Bank Capital Requirements: A Quantitative Analysis

Thiên T. Nguyễn

▶ Key regulatory reform: Bank capital requirements

- ▶ Key regulatory reform: Bank capital requirements
- ▶ Policymakers: Strong consensus for higher bank capital requirements

- In 2010, the Basel Committee on Banking Supervision: Raised Tier 1 capital requirement from 4 to 6 percent
 - $\circ~$ Tier 1 \rightarrow common stock + retained earnings
- In July 2013, the Fed adopted the same Tier 1 capital requirement for all U.S. banks.

The Ben S. Bernanke on regulatory capital framework:

"[T]his framework requires banking organizations to hold more and higher quality capital, which acts as a financial cushion to absorb losses, while reducing the incentive for ... [banks] to take excessive risks."

 "Do new bank-capital requirements pose a risk to growth?" -The Economist, 8/20/2010

- "Do new bank-capital requirements pose a risk to growth?" –The Economist, 8/20/2010
- Is imposing higher bank capital requirements beneficial?

▶ What are the welfare implications of bank capital requirements?

Question

- What are the welfare implications of bank capital requirements?
- ▶ I propose a general equilibrium banking model to study this question.

Question

- What are the welfare implications of bank capital requirements?
- I propose a general equilibrium banking model to study this question.

In this paper, bank capital affects growth and risk:

- Dynamic banking sector
 - Banks risk-shift due to government bailouts.
 - Banking regulation
 - \rightarrow reduces risk-shifting incentive, fostering growth

Question

- What are the welfare implications of bank capital requirements?
- I propose a general equilibrium banking model to study this question.

In this paper, bank capital affects growth and risk:

- Dynamic banking sector
 - Banks risk-shift due to government bailouts.
 - Banking regulation
 - \rightarrow reduces risk-shifting incentive, fostering growth

Endogenous growth

- Concerns about growth
- Funding for investment comes through banks
 - \rightarrow regulating banks affects investment and hence growth

Outline of the model

Capital producing firms

Banks

Final good producers

Outline of the model

Outline of the model

Outline of the model

Outline of the model

10

Households

Representative household

$$U_0 = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-1/\psi} - 1}{1 - 1/\psi}$$

 \blacktriangleright Endowed with 1 unit of labor \rightarrow supply inelastically

- Large number of islands indexed by j: state or industry
- Firms are short-lived
- ► *i_t*: required **investment today** for **production tomorrow**

- Large number of islands indexed by j: state or industry
- Firms are short-lived
- ► *i_t*: required **investment today** for **production tomorrow**
- Two types of firms
 - Normal firm

capital produced tomorrow = $z_{j,t+1} \cdot i_t$

- Large number of islands indexed by j: state or industry
- Firms are short-lived
- i_t : required **investment today** for **production tomorrow**
- Two types of firms
 - Normal firm

capital produced tomorrow $= z_{j,t+1} \cdot i_t$

• Risky-low-productivity firm

capital produced tomorrow $= z_{j,t+1} \cdot \epsilon_{jf,t+1} \cdot i_t$

$$\log \epsilon_{jft} \sim \mathcal{N}\left(-\mu - \frac{1}{2}\sigma_{\epsilon}^2, \sigma_{\epsilon}\right) \quad \forall j, f, t$$

- Large number of islands indexed by j: state or industry
- Firms are short-lived
- i_t : required investment today for production tomorrow
- Two types of firms
 - Normal firm

capital produced tomorrow $= z_{j,t+1} \cdot i_t$

• Risky-low-productivity firm

capital produced tomorrow $= z_{j,t+1} \cdot \epsilon_{jf,t+1} \cdot i_t$

$$\log \epsilon_{jft} \sim \mathcal{N}\left(-\mu - \frac{1}{2}\sigma_{\epsilon}^2, \sigma_{\epsilon}\right) \quad \forall j, f, t$$

Compactly

$$z_{j,t+1} \cdot [\chi \epsilon_{jf,t+1} + (1-\chi)] \cdot i_t$$

- Small operating $cost = o \cdot i_t$ \rightarrow internal fund
- Funding need from bank i_t

- Small operating $cost = o \cdot i_t$ \rightarrow internal fund
- Funding need from bank i_t
- Net income tomorrow =

$$\underbrace{p_{t+1}^{I} z_{t+1} \cdot [\chi \epsilon_{f,t+1} + (1-\chi)] \cdot i_{t}}_{\mathsf{Revenue}} - \underbrace{\frac{R^{l}(\chi, z_{t}) \cdot i_{t}}_{\mathsf{Debt repayment}}$$

