

A model of the euro-area yield curve with discrete policy rates by Jean-Paul Renne

Discussion by W. Lemke (ECB)

ECB conference on "Excess liquidity and money market functioning" 19-20 November 2012 Frankfurt am Main

The views in this presentation are those of the presenter and do not necessarily represent the views of the ECB or the Eurosystem

Methodology

- Model
 - Arbitrage-free term structure model
 - Discrete policy rates, rich specification of EONIA spread
 - Solve for arbitrage-free OIS yields analytically
- Estimation
 - Daily (!) euro area data since 1999
 - State space model: Chen-Scott-type inversion and Kitagawa-Hamilton filter used for ML estimation
- Applications
 - Quantifying effect of forward guidance
 - Quantifying forward premia
 - Identifying monetary policy and liquidity regimes

Assessment and discussion

Overall assessment

- Mainly methodological paper
- Careful analysis, smart details at modelling and estimation front
- Wide scope of applications
- Clearly written, good to read
- Should be sharper on value-added and difference vis-a-vis benchmark term structure models
- Strengthen interpretation of results from policy perspective
- **Discussion**
 - Classification of the model in the 'zoo' of term structure models
 - Specific questions on method and results
 - Comment on policy applications

Going beyond Gaussian affine term structure models as standard central bank workhorses

Genuine TSM	Gaussian affine TSM	Renne (2012)
One-period rate i	"Risk-free" rate	Eonia rate
i=f(factors)	Sum of K latent factors, ex post similar to level, slope, curvature	Sum of discrete monetary policy rate and 3 components making up EONIA spread
Law of motion for factors	Gaussian homoscedastic VAR	Discrete and continuous-valued factors, non-normal shocks, Markov-switching dynamics
P(n) = E ^Q (exp[sum of current and future i])	General pricing equation	
y(n)= - I/n log(P(n) = g _n (factors)	Yields affine in factors	Yields affine in regime variable and continuous state variable
	Yields and d(yields) Gaussian	Non-Gaussian yield distribution (how exactly?)
	Negative yields possible	Negative yields excluded
Lemke discussing Renne EUROPEAN CENTRAL BANK 4		

A paper on 'relative pricing'

- 'Finance approach', no macro, see Cochrane (2001):
 - "Term structure models used in finance amount to regressions of interest rates on lagged interest rates ...
 - ... Macroeconomists also run regressions of interest rates on a wide variety of variables, including [...] inflation, output, unemployment, exchange rates, [...]
 - Someone, it would seem, is missing important right hand variables"
- Maybe clarify, at least expositionally:
 - How can we talk about monetary policy ("tightening", "easing",...) without relating to macro conditions?
 - How does the model learn/know/predict monetary policy regimes: all macro info priced in yields?

- Yields used for estimation:
 - All yields in table (1m, 3m, 6m, 1m, 2y, 4y) used for estimation?
 - Why not go beyond 4y tenor?
- Persistence of regimes
 - Regime of 'normal' vs. excess liquidity condition is fairly persistent both under physical and under risk-neutral measure:
 P(exc|exc) = 0.9999.
 - Estimate hitting an imposed bound? Reliable estimate?
 - Implied expected staying time?
 - Relevant? Example: Forward premia should (inter alia) depend on difference in persistence of that regime under P and Q measure

Questions on method and results (2)

- Size of unconditional variance of s_t capped in estimation
 - Paper is transparent on that approach good!
 - But ...
 - Is the imposed bound binding?
 - Would unconstrained estimates of \mathbf{s}_t completely wipe out other components in long-term bond pricing?
 - Is there (almost) an identification issue behind it?
- Fit of the model
 - Model allows skewed and fat tails: how well are data features matched (first differences!)?
 - How well does model fit 'cross-sectionally out ouf sample'?:
 Check implied yield curve and yield series for > 4-year maturity

Can the model's richness be better exploited?

- What can the model reveal what others (ATSM) cannot?
 - Results qualitatively and/or quantitatively different from ATSM?
 - Does the model allow for other/additional interpretation?
- Example: forward guidance
 - CB keeps target rate constant for certain number of periods
 - Paper finds: statistically downward impact on yield curve ...
 - ... which is "far larger when the current target rate is low"
 - Is the latter effect surprising?
 - Qualitatively? No: basic one-factor model with expectations hypothesis gives same result (*illustrate on next slide*)
 - Quantitatively? Need to compare to other models, and should trace what model features drive the effect

Illustration: forward guidance impact

• One-factor model

- $-i_{t} = \mu + \alpha (i_{t-1} \mu) + e_{t}$
- Note that $E_t(i_{t+1}) = \mu + \alpha (i_t \mu)$
- Pure expectations hypothesis holds: $y_t(n) = I/n E_t(i_t + i_{t+1} + ... + i_{t+n-1})$
- Effect of forward guidance
 - I-period short rate, 2-period represents long rate:
 - $y_t(1) = i_t , y_t(2) = 1/2 E_t(i_t + i_{t+1}) = 1/2 [(1 + \alpha) i_t + (1 \alpha) \mu]$
 - CB commits to keep i_{t+1} at current short rate $i_t = y_t^*(2) = i_t$
 - How much would long yield be lower due to forward guidance: $S = y_t^*(2) - y_t(2) = 1/2 (1 - \alpha)(i_t - \mu)$
 - For $i_t < \mu$, S < 0. The lower i_t , the stronger the effect of forward guidance.

Summary and outlook

- Heavy-weight contribution to term structure literature
- Hammer in search of a nail think of further applications:
 - Other forms of forward guidance
 - Interest rate gradualism
- Convince readers (even) better
 - what purpose all the bells and whistles serve ...
 - ... and what a simpler model cannot achieve in terms of
 - forecasting
 - nowcasting (which regime prevails currently)
 - counterfactuals
 - pricing of other instruments

10