR models
(which differ only in the estimation of the nonlinear parameters) are almost equivalent for
all of the experiments.

The empirical results give some credence to the possibility that the results are due to
estimation issues. In the shorter Stock and Watson (2001) sample, STAR models outperform
linear models for very few series. In the updated dataset STAR models outperform for 33%
of the series. These measures rely on a much longer estimation sample (with a minimum
of 493 observations rather than 171 in the earlier work). But they also evaluate over a
different period. To compare on a single evaluation period the effect of the estimation
results, we employ for the full dataset a rolling regression estimation of the forecasting models
rather than the recursive regressions reported above. So for the sample evaluation period as
examined in Section 3.1, we change the estimation only in that we use samples of the same
length regardless of the available data (dropping earlier observations as we forecast at later
dates). The number of observations in each estimation sample for constructing the forecast
is 493 observations, still a relatively large sample. The results are qualitatively similar to
those obtained using the recursive method, and quantitatively only a little worse. The STAR

model (with the insanity filter) now outperforms the baseline autoregressive model for 31%
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of the sample. This is some but weak evidence that estimation issues are the reason for the

generally poor performance of these nonlinear models.

3.6 Period of Evaluation

A final possible issue might be the period of evaluation. It may well be that there are periods
where the nonlinearity is relatively useful for forecasting even though over long periods the
relative MSE to the baseline is not too different from one.

Empirical: To be done

4 Conclusions

Whilst in the extended dataset, parametric nonlinear models prove to be better forecasters
for monthly macroeconomic variables than studies based on earlier data suggest, overall
they are not good in a number of senses. First, they are better than the baseline linear
autoregressive model only 33% of the time. Second, the finding of nonlinearity does not
seem to predict well for which series the nonlinear models outperform linear models. For the
majority of series identified as nonlinear by the test for nonlinearity the parametric nonlinear
model does not outperform the baseline autoregressive model. Third, when they are better
predictors, the gain is relatively small whereas the losses when they are worse are more often
large.

In terms of explaining why the models do not appear to perform well, we identified a
number of potential reasons. First, it could be that the data simply does not display any
indications that a nonlinear model is appropriate. This argument does not appear to hold
up — for about half the series we do indeed reject nonlinearity. Second, it could be that
the functional forms are not reasonable. This argument appears to have merit. Tests for
nonlinearity were not particularly predictive as to which series the nonlinear model would
outperform the linear model. The parametric nonlinear model failed to outperform the
linear model for the majority of series that tests suggested would display nonlinear behavior.
A third possibility is that these models have little potential for gain. This is true for a
great number of parameterizations of the STAR model (still needs work). There is also the

possibility that estimation error overwhelms the gain. This does not appear to be going on,
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the size of the samples appears large enough for relatively good estimation of the models.

5 Appendix

Details regarding the data

The data is an updated version of the same dataset used in Stock and Watson (2001),
currently however only 115 of their 215 variables are updated. Transformations of the data
(takings logs, differencing) are also as in that paper. The data is updated to November 2011.

Details for Tests for Nonlinearity.

The two popular tests for nonlinearity employed in the paper are based on regressions of
y; on a constant, lags of y;, squares of lags of y, and (for the second version) cubes of lags of
;. Then a Wald test using critical values from the asymptotic x3 distribution are employed
where d is the number of parameters set to zero for the test. For the test including squared
terms, this is equal to the number of squared terms included, for model including cubed
terms it is twice that number. In addition we report results from a test based on the STAR
model setting v = 2/0, and ¢ = 0 where O'Z is the variance of the y, variable (estimated from
the data). This test has a x?2 limit distribution where d is equal to one plus the number of
lags in the regression. For the Monte Carlo results the number of lags is set to one, for the
empirical work it is determined by a BIC criterion with a maximum lag of 6.

Details for Forecasting methods employed.

We report two sets of results for the autoregressive baseline model, the first is a simple
AR(1) with constant and the second an AR(1) with the lag length selected by BIC. This
lag length is then imposed on the other models (so the autoregressive model and the STAR

models have the same number of lags always).
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