- Small operating $cost = o \cdot i_t$ \rightarrow internal fund
- Funding need from bank i_t
- Net income tomorrow =

$$\underbrace{p_{t+1}^{I} z_{t+1} \cdot [\chi \epsilon_{f,t+1} + (1-\chi)] \cdot i_{t}}_{\mathsf{Revenue}} - \underbrace{\frac{R^{l}(\chi, z_{t}) \cdot i_{t}}_{\mathsf{Debt repayment}}$$

Zero-profit condition

$$\underbrace{ \begin{array}{c} \text{Default option} \\ \mathbb{E}_t M_{t+1} \max\{0, \text{Net income tomorrow}\} = \text{Current operating cost} \end{array} }_{\text{Current operating cost}}$$

- Small operating $cost = o \cdot i_t$ \rightarrow internal fund
- Funding need from bank i_t
- Net income tomorrow =

$$\underbrace{p_{t+1}^{I} z_{t+1} \cdot [\chi \epsilon_{f,t+1} + (1-\chi)] \cdot i_{t}}_{\mathsf{Revenue}} - \underbrace{\frac{R^{l}(\chi, z_{t}) \cdot i_{t}}_{\mathsf{Debt repayment}}$$

Zero-profit condition

$$\underbrace{ \begin{array}{c} \text{Default option} \\ \mathbb{E}_t M_{t+1} \max\{0, \text{Net income tomorrow}\} = \text{Current operating cost} \end{array} }_{\text{Current operating cost}}$$

Firm's default cutoff:
$$\bar{z}_{t+1}(z_t, \chi, \epsilon_{f,t+1})$$

Road map

Capital producing firms

Banks

Final good producers

Road map

Capital producing firms

Banks

Final good producers

Road map

Road map

Capital producing firms

Banks

Final good producers

• Each bank chooses one firm to finance

- Each bank chooses one firm to finance
- Bank's net cash at the beginning of next period

$$-\underbrace{R^b_{t+1}b_{t+1}}_{\mathsf{Deposit liability}}$$

• Recovery rate η

- \blacktriangleright Bank monitoring cost: m per unit of investment
- d_t : net equity payout

- Bank monitoring cost: m per unit of investment
- ► *d_t*: net equity payout
- Bank's budget constraint

- Bank monitoring cost: m per unit of investment
- ▶ d_t: net equity payout
- Bank's budget constraint

Net distribution to bank shareholders:

$$d_t - \underbrace{\Phi(d_t)}_{\mathsf{Equity issuance cost}}$$

Bank equity valuation

Bank's problem

 $V(z_t, \pi_t) = \max\{0, \quad \pi_t, \quad \max_{b_{t+1}, \chi_t, d_t} d_t - \Phi(d_t) + \mathbb{E}_t M_{t+1} V(z_{t+1}, \pi_{t+1})\}$

subject to the budget constraint and loan demand

Three cases: (1) Default, (2) Exit but not default, and (3) Operate

Bank equity valuation

Bank's problem

 $V(z_t, \pi_t) = \max\{0, \quad \pi_t, \quad \max_{b_{t+1}, \chi_t, d_t} d_t - \Phi(d_t) + \mathbb{E}_t M_{t+1} V(z_{t+1}, \pi_{t+1})\}$

subject to the budget constraint and loan demand

Three cases: (1) Default, (2) Exit but not default, and (3) Operate

and the capital requirement constraint

$$\underbrace{\frac{\text{Retained earnings}}{\pi_t - m \cdot i_t} - \underbrace{\frac{\text{Equity payout}}{d_t}}_{i_t} \geq \bar{e}$$

Bank deposit valuation

- Bank default: bailed out with probability λ
- Bailouts are financed with lump sum taxes
- \blacktriangleright If not bailed out, recovery rate θ
Bank deposit valuation

- Bank default: bailed out with probability λ
- Bailouts are financed with lump sum taxes
- If not bailed out, recovery rate θ
- ▶ Required return for depositors, $R^b_{t+1}(z_t, \pi_t)$, satisfies the condition

$$b_{t+1} = \mathbb{E}_t M_{t+1} \begin{bmatrix} \underbrace{\mathsf{Bank not default}}_{R_{t+1}^b b_{t+1} \cdot \mathbbm{1}_{\{V_{t+1} > 0\}} + \lambda R_{t+1}^b b_{t+1} \cdot \mathbbm{1}_{\{V_{t+1} = 0\}}}_{A R_{t+1}^b b_{t+1} \cdot \mathbbm{1}_{\{V_{t+1} = 0\}}} \\ + \underbrace{(1 - \lambda)\theta \cdot \mathsf{Revenue}_{t+1} \cdot \mathbbm{1}_{\{V_{t+1} = 0\}}}_{\mathsf{Bank default-not bail out}} \end{bmatrix}$$

