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Motivation

Network analysis has emerged prominently in many fields of
science over the last years:
Computer Science, Social Networks, Economics, Finance, ...

This Work:
The literature on network analysis for multivariate time series is
under construction. We propose novel network estimation
techniques for the analysis of high–dim multivariate time series
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Introduction

Partial Correlation Network (Dempster, 1972; Meinshausen & Bühlmann, 2006)

Consider a white noise process yt = (yt 1, yt 2, yt 3, yt 4, yt 5)′

The network associated with the system is an undirected graph

yt 1

yt 2

yt 3yt 4

yt 5

1 the components of yt denote vertices
2 the presence of an edge between i and j denotes that i and j are

partially correlated and the value of the partial correlation
measures the strength of the link.

It is assumed that the network is large yet sparse

Objective: select nonzero partial correlations and estimate them.
Barigozzi & Brownlees (2013) 2/24
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Introduction

Refresher on Partial Correlation

Partial Correlation measures (cross-sect.) linear conditional
dependence between yt i and yt j given on all other variables:

ρij = Cor(yt i , yt j |{yt k : k 6= i , j}).

Partial Correlation is related to Linear Regression:
For instance, consider the model

y1 t = c + β1 2y2 t + β1 3y3 t + β1 4y4 t + β1 5y5 t + u1 t

β13 is different from 0 ⇔ 1 and 3 are partially correlated

Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes i and j ,
then i and j are correlated (and viceversa).
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Introduction

Limitations of Partial Correlations for Time Series

Defining the network on the basis of partial correlations is
motivated by the analysis of serially uncorrelated Gaussian data.

However, this is not always satisfactory for economic and financial
applications where data typically exhibit serial dependence.
(Partial correlation only captures contemporaneous dependence. However, in economic

datasets it is often the case that the realization of the series A in period t might be

correlated with the realization of series B in period t − 1)

In this work we propose a novel definition of network which
overcomes these limitations.
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Introduction

In this Work

1 We propose long run partial correlation network for time series
(⇒ partial correlation definition based on the long run covariance)

definition captures contemporaneous as well as lead/lag effects
model free – it does not hinge on a specific model
easy to estimate formulas

2 We propose a network estimation algorithm called NETS

two step LASSO regression procedure
allows to estimate large networks in seconds
we establish conditions for consistent network estimation

3 We illustrate NETS on a panel of monthly equity returns

The risk of each asset is decomposed in Systematic and
Idiosyncratic components where the Idiosyncratic part has a
Network structure
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Network for Time Series

Long Run Partial Correlation Network

Partial Correlations do not adequately capture cross-sectional
dependence if the data has serial dependence

In this work we propose to construct a measure of partial
correlation on the basis of the Long Run Covariance Matrix to
overcome this limitation.

The long run covariance matrix provides a comprehensive and
model free measure of cross sectional dependence for serially
dependent data. It is defined as

yt
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Network for Time Series

Long Run Covariance

Consider a bivariate system with spillover effects

yt 1 = εt 1 + ψεt−1 2

yt 2 = εt 2
with

εt 1 ∼ N (0, σ2)
εt 2 ∼ N (0, σ2)

with Cor(εt 1, εt 2) = 0

Then,

Cor (yt 1, yt 2) = 0

Cor
(∑12

t=1 yt 1,
∑12

t=1 yt 2

)
=
(

11
12

)
ψ√
1+ψ2

limM→∞ Cor
(∑M

t=1 yt 1,
∑M

t=1 yt 2

)
= ψ√

1+ψ2
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Network for Time Series

From LR Covariance to LR Partial Correlation

Let KL denote the inverse of the long run covariance ΣL

KL is also known as the long run concentration matrix

Let kij denote the (i , j) element of KL. The long run partial
correlations are

ρij
L =

−kij√
kiikjj

The Long Run Partial Correlation network is defined as follows:
if ρij

L 6= 0 then i and j are connected by an edge

Barigozzi & Brownlees (2013) 9/24
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Network for Time Series

From LR Partial Correlation To LR Concentration

The Long Run Partial Correlation formula:

ρij
L =

−kij√
kiikjj

where kij denotes the (i , j) element of KL.

This implies that the long run partial correlation network is
entirely characterized by KL!
If kij is nonzero, then node i and j are connected by an edge.

This fact has important implications for estimation:
We can reformulate the estimation of the long run partial
correlation network as the estimation of a sparse long run
concentration matrix.
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Network Estimation NETS Large Sample Properties

VAR Approximation

We employ an estimation strategy which builds up on the classic
HAC estimation literature in Econometrics.

