# Systemic Financial Instability versus Financial Business Cycles in Empirical Macroeconomics Discussion

### Harald Uhlig<sup>1</sup>

<sup>1</sup>University of Chicago Department of Economics huhlig@uchicago.edu

June 23, 2014

# Outline

### Three papers

- Hartmann-Hubrich-Kremer-Tetlow, "Melting Down: Systemic Financial Instability and the Macroeconomy"
- Alessandri-Mumtaz, "Financial conditions and density forecasts for US output and inflation"
- Gilchrist-Mojon, "Credit Risk in the Euro Area"

One discussant...

### Three papers

- Hartmann-Hubrich-Kremer-Tetlow, "Melting Down: Systemic Financial Instability and the Macroeconomy"
- Alessandri-Mumtaz, "Financial conditions and density forecasts for US output and inflation"
- Gilchrist-Mojon, "Credit Risk in the Euro Area"

### One discussant...

### Some common themes ....

- Examine or construct a specific financial stress indicator.
- Use it in (FA)VARs, possibly with regime-switching.
- Find that the stress indicator ...
  - helps with forecasting.
  - helps with identifying financial-stress-regimes.
  - has shocks ("ordered last") which have powerful effects on the economy, possibly restricting to stress-episodes.
- Generally, episodes of financial stress can be identified and are times, in which financial stress shocks have strong effects on the economy.

### ... and some more common themes ...

- Lots of hard work.
- Lots of details.
- The papers want answers!
- We "know" (do we?) that financial frictions matter and that "financial recessions" occured: so surely, one can empirically figure out what is going on during these episodes.
- Lots of colorful names and interpretations get attached to empirical results.
- For my taste: a bit too much advertising of perhaps-less-compelling results, and a bit too much "ECB/financial crisis"-speak.
- Bayesians have won.

# ... and a common, remaining challenge

- Challenge: could we have seen the crisis coming? Will these methods see the next crisis coming?
- These papers should clear this up.
  - Financial stress indicators: constructed "after the fact". By themselves, they start "blinking" in late 2007 — otherwise, they would not have been proposed in the first place or used in this paper. Should we be surprised?
  - Does adding the financial stress indicator to the VARs really help? Comparison to a VAR with 3 or 5 variables (rather than large-scale VAR/FaVAR model) "too easy"?
  - Do the VAR analyses help in "seeing the crisis coming" above and beyond staring at the crisis indicator, and in real time?
    - ★ Obviously, the "real time" probability of a crisis was low in, say, 1997.
    - Show convincingly, that your analysis would have seen the world wide financial crisis coming by 2006 or the Eurozone crisis coming, by 2009, in a real-time data analysis!
    - ★ Perhaps that's not possible. But then, tone it down a notch or two.

- Quite a bit on selling the Hollo-Kremer-Lo Duca "CISS" (Composite Indicator of Systemic Stress) indicator. Comment:
  - Is it sensible?
  - Best defense appears to be: it works.
  - Paper could just briefly describe it and sell its own contribution.
- Use it inside a Markov-Switching VAR,

$$A_0^{(s_t)} y_t = A_1^{(s_t)} y_{t-1} + ... + A_3^{(s_t)} y_{t-1} + D^{(s_t)} \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, I)$$

where  $(s_t)$  indicates the (hidden) Markov state.

- Preferred specification:  $s = (v_i, c_j)$ , where i = 1, 2, 3 counts "variance states, only impacting on  $D^{(s)}$  and j = 1, 2 counts "coefficient states", only impacting  $A_k^{(s)}$ .
- Find: large impact of stress indicator shocks in "systemic fragility state".
- Find: useful for assessing crisis episodes and as early warning tool.



Figure 1: Composite Indicator of Systemic Stress ("CISS") for the euro area and specific financial stress episodes, January 1987 to December 2010

#### Note: highly volatile recently

| Line | Table 3: Descriptive statistics, by regime   Regime conditional means |             |                       |                   |                    |                     | sample                |
|------|-----------------------------------------------------------------------|-------------|-----------------------|-------------------|--------------------|---------------------|-----------------------|
| #    |                                                                       | $\Delta IP$ | $\Delta P$            | R                 | $\Delta Ln$        | S                   | shares (%)            |
| [1]  | First regime $(v1, c1)$                                               | 0.54        | 2.26<br>"Tran         | 5.85<br>quil regi | 5.97<br>me"        | 0.071               | 16.1                  |
| [2]  | Third regime $(v2, c1)$                                               | 2.78        | 1.96                  | 3.22              | 6.33               | 0.081               | 35.3                  |
| [3]  | Fifth egime $(v3, c1)$                                                | 3.96        | 2.43<br><b>"Syste</b> | 4.18<br>mic fra   | 9.66<br>gility reg | 0.260<br>ime″       | 5.2                   |
| [4]  | Second regime $(v1, c2)$                                              | 3.39        | 3.01                  | 6.13              | 8.43               | 0.092               | 17.8                  |
| [5]  | Fourth regime $(v2, c2)$                                              | 1.16        | $^{2}$ $^{83}_{Med}$  | 5.85<br>ium stre  | 6.11<br>ss varia   | 0.110<br>nce high s | 18.9<br>tress coefs." |
| [6]  | Sixth regime $(v3, c2)$                                               | -11.3       | 1.57High              | 2.88<br>n stress  | 4.66<br>variance   | 0.520<br>high stre  | ss coefs.             |

