# Stock Market Liquidity and Bond Risk Premia

Kees E. Bouwman Elvira Sojli Wing Wah Tham

Erasmus University Rotterdam

Frankfurt - May 4, 2012

# Introduction

What do we do and what do we find?

**Question:** Does aggregate stock market liquidity help to predict future bond returns above and beyond the usual term structure and macro factors?

# Introduction

What do we do and what do we find?

**Question:** Does aggregate stock market liquidity help to predict future bond returns above and beyond the usual term structure and macro factors?

**Approach:** We regress future excess bond returns on aggregate stock market liquidity.

# Introduction

What do we do and what do we find?

**Question:** Does aggregate stock market liquidity help to predict future bond returns above and beyond the usual term structure and macro factors?

**Approach:** We regress future excess bond returns on aggregate stock market liquidity.

Main finding: stock market liquidity significantly predicts excess bond returns

- controlling for both yield curve and macro information (forwards and Cochrane-Piazzesi factor for yield curve, Ludvigson-Ng factors for macro)
- small sample inference based on bootstrap
- out-of-sample forecasting tests
- yearly and monthly bond returns
- effect economically significant (45 bps on annual returns)

## What do we know?

#### Excess bond returns related to yields

- *n*-year forward rate one-year-yield (Fama and Bliss, 1987)
- treasury yield spreads (Campbell and Shiller, 1991)
- linear combination of 5 forward spreads (Cochrane and Piazessi, 2005)

## What do we know?

#### Excess bond returns related to yields

- *n*-year forward rate one-year-yield (Fama and Bliss, 1987)
- treasury yield spreads (Campbell and Shiller, 1991)
- linear combination of 5 forward spreads (Cochrane and Piazessi, 2005)

#### Excess bond returns related to macroeconomic information

- macro variables have information about future bond excess returns (Ludvigson and Ng, 2009; Cooper and Priestly, 2009)
- latent component negatively related to economic activity (Duffee, 2011a)

# Why equity market liquidity? I

We examine different potential explanations.

# Why equity market liquidity? I

We examine different potential explanations.

Bond liquidity:

- commonality in bond and stock liquidity (Chordia, Sarkar and Subrahmanyam, 2005)
- maybe stock liquidity is proxying for a bond liquidity premium
- we find no empirical support

# Why equity market liquidity? I

We examine different potential explanations.

### Bond liquidity:

- commonality in bond and stock liquidity (Chordia, Sarkar and Subrahmanyam, 2005)
- maybe stock liquidity is proxying for a bond liquidity premium
- we find no empirical support

### Market-wide private information:

- Albuquerque *et al.* (2008): market-wide private information can forecast industry stock returns and currency returns
- Amihud liquidity measure captures private information (Brennan *et al.*, 2011).
- we find no empirical support for our liquidity measure capturing private information

# Why equity market liquidity? II

### Flight to liquidity & Flight to safety

- investor flee to safer and more liquid assets during economic uncertainty
- theoretical work
  - uncertainty about investors preferences and time-varying risk aversion (Gallmeyer *et al.*, 2005 and Saar, 2006)
  - liquidity is a forward-looking measure for risk preferences
- empirical work
  - flight to liquidity tend to precede flight to safety (Connolly, Stiversa and Suna (2005), Underwood (2009) and Beber, Brandt and Kavajecz (2009))
  - leading information in stock market liquidity is consistent with flight to liquidity and flight to safety (Næs, Skjeltorp and Ødegaard, 2011)
- consistent with our empirical findings

# Why equity market liquidity? III

### Macro channel

- shock to market liquidity has impact on macroeconomy, cost of capital and investments
- theoretical work
  - models with funding and resaleability constraints: Kiyotaki and Moore (2008) and Brunnermeier and Pedersen (2009)
  - Eisfeldt (2005): model with endogenous liquidity linked to productivity
  - lower liquidity induces lower investments
- empirical work
  - market liquidity affects cost of capital (Skjeltorp and Ødegaard, 11; Lipson and Mortal, 09)
  - relation between cost of capital and risk premia through investment channel (Lettau and Ludvigson, 02)
  - consistent with theoretical above models: Aggregate stock market liquidity 
    — macro. Stock market liquidity is a leading indicator for business cycle (Næs, Skjeltorp and Ødegaard, 2011)
- consistent with our empirical findings