Bank's policy functions: Risk-shifting (on one industry/ z_j) Exit decision Equity payout-asset ratio 1.5 1 0.8 0.5 0.6 0.4 0 0.2 -0.5 0 -1 -0.5 0.5 -0.5 0.5 0 1 0 1 Net cash Deposit-asset ratio 1 0.8 0.6 0.4 0.2 0 -0.5 0.5 0 1 Net cash

Distribution of banks

Banks are heterogeneous only in terms of their idiosyncratic shocks and net cash:

$$\underbrace{\mathcal{B}_t}_{\text{Mass}} \cdot \underbrace{\Gamma(z_t, \pi_t)}_{\text{cdf}}$$

Distribution of Banks

Distribution of banks

Banks are heterogeneous only in terms of their idiosyncratic shocks and net cash:

$$\underbrace{\mathcal{B}_t}_{\text{Mass}} \cdot \underbrace{\Gamma(z_t, \pi_t)}_{\text{cdf}}$$

▶ Bank entry cost: $e \cdot i_t$

$$e \cdot i_t \le \mathbb{E}_z V_t(z_t, \pi_t = 0)$$

• If bailed out, banks can continue to operate with $\pi_t = 0$

Equilibrium Capital Production

Equilibrium capital production

Capital produced next period

$$\begin{split} I_{t+1}^s &= i_t \int \int z_{t+1} [\chi_t \epsilon_{f,t+1} + (1-\chi_t)] \cdot (\text{Adjustments due to bankruptcies}) \\ &\quad \times dP(\epsilon_{t+1} | z_{t+1}, \pi_{t+1}) \mathcal{B}_{t+1} d\Gamma_{t+1} \end{split}$$

Road map

Capital producing firms

Banks

Final good producers

Households

Road map

Road map

Capital producing firms

Banks

Final good producers

Households

Road map

Capital producing firms

Banks

Final good producers

Households

Final good producer

- \blacktriangleright A measure one of final good producers indexed by $u \in [0,1]$
- Technology

$$y_{ut} = A_t k_{ut}^{\alpha} (K_t l_{ut})^{1-\alpha}$$

Final good producer

 \blacktriangleright A measure one of final good producers indexed by $u \in [0,1]$

Technology

$$y_{ut} = A_t k_{ut}^{\alpha} (K_t l_{ut})^{1-\alpha}$$

- Investment demand i_{ut}^d
- Investment adjustment cost

$$\frac{a}{2} \left(\frac{i_{ut}^d}{k_{u,t-1}}\right)^2 k_{u,t-1}$$

Equilibrium Growth

Aggregate output

$$Y_t = A_t K_t$$

► Growth

$$\frac{Y_{t+1}}{Y_t} = \frac{A_{t+1}}{A_t} \frac{K_{t+1}}{K_t}$$

Equilibrium Growth

Aggregate output

$$Y_t = A_t K_t$$

- ► Growth $\frac{Y_{t+1}}{Y_t} = \frac{A_{t+1}}{A_t} \frac{K_{t+1}}{K_t}$
- Aggregate capital accumulation

$$K_t = (1 - \delta)K_{t-1} + I_t^d$$

Capital market clearing

$$\int_0^1 i_{ut}^d du = I_t^d = I_t^s$$

Quantitative Assessment

- ► Calibrate the model to U.S. regulation: $\bar{e} = .04$ → Benchmark
- Welfare calculations are relative to this benchmark

- Period = quarter
- No aggregate uncertainty

- Period = quarter
- No aggregate uncertainty

Description	Symbol	Value	Source/Target
TFP level	A	0.11	Match consumption growth

- Period = quarter
- No aggregate uncertainty

Description	Symbol	Value	Source/Target
TFP level	A	0.11	Match consumption growth
Subjective discount factor	β	0.987	Cooley and Prescott (1995)
Income share of capital	α	0.45	Cooley and Prescott (1995)
Capital depreciation rate	δ	0.025	Jermann and Quadrini (2012)
Intertemporal elasticity of substitution	ψ	1.1	Bansal, Kiku, and Yaron (2013)
Loan recovery parameter	η	0.8	Gomes and Schmid (2010)

- Period = quarter
- No aggregate uncertainty

Description	Symbol	Value	Source/Target
TFP level	A	0.11	Match consumption growth
Subjective discount factor	β	0.987	Cooley and Prescott (1995)
Income share of capital	α	0.45	Cooley and Prescott (1995)
Capital depreciation rate	δ	0.025	Jermann and Quadrini (2012)
Intertemporal elasticity of substitution	ψ	1.1	Bansal, Kiku, and Yaron (2013)
Loan recovery parameter	η	0.8	Gomes and Schmid (2010)
Investment adjustment cost	a	5	Gilchrist and Himmelberg (1995)
Monitoring cost	m	0.02	Philippon (2012)