We approximate the yt process using a VAR

yt =

p∑
k=1

Akyt−k + εt εt ∼ wn(0,Γε)

The long run concentration matrix of the VAR approximation is

KL = (I−
∑p

k=1 A′k) Γ−1
ε (I−

∑p
k=1 Ak)

= (I− G′) C (I− G)

where

G =
∑p

k=1 Ak – as in Granger
C = Γ−1

ε – as in Contemporaneous
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Network Estimation NETS Large Sample Properties

VAR Approximation

The Long Run Concentration matrix implied by the VAR is

KL = (I− G′) C (I− G)

We work under the assumption that the VAR approximation is
sparse. This, in turns, determines the sparsity of G, C and KL

Graphical interpretation:

The matrix G can be associated to a long run Granger network
(directed) expressing long predictive relations of the system
and the matrix C can be associated to a Contemporaneous partial
correlation network of the system innovations
The Long Run Partial Correlation network is a (nontrivial)
combination of the Granger and Contemporaneous networks

Barigozzi & Brownlees (2013) 12/24
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Network Estimation NETS Large Sample Properties

NETS Algorithm

Our Long Run Partial Correllation Network estimator is based on
the sparse estimation of G and C matrices. Sparse estimation is
based on the LASSO.

We propose an algorithm called
“Network Estimator for Time Series” (NETS)
to estimate sparse long run partial correlation networks

The NETS procedure consists of estimation KL using
a two step LASSO regression:

1 Estimate A using Adaptive LASSO (based on pre-est. Ã) on yt

2 Estimate Γ−1
ε using LASSO on estimated residuals ε̂t

Barigozzi & Brownlees (2013) 13/24
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Network Estimation NETS Large Sample Properties

NETS Steps

Network Estimator for Time Series (NETS) Algorithm: Step 1

Estimate G with

Ĝ =

p∑
i=1

Âi

where Âi (i = 1, ..., p) are the minimizers of the objective function:

LG
T (A1, ...,Ap) =

T∑
t=1

(
yt −

p∑
i=1

Aiyt−i

)2

+ λG

p∑
i=1

|Ai |
|Ãi |

where |Ai | is equal to the sum of the absolute values of the
components of Ai .

Barigozzi & Brownlees (2013) 14/24



Network Estimation NETS Large Sample Properties

NETS Steps

The concentration matrix of the systems shocks can be estimated
via a regression based estimator

Consider the regression model

εt i =
N∑

j=1

θijεt j(1− δij) + ut i , i = 1, . . . ,N ,

where δij = 0 if i 6= j and δii = 1

The regression coefficients and residual variance of the regression
is related to the entries of the concentration matrix by the
following relations

cii =
1

Var(ut i)

and
cij = −θijcii

Barigozzi & Brownlees (2013) 14/24



Network Estimation NETS Large Sample Properties

NETS Steps

Network Estimator for Time Series (NETS) Algorithm: Step 2

Consider
ε̂t = yt − Âiyt−1

and define Ĉ as the LASSO regression based estimator of the
concentration matrix obtained by minimizing

LC
T (ρ) =

 T∑
t=1

N∑
i=1

(
ε̂t i −

N∑
j 6=i

ρij

√
ĉii

ĉjj
ε̂t j

)2
+ λC

N∑
i=2

i−1∑
j=1

|ρij |

where ĉii , i = 1, ...,N is a pre-estimator of the reciprocal of the
residual variance of component i

Barigozzi & Brownlees (2013) 14/24



Network Estimation NETS Large Sample Properties

Large Sample Properties: Assumptions I

(Sketch of) Main Assumptions

1 Data is Weakly Dependent
(cf. Doukan and Louhini (1999), Doukhan and Neumann (2007))

2 Data is Covariance Stationary with pd Spectral Density

3 Truncation error of VAR(∞) model decays sufficiently fast

4 Nonzero coefficients are sufficiently large

5 Pre estimators are well behaved

6 Sparsity structure of the VAR parameters

Barigozzi & Brownlees (2013) 15/24



Network Estimation NETS Large Sample Properties

Large Sample Properties: Assumptions II

(Sketch of) Main Assumptions

1 Problem Dimension: nT = O(T ζ1) and pT = O(T ζ2) with
ζ1, ζ2 > 0.

2 Number of Nonzero Parameters for G and C networks is at most

o
(√

T
log T

)
and there is a trade–off between the two.