# Contribution

### Bond modelling literature

- show that equity market liquidity contains info for bond excess returns
- join others in showing that info beyond bond yields is important
- examining alternative explanations, finding support for a flight-to-quality channel and a macro channel

# Contribution

### Bond modelling literature

- show that equity market liquidity contains info for bond excess returns
- join others in showing that info beyond bond yields is important
- examining alternative explanations, finding support for a flight-to-quality channel and a macro channel

### Link between bond and stock markets

- provide evidence that stock and bond mkts potentially driven by common liquidity factor
- inform theoretical work on the topic (Koijen et al., 06; Lettau and Wachter, 11)

# Contribution

### Bond modelling literature

- show that equity market liquidity contains info for bond excess returns
- join others in showing that info beyond bond yields is important
- examining alternative explanations, finding support for a flight-to-quality channel and a macro channel

### Link between bond and stock markets

- provide evidence that stock and bond mkts potentially driven by common liquidity factor
- inform theoretical work on the topic (Koijen et al., 06; Lettau and Wachter, 11)

### Macroeconomics

 provide empirical support for literature on macroecononomics with financial frictions and market microstructure models with endogenous liquidity

### Data

### Fama-Bliss US Treasury Bonds

- Fama-Bliss yields, end-of-month, January 1964 December 2008
- maturities: 1, 2, 3, 4, 5 years
- log one-year monthly excess returns rx<sub>t</sub> overlapping observations

### Data

### Fama-Bliss US Treasury Bonds

- Fama-Bliss yields, end-of-month, January 1964 December 2008
- maturities: 1, 2, 3, 4, 5 years
- Iog one-year monthly excess returns rx<sub>t</sub> overlapping observations

### Fama Bond Portfolios

- Fama bond portfolio yields, end-of-month, January 1964 December 2008
- maturities: <1, 1-2, 2-3, 3-4, 4-5, 5-10 years
- log monthly excess returns rx<sub>t</sub>

### Data

### Fama-Bliss US Treasury Bonds

- Fama-Bliss yields, end-of-month, January 1964 December 2008
- maturities: 1, 2, 3, 4, 5 years
- Iog one-year monthly excess returns rx<sub>t</sub> overlapping observations

### Fama Bond Portfolios

- Fama bond portfolio yields, end-of-month, January 1964 December 2008
- maturities: <1, 1-2, 2-3, 3-4, 4-5, 5-10 years
- log monthly excess returns rxt

### Ludvigson-Ng macro factors

9 factors extracted from 132 monthly macro series

# Measure of stock market liquidity

- Amihud (2002) illiquidity ratio  $\frac{1}{N} \sum_{t=1}^{N} (\frac{|r_t|}{VOLUME_t})$
- monthly, CRSP common shares listed at NYSE , averaging over stocks
- detrending using log yearly change

# Measure of stock market liquidity

- Amihud (2002) illiquidity ratio  $\frac{1}{N} \sum_{t=1}^{N} \left( \frac{|r_t|}{VOLUME_t} \right)$
- monthly, CRSP common shares listed at NYSE , averaging over stocks
- detrending using log yearly change

#### Two measures

- *D*<sub>12</sub>*ILR*: average over all stocks
- D<sub>12</sub>ILRSMB: average of small stocks minus average of big stocks

log excess return of *n* year bond:  $rx_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)} - y_t^{(1)}$ 

log excess return of *n* year bond:  $rx_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)} - y_t^{(1)}$ equally weighted bond excess return:  $\overline{rx}_{t+1} = \frac{1}{4} \sum_{n=2}^{5} rx_{t+1}^{(n)}$ 

log excess return of *n* year bond:  $rx_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)} - y_t^{(1)}$ equally weighted bond excess return:  $\overline{rx}_{t+1} = \frac{1}{4} \sum_{n=2}^{5} rx_{t+1}^{(n)}$ 

Creating the CP factor

$$\overline{rx}_{t+1} = \gamma' \boldsymbol{X}_t^{CP} + \overline{\varepsilon}_{t+1}, \qquad (1)$$

 $\boldsymbol{X}_{t}^{CP} = [1, y_{t}^{(1)}, f_{t}^{(2)}, \dots, f_{t}^{(5)}]$ 

log excess return of *n* year bond:  $rx_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)} - y_t^{(1)}$ equally weighted bond excess return:  $\overline{rx}_{t+1} = \frac{1}{4} \sum_{n=2}^{5} rx_{t+1}^{(n)}$ 

