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Introduction

@ Statistical algorithms for large-scale data

Classification - decision trees, support vector machine

o Clustering - K-means clustering, hierachical clustering

o Regression - neural networks, principal component analysis
e Sequence labeling - hidden markov models, kalman filters
e Ensemble learning - bagging, boosting

@ Overall, those are finding useful set of variables, that is, reducing
dimesion
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Introduction

o Forecasting applications
e Macroeconomic forecasting

o Diffusion Index Model

e Microeconomic forecasting

o Consumer'’s behavior
o Credit scoring

o Non-economic forecasting

o Server traffic analysis - high frequent possible
@ Social network analysis
o Gene dependence analysis
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Introduction

Forecasting Framework

@ Our generic forecasting equation is:

y1.‘+h = Wt,BW + Ft,BF + Et4h, (1)

where h is the forecast horizon,
W; is a 1 x s vector (possibly including lags of Y'), and
F: is a 1 x r vector of factors, extracted from F.

The parameters, $,,, and B, are defined conformably, and

€14 is a disturbance term.
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Introduction

Diffusion Index Model

Let X;; be the observed datum for the j—th cross-sectional unit at
time t, fort =1,..., T and j =1, ..., N. Recall that we shall consider
the following model:

X = AJ/'Ft + ey, (2)
where
F: is a r x 1 vector of common factors,
A
e is the idiosyncratic component of Xj;.

is an r x1 vector of factor loadings associated with F;, and

The product FtAJ’- is called the common component of Xj;.
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Introduction

Motivation

@ Shortcomings of Principal Component Analysis (PCA)

e Since the factors by PCA are a linear combination of all variables,
e It is not easy to interpret factors

@ New approaches: parsimonious factor construction methods

o Independent Component Analysis
e Sparse Principal Component Analysis

@ New factor construction methods

e Parsimonious model improves predictive accuracy
o Interpret factors
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Factor Construction

Data Description

@ Data set we examine in this paper

e consists of 144 macro and financial monthly time series from
1960:01—2009:05

e are what various papers including Stock and Watson (2002) used to
investigate the usefulness of factor analysis in the context of forecasting

e are used to construct factors fixed no matter what we forecast

e are transformed accordingly to induce stationarity

o Categorize into 7 groups

e Production, employment, housing, interest rate, price and the
miscellaneous
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Factor Construction Methods

Three types of factor construction methods are considered
@ Principal Component Analysis
@ Independent Component Analysis

© Sparse Principal Component Analysis
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Factor Construction Method | - PCA

Revisit Principal Component Analysis

@ Consider the linear combinations
Pi=a)X = ain X1+ apXo + - - + anXn (3)
@ then we obtain

Var (P;)) = af-Za; i=1,2,....N (4)

COV(P,‘, Pk) = af-Zak i and k = 1,2, . N (5)

where X be the covariance matrix associated with the random vector
X =[X1, X2, ... Xn] .

@ The principal component are those uncorrelated linear combinations
Pi1, P,,...Py whose variance in (4) are as large as possible.
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Factor Construction Method Il - ICA

Introduction of Independent Component Analysis (ICA)

@ The starting point for ICA is the very simple assumptions that the
components, F, are statistically independent

@ The key is the measurement of this independence between
components

o It begins with statistical independent source data, S, which are mixed
according to () ; and X which is observed, is a mixture of S weighted

by Q).
Sources(S) > Independent Component #1(F)
Sources(S) ———=  Q > < > Independent Component #2(F)
Sources(S) — Mixing Matrix DemixingMatrix - |ndependent Component #3(F)

Schematic representation of ICA
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Independent Component Analysis

Comparing to PCA

e For simplicity, consider two observables, X = (X1, X2) . PCA finds
uncorrelated components F = (Fy, F2), which have a joint probability
density function, pr (F) with

E(FiF)=E(F)E(FR). (6)

@ On the other hand, ICA finds independent components
F* = (F{, F5), which have a joint pdf pr+ (F*) with

E[RPR] =E[R’]E[R], (7)

for every positive integer value of p and q.

@ That is, independent components work for any moments.
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Independent Component Analysis

Estimation of ICA

@ One often uses a modified version of entropy, so called negentropy,
N ,where:
N(F):H(FgaUSS)_H(F)v (8)

where Fga,ss is a Gaussian random variable with the same covariance
matrix as F.