3 Penalties: λT

T

√
qT = o(1) and limT→∞ λT

√
T

log T
=∞

Barigozzi & Brownlees (2013) 16/24



Network Estimation NETS Large Sample Properties

Large Sample Properties

Proposition I: Granger Network

(a) (Consistent Selection) The probability of correctly selecting the
nonzero coefficients of G converges to one.

(b) (Consistent Estimation) For T sufficiently large and each η > 0 there
exists a κ such that with at least probability 1− O(T−η)

||G− Ĝ||2 ≤ κ
λT

T

√
qT

Barigozzi & Brownlees (2013) 17/24
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Large Sample Properties

Proposition II: Contemporaneous Network

(a) (Consistent Selection) The probability of correctly selecting the
nonzero coefficients of C converges to one.

(b) (Consistent Estimation) For T sufficiently large and each η > 0 there
exists a κ such that with at least probability 1− O(T−η)

||C− Ĉ||2 ≤ κ
λT

T

√
qT

Barigozzi & Brownlees (2013) 17/24



Network Estimation NETS Large Sample Properties

Large Sample Properties

Corollary: Long Run Partial Correlation Network

(a) (Consistent Selection) The probability of correctly selecting the
nonzero coefficients of KL converges to one.

(b) (Consistent Estimation)

K̂L
p→ KL

Barigozzi & Brownlees (2013) 17/24
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Empirical Application

We interested in estimating the network of the idiosyncratic
component in a panel of equity returns of top U.S. companies

Monthly log returns for 41 U.S. bluechips between 1990 and 2010
(252 observations)

Application inspired by Billio, Getmanksi, Lo, Pellizzon (2012)
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Consider a simple one factor model for a panel equity returns

rit = βi rm t + εit t = 1, ...,T i = 1, ...,N

with E(εit) = 0 and Var(εit) = σit

The model allows to decompose the risk of an asset in a
systematic component that depends on the common factor rm t

and idiosyncratic component εit

We are going to construct the series of factor residuals ε̂it and use
NETS to estimate the network of the idiosyncratic component.

Barigozzi & Brownlees (2013) 19/24



Empirical Application Centrality

Empirical Application

Consider a simple one factor model for a panel equity returns

rit = βi rm t + εit t = 1, ...,T i = 1, ...,N

with E(εit) = 0 and Var(εit) = σit

The model allows to decompose the risk of an asset in a
systematic component that depends on the common factor rm t

and idiosyncratic component εit

We are going to construct the series of factor residuals ε̂it and use
NETS to estimate the network of the idiosyncratic component.

Barigozzi & Brownlees (2013) 19/24



Empirical Application Centrality

Empirical Application

Consider a simple one factor model for a panel equity returns

rit = βi rm t + εit t = 1, ...,T i = 1, ...,N

with E(εit) = 0 and Var(εit) = σit

The model allows to decompose the risk of an asset in a
systematic component that depends on the common factor rm t

and idiosyncratic component εit

We are going to construct the series of factor residuals ε̂it and use
NETS to estimate the network of the idiosyncratic component.

Barigozzi & Brownlees (2013) 19/24



Empirical Application Centrality

Empirical Application: Results

We run NETS to estimate the long run partial correlation
network. Order p of the VAR is one. The tuning parameters λG

and λC are chosen using a BIC type information criterion.

Out of 820 possible edges, we find 57 edges. The dynamics
account for 12% of the edges and the remaining 88% are
contemporaneous.

The idiosyncratic network accounts for a significant portion of the
risk of an asset!

The market explains on average 25% of the variability of the
stocks in the panel

The linkages identified by the idiosyncratic network account on
average for an additional 15%
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“Reading” the Idiosyncratic Risk Network

Reading a Network can be challenging at times. There is lot of
information encoded in the network.

We are going to use some of the tools used in network analysis to
summarise the information in the network. It turns out that the
idiosyncratic risk network shares many of the characteristic of
social networks.

1 Similarity. Nodes that are similar are linked (industry linkages)

2 Centrality. Financials and Technology are some of the most
central sectors.

3 Clustering. Evidence of “Small World Effects”
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We propose a network definition for multivariate time series based
of long run partial correlations

We introduce an algorithm called NETS to estimate sparse long
run partial correlation networks in potentially large systems and
provide large sample analysis of its properties

We apply this methodology to study the network of idiosyncratic
shocks in a panel of financial returns.
Results show that:

The linkages identified by the idiosyncratic risk network explain a
conspicuous part of overall variation in returns
The idiosyncratic risk network shares many features of social
network
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