Creating the CP factor

$$\overline{rx}_{t+1} = \gamma' \boldsymbol{X}_t^{CP} + \overline{\varepsilon}_{t+1}, \qquad (1)$$

$$\boldsymbol{X}_{t}^{CP} = [1, y_{t}^{(1)}, f_{t}^{(2)}, \dots, f_{t}^{(5)}]$$

Creating the LN factor

$$\overline{rx}_{t+1} = \delta' \boldsymbol{X}_t^{LN} + \overline{\varepsilon}_{t+1}, \qquad (2)$$

 $\boldsymbol{X}_{t}^{LN} = [1, LNF_{1,t}, \dots, LNF_{9,t}]$ 

### **Econometric issues**

- $\bullet\,$  monthly observations of yearly returns  $\rightarrow$  overlapping observations
- Newey-West MA(18) standard errors
- bootstrapped standard errors small sample bias

## Excess bond returns & Stock market liquidity



#### Correlation = 0.28

### 'Canonical Regression'

|                     | 0(     | Duck  | 0(    | Duch   |
|---------------------|--------|-------|-------|--------|
| Variable            | Coef.  | Prob. | Coef. | Prob.  |
| $LNF_1$             | 0.015  | 0.00  |       |        |
| $LNF_2$             | 0.002  | 0.12  |       |        |
| $LNF_3$             | -0.001 | 0.12  |       |        |
| $LNF_4$             | -0.004 | 0.03  |       |        |
| $LNF_5$             | -0.002 | 0.06  |       |        |
| $LNF_6$             | -0.005 | 0.01  |       |        |
| $LNF_7$             | -0.005 | 0.00  |       |        |
| LNF <sub>8</sub>    | 0.006  | 0.00  |       |        |
| $LNF_9$             | -0.001 | 0.00  |       |        |
| F1                  | -1.400 | 0.00  |       |        |
| F2                  | 0.604  | 0.08  |       |        |
| F3                  | 2.106  | 0.00  |       |        |
| F4                  | 0.521  | 0.06  |       |        |
| F5                  | -1.515 | 0.00  |       |        |
| CP                  |        |       | 0.725 | 0.00   |
|                     |        |       |       | (0.00) |
| LN                  |        |       | 0.718 | 0.00   |
|                     |        |       | 010   | (0.00) |
| Adj. R <sup>2</sup> | 0.41   |       | 0.40  | (0.00) |
| Auj. R              | 0.41   |       | 0.40  |        |

Table:  $rx_{t+12} = \beta' \mathbf{X}_t + \varepsilon_{t+12}^{(n)}$ 

### In-sample - Average equally weighted portfolio

| Variable               | Coef. | Prob. | Coef. | Prob. | Coef. | Prob. | Coef. | Prob. |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CP                     |       |       |       |       | 0.672 | 0.00  | 0.730 | 0.00  |
| LN                     |       |       |       |       | 0.713 | 0.00  | 0.708 | 0.00  |
| D <sub>12</sub> ILRSMB | 0.025 | 0.00  |       |       | 0.019 | 0.00  |       |       |
| D <sub>12</sub> ILR    |       |       | 0.010 | 0.06  |       |       | 0.009 | 0.02  |
| Adj. R <sup>2</sup>    | 0.07  |       | 0.02  |       | 0.44  |       | 0.41  |       |

#### Table: Yearly portfolio

### In-sample - Average equally weighted portfolio

| Variable               | Coef. | Prob. | Coef. | Prob. | Coef. | Prob. | Coef. | Prob. |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CP                     |       |       |       |       | 0.672 | 0.00  | 0.730 | 0.00  |
| LN                     |       |       |       |       | 0.713 | 0.00  | 0.708 | 0.00  |
| D <sub>12</sub> ILRSMB | 0.025 | 0.00  |       |       | 0.019 | 0.00  |       |       |
| D <sub>12</sub> ILR    |       |       | 0.010 | 0.06  |       |       | 0.009 | 0.02  |
| Adj. R <sup>2</sup>    | 0.07  |       | 0.02  |       | 0.44  |       | 0.41  |       |