@ This negentropy, N (-), as a measure of nongaussianity, is zero for a
Gaussian variable and always nonnegative.
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Independent Component Analysis

Estimation of ICA

@ Simple version of this approximation use only one nonquadratic
function, G, leading to:

N (F) o [E{G (F)} — E{G(n)}]*. (9)

o If we pick non-fast growing G, we may have more robust estimators.
[Hyvirinen and Oja, 2000] suggest two Gs, and they show that these
functions yield good approximations:

G (y) = all log cosh a1y (10)
and
G (y) = —exp(—u?/2), (11)

where 1< a7 < 2 is some suitable constant.
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Factor Construction Method Ill - SPCA

Introduction of Sparse Principal Component Analysis (SPCA)

@ Principal components are linear combinations of variables that are
ordered by covariance contributions, and selection is of a small
number of components which maximize the variance that is explained.

@ However, factor loading coefficients are all typically nonzero, making
interpretation of estimated components difficult.

@ SPCA aids in the interpretation of principal components by placing
(zero) restrictions on various factor loading coefficients.
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Sparse Principal Component Analysis

Introduction

[Zou et al., 2006] develop a regression optimization framework.

Namely, they consider X as a dependent variables, F as explanatory
variables, and the loadings as coefficients.

@ They then use of the lasso (and elastic net) to derive a sparse loading
matrix.
@ Suppose we derive principle components (PCs), F via ordinary PCA.

Then, let the estimated j-th principal component , F; be the
dependent variable and X be the independent variables.
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Sparse Principal Component Analysis
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Sparse Principal Component Analysis

Example

FCSGV
ADMO51
uTL22

sfygtlo
sfyaaac
PUXHS
PUC
PMP
PMCP
LHU15
IPS31
1PS22
1Ps10
HSBWST
FYGTS
FYFF
FSPCOM
EXRUS
CES299
CES276
CEsl2g
CES045
CES003
LHEL

164 205 246 287 328 369 410

451

492

Miscellaneous
Capacity Utilization
™ Interest Spread
W Price Index
NAPM Index
E Unemployment
™ Industrial Production Index
W Housing Starts
M nterest Rate
m Stock
o Money
m Exchange Rates

W Employment

Figure: Number of Selection of Variables in First Sparse Principal Component

Kim & Swanson (BOK and Rutgers)

Apr 7th, 2014



Sparse Principal Component Analysis
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Forecasting Methodologies

Revisit Forecasting Framework

@ Our generic forecasting equation is:

y1.‘+h = Wt,BW + Ft,BF + Et+h (12)

where h is the forecast horizon,
W; is a 1 x s vector (possibly including lags of Y'), and
F: is a 1 x r vector of factors, extracted from F.

The parameters, $,,, and B, are defined conformably, and

€14 is a disturbance term.
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Forecasting Methodologies

Factor Augmented Autoregression (FAAR)

@ Forecasts of Y;,, involve a two-step process

@ The data X; are used to estimate the factors, I:_t,
@ Obtain the estimators S and B, by regressing Y;.p, on F; and W;.

o As a first step, estimate F; using

e PCA, ICA and SPCA

@ As a second step, estimate B,_- with various robust estimation
techniques including

o Bagging, Boosting, Ridge Regression, Least Angle Regression, Elastic
Net and Non-Negative Garotte

@ Other than that, various benchmark models are considered including
o Autoregressive model, CADL and BMA
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Experimental Setup

Target Variable
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Experimental Setup

@ Specification Type 1: Various type of factor components are first
constructed using large set of data; and then prediction models are formed
using the shrinkage methods to select functions of and weights for the factors

@ Specification Type 2: Various type of factor components are first
constructed using subsets of variables from the large-scale dataset that are
pre-selected via application of the robust shrinkage methods discussed.

@ Specification Type 3: Prediction models are constructed using only the
shrinkage methods, without use of factor analysis at any stage.

@ Specification Type 4: Prediction models are constructed using only
shrinkage methods, and only with variables which have nonzero coefficients,
as specified via pre-selection using SPCA.