Calibration

- ▶ Period = quarter
- No aggregate uncertainty

Description	Symbol	Value	Source/Target
TFP level	A	0.11	Match consumption growth
Subjective discount factor	β	0.987	Cooley and Prescott (1995)
Income share of capital	α	0.45	Cooley and Prescott (1995)
Capital depreciation rate	δ	0.025	Jermann and Quadrini (2012)
Intertemporal elasticity of substitution	ψ	1.1	Bansal, Kiku, and Yaron (2013)
Loan recovery parameter	η	0.8	Gomes and Schmid (2010)
Investment adjustment cost	a	5	Gilchrist and Himmelberg (1995)
Monitoring cost	m	0.02	Philippon (2012)
Bank deposit recovery parameter	θ	0.7	James (1991)
Equity issuance marginal cost	ϕ	0.025	Gomes (2001)
Probability of bailout	λ	0.9	Koetter and Noth (2012)

• Equity issuance cost: $\Phi(d) = -\phi \cdot d \cdot \mathbb{1}_{\{d < 0\}}$

Calibration

Description	Symbol	Value	Target
Firm's operating cost	0	0.023	Average return on loans
Standard deviation of ϵ	σ_ϵ	0.363	x-std return on loans
Bank entry cost	e	0.06	Exit rate
Reduction in productivity of risky firm	μ	0.02	Average net interest margin
Persistence of island specific shock	$ ho_z$	0.95	x-std net interest margin
Volatility of island specific shock	σ_z	0.011	Default

 $\log z_{t+1} = \rho_z \log z_t + \sigma_z \epsilon_{z,t+1}$

Results

Main Statistics

Macro moments			Data	Model ($\bar{e} = .04$)
		Δc	0.49	
		c/y	0.76	
Bank moments		Data		
	Top 1%	Top 5%	Top 10%	
Targeted moments				
Return on loan				
mean	4.33	4.63	4.92	
x-std	2.95	3.51	3.99	
Net interest margin				
mean	2.89	3.18	3.43	
x-std	3.05	3.55	4.03	
Failure	0.33	0.29	0.28	
Exit rate	1.02	1.17	1.20	
Other moments				
Net charge-off rate				
mean	2.70	0.93	0.76	
x-std	17.94	13.74	11.00	
Fraction risk-shifting				
Leverage ratio	7.74	8.29	8.51	
Tier 1 capital ratio	10.25	12.18	12.62	
Number of banks	113	564	1129	

Source: Call Reports 1984-2010. Top x% column indicates statistics calculated from the top x% banks in term of total assets. 'mean' is the time-series average of cross-sectional, and 'x-std' is the time-series average of cross-sectional standard deviation. 29

Results

Main Statistics

Macro moments			Data	Model ($\bar{e} = .04$)
		Δc	0.49	0.49
		c/y	0.76	0.69
Bank moments		Data		
	Top 1%	Top 5%	Top 10%	
Targeted moments				
Return on loan				
mean	4.33	4.63	4.92	4.01
x-std	2.95	3.51	3.99	5.23
Net interest margin				
mean	2.89	3.18	3.43	1.95
x-std	3.05	3.55	4.03	6.09
Failure	0.33	0.29	0.28	1.07
Exit rate	1.02	1.17	1.20	4.27
Other moments				
Net charge-off rate				
mean	2.70	0.93	0.76	2.86
x-std	17.94	13.74	11.00	10.09
Fraction risk-shifting				4.14
Leverage ratio	7.74	8.29	8.51	11.63
Tier 1 capital ratio	10.25	12.18	12.62	11.63
Number of banks	113	564	1129	

Source: Call Reports 1984-2010. Top x% column indicates statistics calculated from the top x% banks in term of total assets. 'mean' is the time-series average of cross-sectional, and 'x-std' is the time-series average of cross-sectional standard deviation. 30

Let c_t be the consumption-capital ratio

$$C_t = c_t K_{t-1} = \Delta k^{t-1} \cdot \underbrace{c \cdot K_0}_{\text{Initial level}}$$


```
Welfare implications
```

Why welfare decreases after 8 percent?

1. Romer "learning-by-doing" externality

```
Welfare implications
```

Why welfare decreases after 8 percent?

- 1. Romer "learning-by-doing" externality
- 2. Equity issuance cost

Results

Role of equity issuance cost: ϕ

Role of probability of bailout: λ

Results

Role of productivity loss due to risk-shifting: μ

0.2

0.25

Results

Role of additional risk exposure due to risk-shifting: σ_ϵ

Conclusion

- Dynamic general equilibrium banking model
- ► The calibrated version of the model suggests an 8% minimum Tier 1 capital requirement → significant welfare improvement: 1.1% of lifetime consumption
- Punch-line: Optimal level is higher than in both Basel II and Basel III
- Broader level: The need to re-examine current bank capital regulations