#### Table: Yearly portfolio

#### Table: Monthly portfolio

|                            | coeff | p-val | coeff | p-val | coeff | p-val | coeff | p-val |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CPBP                       |       |       |       |       | 0.519 | 0.06  | 0.530 | 0.18  |
| LNBP                       |       |       |       |       | 0.949 | 0.00  | 0.911 | 0.00  |
| D <sub>12</sub> ILRSMB     | 0.003 | 0.00  |       |       |       | 0.03  |       |       |
| $D_{12}ILR$                |       |       | 0.003 | 0.00  |       |       | 0.002 | 0.00  |
| Adj. <i>R</i> <sup>2</sup> | 0.01  |       | 0.02  |       | 0.12  |       | 0.13  |       |

# In-sample regressions - Yearly portfolios

|                            |        |        | 2-year |        |        |        |       | 3-year |        |        |
|----------------------------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|
| CP                         |        |        | 0.315  | 0.318  | 0.286  |        |       | 0.610  | 0.615  | 0.560  |
|                            |        |        | (0.00) | (0.00) | (0.00) |        |       | (0.00) | (0.00) | (0.00) |
| LN                         |        |        | 0.359  | 0.353  | 0.357  |        |       | 0.639  | 0.630  | 0.635  |
|                            |        |        | (0.00) | (0.00) | (0.00) |        |       | (0.00) | (0.00) | (0.00) |
| D <sub>12</sub> ILR        | 0.006  |        | • •    | 0.005  | • •    | 0.010  |       | • •    | 0.009  | • •    |
|                            | (0.03) |        |        | (0.01) |        | (0.04) |       |        | (0.00) |        |
| D <sub>12</sub> ILRSMB     | • •    | 0.013  |        | • •    | 0.010  | • •    | 0.023 |        | • •    | 0.018  |
|                            |        | (0.00) |        |        | (0.00) |        |       |        |        | (0.00) |
| Adj. <i>R</i> <sup>2</sup> | 0.03   | 0.09   | 0.38   | 0.41   | 0.44   | 0.02   | 0.09  | 0.39   | 0.47   | 0.44   |

|                            |        |        | 4-year |        |        |        |        | 5-year |        |        |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CP                         |        |        | 0.917  | 0.923  | 0.856  |        |        | 1.058  | 1.064  | 0.988  |
|                            |        |        | (0.00) | (0.00) | (0.00) |        |        | (0.00) | (0.00) | (0.00) |
| LN                         |        |        | 0.847  | 0.835  | 0.842  |        |        | 1.026  | 1.014  | 1.020  |
|                            |        |        | (0.00) | (0.00) | (0.00) |        |        | (0.00) | (0.00) | (0.00) |
| D <sub>12</sub> ILR        | 0.012  |        |        | 0.011  |        | 0.012  |        |        | 0.011  |        |
|                            | (0.06) |        |        | (0.02) |        | (0.10) |        |        | (0.05) |        |
| D <sub>12</sub> ILRSMB     |        | 0.030  |        |        | 0.022  |        | 0.034  |        |        | 0.024  |
|                            |        | (0.00) |        |        | (0.00) |        | (0.00) |        |        | (0.00) |
| Adj. <i>R</i> <sup>2</sup> | 0.02   | 0.07   | 0.41   | 0.43   | 0.45   | 0.01   | 0.06   | 0.38   | 0.39   | 0.41   |

# Out-of-sample forecasts - Yearly portfolios

- out-of-sample period December 1979 December 2008
- moving estimation window of 15 years
- Giacomini-White (2006) (GW) test for equal predictive ability
- Clark-West (2007) (CW) test for equal predictive ability

# Out-of-sample forecasts - Yearly portfolios

- out-of-sample period December 1979 December 2008
- moving estimation window of 15 years
- Giacomini-White (2006) (GW) test for equal predictive ability
- Clark-West (2007) (CW) test for equal predictive ability

|         | average return |        | 2y return |        | 3y return |        | 4y return |        | 5y return |        |
|---------|----------------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|
|         | ILR            | ILRSMB | ILR       | ILRSMB | ILR       | ILRSMB | ILR       | ILRSMB | ILR       | ILRSMB |
| Ratio   | 0.990          | 0.972  | 0.990     | 0.970  | 0.988     | 0.969  | 0.990     | 0.973  | 0.992     | 0.975  |
| CW      | 1.342          | 2.100  | 1.283     | 2.378  | 1.443     | 2.313  | 1.365     | 2.062  | 1.247     | 1.880  |
| p-value | 0.09           | 0.02   | 0.10      | 0.01   | 0.08      | 0.01   | 0.09      | 0.02   | 0.11      | 0.03   |
| GW      | 0.613          | 1.362  | 0.550     | 1.451  | 0.683     | 1.482  | 0.637     | 1.343  | 0.560     | 1.231  |
| p-val   | 0.27           | 0.09   | 0.29      | 0.07   | 0.25      | 0.07   | 0.26      | 0.09   | 0.29      | 0.11   |