Notes: vi variance regime, i = 1, 2, 3. cj coefficient regime, j = 1, 2.

#### Tough to read! Different numbers, labels...



Figure 3: Smoothed probability of the systemic fragility regime (red line) and the financial turmoil regime (green line)

#### Too little data on key regimes? It is ...



#### ... patched from two sources of evidence.



Figure 4: Impulse responses to financial stress shock, one standard deviation shock, comparison constant parameter model and 2 coefficient regime model (3v2c)

#### No surprise, since variance is now large? Std errors?

- Theoretical exposition, that financial-stress-type models might produce nonlinearities. Comment:
  - ► Too long. Wrong model for macro. Unconvincing.
  - Other cited literature: sure, theorists like to have fun.
  - We believe you that it could. Show us that it matters!
- For U.S.: financial conditions indicator (fci), extracted as a factor.
- Use it inside a Treshold VAR or TAR,

$$A_0^{(s_t)} y_t = A_1^{(s_t)} y_{t-1} + ... + A_{12(?)}^{(s_t)} y_{t-1} + D^{(s_t)} \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, I)$$

where  $s_t \in \{0, 1\}$  (two regimes) is observed,

$$s_t = 1$$
, if fci<sub>t-d</sub>  $\leq Z^*$ 

- Various real-time-data model selection criteria.
- Find: nonlinearities matter. Predictive densities matter.
- Find: TAR would have predicted high probability of deep recessions, in constrast to simple VAR.
- Not much difference between VAR with fci and TAR?



Figure 1: Financial regimes. The data is plotted against the full-sample median estimate of  $1 - S_t$ , the state variable that drives the regimes in the *TAR* model. Grey bands identify the periods of financial distress ( $S_t = 0$ , see equation 13).

#### Not a lot of "data" for "stress regime". 1980 = 2007?



Tight standard errors?! Mean reversion in fci: since episodes were short.



Widened uncertainty gets larger probability for tails. Is that a feature ... or a bug?

- Clean up the technical stuff.
- Conjugate prior? That's a Normal-Wishart for a regular VAR (see my "Econometric Theory" paper 1994, a version is in Leamer ... I don't understand that credit here is given to Banbura et al.)
- It is also a Normal-Wishart for a observed-regime-switching VAR.
- Dummy observations do not generate a conjugate prior, can suitably modify it.
- Gibbs sampling: how? More importantly: why? For a regular VAR, you can integrate directly. For the regime-switching VAR, only "difficult" uncertainty is about Z\* and d: two-dimensional. The rest can be integrated out.
- You never show predictive densitities, but you should. I suspect you have too little data during "stress times": thus, the model over-cautiously gets large probabilities for deep recessions.

- They construct a new credit risk indicator, based on yields of private sector bonds (MFIs / non-MFIs). Comments:
  - "Gilchrist-Zakrajsek" for EMU.
  - Data for the rest of us: always cool!
  - But: do we only get the indicator? Much is about details! Can you publish the underlying data set too? Or a much more detailed break down?
  - Will it be updated in the future, and supplied by BdF?
  - Are these bonds traded regularly? Even in crisis times?
- Economic activity regression: credit risk indicator predicts GDP and bank lending. Comment: only few other variables on rhs! Is this a surprise? Perhaps, the indicator is an instrument for something else? This may be **particularly** true, when we examine country-specific regressions.

- Comment: causation?!? Could it be, that banks learn that GDP will decline or that country conditions worsen, due to sovereign default fears, and thus restrict lending and raise rates now?
- Run FaVAR: no regime dependence, but "credit risk indicator" on its own and last in Cholesky. Authors find: shocks have significant impact.
- "Uniqueness ( = uniformity?) of monetary conditions? " ECB-speak! No. If two prices differ, it does not mean that markets are disturbed.



### Do differences mean "financial stress"?



#### Two indicators: differ. Bug or feature?



Figure 7: Impulse response: euro area real and financial variables

# Conclusions

- Lots of hard work.
- Lots of details.
- Important topic.
- The papers want answers!
- They deliver some, but perhaps not as much as they claim.
- That's life. Data isn't as neat as policy makers wish it to be.