Kim & Swanson (BOK and Rutgers) Apr 7th, 2014 23 /28



Empirical Results

Reported Results

Table 4: Summary of MSFE-"Best" Models*

Panel A: Recursive Window Estimation

Forecast Specification
UR PI TB10Y  CPI PPI NPE HS PX M2 SNP GDP
Horizon Method
PCA FAAR PCR Ridge PCR PCR  FAAR ARX PCR  Mean Mean ARX
SP1 ICA ARX FAAR FAAR FAAR FAAR Ridge ARX FAAR Mean Boost ARX

SPCA FAAR PCR PCR  BMA1 BMA2 Mean FAAR TFAAR Mean Boost ARX
PCA FAAR PCR Mean PCR Mean Mean ARX BMA1 Mean Boost ARX

SP1L ICA ARX Mean Mean ARX Mean Mean ARX Mean Mean AR ARX

SPCA ARX Mean CADL  ARX Mean  Boost ARX Mean Mean Mean ARX

h=1 PCA Boost Mean Mean Boost Mean ~Mean ARX BMA1 BMA2 Mean  Boost
SP2 ICA ARX Mean Mean ARX Mean  Mean ARX ARX EN Mean  Boost

SPCA ARX Mean  Mean  ARX Mean  Mean ARX BMA1l Boost Mean  Boost
PCA Boost Mean Mean Boost ~Mean ~Mean ARX BMA1 BMA2 Mean Boost

SPaL cA Boost  Mean  Mean  Boost Mean  Mean  ARX  Boost EN Mean ~ Boost

SPCA Boost  Mean Mean ARX Mean  Mean  ARX ARX Boost  Mean  Boost
SP3 ARX Mean  CADL  Mean Mean  Mean ARX ARX Mean  Boost  Mean
SP4 ARX Mean  Mean  ARX Mean  Mean ARX BMA1 Mean  Mean ARX
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Empirical Results

Reported Results

Panel C: Summary of Panel A and B

Recursive Window Estimation Rolling Window Estimation
h=1
SPl SPIL sP2 sPaL §P3 sP4 | Total || sp1 spin sp2 ospan sp3 sp4 | Total
AR 0 1 0 0 0 0 1 3 i 5 5 3 2 24
ARX 6 10 8 5 3 4 36 7 7 i 6 9 2 a0
CADL 0 1 0 0 1 i 2 i 1 0 0 1 0 2
FAAR 10 1 0 0 0 0 11 4 0 0 il 0 0 4
POR [ 2 0 0 0 0 8 2 1 0 0 0 0 3
Bagg 0 0 0 0 0 0 0 i 0 0 i 0 0 0
Boost 2 2 f 10 1 0 21 i 0 3 2 ;) 2 10
EMA1 1 1 2 1 0 1 q i 0 0 0 0 0 0
EMAZ 1 0 1 1 0 0 3 i 0 0 1 0 1 2
Ridge 2 0 0 0 0 0 3 i 0 0 0 0 0 0
LAR 0 i 0 0 0 0 0 2 1 4 4 1 0 12
EN 0 0 1 1 0 0 3 i 0 3 2 1 0 i
NNG 0 0 0 0 0 0 0 1 0 0 il 0 0 1
Mean 5 13 15 15 6 i 62 14 17 12 12 0 1 60
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Empirical Results

@ Various our benchmarks do not dominate more complicated nonlinear
methods, and that using a combination of factor and other shrinkage
methods often yields superior predictions.

UR Pl B CPI PPI NPE HS IPX M2 SNP GDP
SP1 SP1  SP1 SP4 SP1 SP1 SP1 SP1 SP1L SP1 SP2

REC REC REC ROL REC REC REC REC ROL REC REC
PCA SPC  SPC N/A ICA SPC SPC SPC SPC SPC ICA
FAAR PCR PCR BMA2 FAAR Mean FAAR FAAR Mean Boost Boost

MSFE-best Specification Type/Window/PC/Model Combo for h =1
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Empirical Results

@ Our benchmark econometric models are never found to be MSFE-
best, regardless of the target variable being forecast, and the forecast
horizon.

o Additionally, pure shrinkage type prediction models and standard
(linear) regression models, do not MSFE-dominate models based on
the use of factors constructed using either principal component
analysis, independent component analysis or sparse component
analysis.

e This result provides strong new evidence of the usefulness of factor
based forecasting.

@ Recursive estimation window strategies only dominate rolling
strategies at the 1-step ahead forecast horizon

@ Including lags in factor model approaches does not generally yield
improved predictions.
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Concluding Remarks

@ In this paper, | find

e the simplest principal components type models “win” around 40% of
the time.

o Interestiingly, ICA and SPCA type models also “win” around 40% of
the time.

e hybrid methods including factor approaches coupled with shrinkage
“win" around 1/3 of the time,

o simple linear autoregressive type models never “win" in our
experiments.

@ | take these results as evidence of the usefulness of new methods in
factor modelling and shrinkage, when the objective is prediction of
macroeconomic time series variables
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