# Out-of-sample forecasts - Monthly portfolios

|               | average return |               | < 1y          |               | 1             | l-2y          | 2-3y          |               |
|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|               | ILR            | ILRSMB        | ILR           | ILRSMB        | ILR           | ILRSMB        | ILR           | ILRSMB        |
| Ratio         | 0.994          | 0.994         | 0.980         | 0.984         | 0.989         | 0.989         | 0.993         | 0.991         |
| CW<br>p-value | 1.999<br>0.02  | 1.874<br>0.03 | 2.445<br>0.01 | 2.367<br>0.01 | 2.143<br>0.02 | 2.281<br>0.01 | 2.053<br>0.02 | 2.089<br>0.02 |
| GW<br>p-value | 1.386<br>0.08  | 1.112<br>0.13 | 1.697<br>0.04 | 1.406<br>0.08 | 1.512<br>0.07 | 1.410<br>0.08 | 1.428<br>0.08 | 1.199<br>0.12 |

|         | 3     | 3-4y   | 4     | -5y    | 5-10y |        |  |
|---------|-------|--------|-------|--------|-------|--------|--|
|         | ILR   | ILRSMB | ILR   | ILRSMB | ILR   | ILRSMB |  |
| Ratio   | 0.995 | 0.994  | 0.997 | 0.996  | 0.997 | 0.996  |  |
| CW      | 1.903 | 1.846  | 1.809 | 1.646  | 1.726 | 1.496  |  |
| p-value | 0.03  | 0.03   | 0.04  | 0.05   | 0.04  | 0.07   |  |
| GW      | 1.281 | 1.082  | 1.202 | 0.930  | 1.184 | 0.903  |  |
| p-value | 0.10  | 0.14   | 0.11  | 0.18   | 0.12  | 0.18   |  |

# Empirical findings on explanations I

### Bond liquidity:

- we include a bid-ask spread measure of bond liquidity in the predictive regressions.
- finding: bond liquidity is insignificant and does not affect predictive power of stock market liquidity.

# Empirical findings on explanations I

### Bond liquidity:

- we include a bid-ask spread measure of bond liquidity in the predictive regressions.
- finding: bond liquidity is insignificant and does not affect predictive power of stock market liquidity.

#### Market-wide private information:

- we include in our predictive regressions measures of market-wide private information proposed by Albuquerque *et al.* (2008)
- finding: market-wide private information significantly predict bond returns, but do not affect the predictive power of stock market liquidity.

# Empirical findings on explanations II

### Flight to liquidity & Flight to safety

- $\bullet\,$  flight-to-quality  $\to\,$  portfolio shift out of equity into Treasuries and money market funds
  - we look at net exchange flows inequity mutual funds and money market funds
  - finding: stock market illiquidity is strongly comoves with flows in money market funds and out of equity funds.
  - we also look at the holdings of balanced funds and find that stock market illiquidity comoves with a shift from equities into bonds
- VIX/VXO as a proxy of flight to quality (Bekaert *et al.*, 2010, Bailey and Stulz, 1989)
  - we regress VXO on lagged stock market liquidity
  - finding: liquidity significantly predicts future VXO
  - all in all our findings are consistent with a flight-to-quality story

# Empirical findings on explanations III

#### Macro channel

- shock to market liquidity has impact on macroeconomy, cost of capital and investments
- we regress real private fixed investments on lagged liquidity (Skjeltorp and Ødegaard, 2011)
- finding: a decrease in liquidity significantly predicts a decrease in investments

## Conclusion

- we find evidence that information in stock market liquidity contains predictive information for excess bond returns above and beyond information in the yield curve and macroeconomic variables
- findings consistent with flight-to-liquidity/flight-to-quality and macro story