Export Dynamics and Large Devaluations

George Alessandria Sangeeta Pratap Vivian Z. Yue Philadelphia Fed CUNY-Hunter Board of Governors

* These are my own views and do not reflect the views of the Federal Reserve Bank of Philadelphia or Board of

Governors.

(ロ) (個) (E) (E) (E) (E)

Two Main Questions

Trade responds slowly to changes $\Delta's$ in relative prices

• J-curve & short-run/long-run Armington elasticity

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Two Main Questions

Trade responds slowly to changes $\Delta's$ in relative prices

• J-curve & short-run/long-run Armington elasticity

Seek to understand:

- What explains sluggish export response following devaluations?
- How does sluggish export response affect aggregate fluctuations?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Summary

• Document dynamics of exports, real exchange rate, and interest rates in 11 emerging markets

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Exports increase gradually following devaluations
- Extensive margin important source of gradualness
- High interest rates dampen export increase

Summary

- Document dynamics of exports, real exchange rate, and interest rates in 11 emerging markets
 - Exports increase gradually following devaluations
 - Extensive margin important source of gradualness
 - High interest rates dampen export increase
- SOE model with dynamic exporting decision from sunk costs (i.e starting to export costs more than continuing):
 - Captures most gradual export dynamics
 - Generates important role for interest rates
 - Magnifies Δ output (bigger drop & bounceback) dampens Δnx
 - TFP mismeasured from intangible investment in exporting

Salient Features of Large Devaluations

- Focus on large devaluations of emerging economies:
 - Big shocks
 - Sample: Argentina (01), Brazil (98), Colombia (98), Indonesia (97), Korea (97), Malaysia (97), Mexico (94), Russia (98), Thailand (97), Turkey (01), Uruguay (02)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Salient Features of Large Devaluations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Five main characteristics
 - RER depreciation

Gradual Export Dynamics following Devaluations

200

Salient Features of Large Devaluations

- Five main characteristics
 - RER depreciation
 - Interest rate increases (EMBI spreads)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Gradual Export Dynamics following Devaluations

Salient Features of Large Devaluations

- Five main characteristics
 - RER depreciation
 - Interest rate increases
 - Gradual export expansion ($\varepsilon_t = \frac{\Delta E X_t \Delta D_t^*}{\Delta R E R_t}$ increases with t)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Gradual Export Dynamics following Devaluations

Mean Export elasticity
$$\left(arepsilon_t^{\mathsf{x}} = rac{\Delta E X_t - \Delta D_t^*}{\Delta R E R_t}
ight)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Salient Features of Large Devaluations

- Five main characteristics
 - RER depreciation
 - Interest rate increases
 - Gradual export expansion ($\varepsilon_t = \frac{\Delta E X_t \Delta D_t^*}{\Delta R E R_t}$ increases with t)

(日) (월) (문) (문) (문)

High interest rates depress exports

High Interest Rates Depress Exports

SOG

Salient Features of Large Devaluations

- Five main characteristics
 - RER depreciation
 - Interest rate increases
 - Gradual export expansion ($\varepsilon_t = \frac{\Delta E X_t \Delta D_t^*}{\Delta R E R_t}$ increases with t)
 - High interest rates depress exports
 - Extensive (products/destinations/exporters) margin important

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Exports (\$ and #) Expand Gradually

- Consider two measures of US imports from 11 devaluations
 - Overall exports Nominal exports deflated by US import price

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Extensive margin - Count of 10-digit HS goods-districts

Exports (\$ and #) Expand Gradually

- Consider two measures of US imports from 11 devaluations
 - Overall exports Nominal exports deflated by US import price
 - Extensive margin Count of 10-digit HS goods-districts
- Remove linear trend (or scale by aggregate US imports)
- Calculate trade elasticity

$$\varepsilon_{ik}^{x} = \frac{\ln(x_{i,t_{0}+k}/x_{i,t_{0}})}{\ln(RER_{i,t_{0}+k}/RER_{i,t_{0}})}, x = \$ \text{ or } \#$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• RER here is between country i and ROW ex US and PPI based.

Figure 3: Exports to U.S., Detrended Basis 11-Country Mean

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Importance of Extensive Margins for Exports

- Extensive margin response 2x as strong as volume
- Slighter weaker if we condition on contribution of new products to growth

(日) (四) (코) (코) (코) (코)

• Slighter stronger if we consider firm-level data.

Gradual Expansion & Interest rates effects

Iceberg & static fixed costs models.

- No sluggishness
- Interest rates have no direct role (opposite in GE)

Need to consider dynamic model of extensive margin

• Focus on a model with a sunk cost of starting to export (exporting is intangible investment)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Model

- SOE model with a non-constant trade elasticity
- Nominal bond (\$) to smooth consumption of composite NT final good made from imports & domestic intermediates
- Export sector with stochastic fixed entry & continuation costs of exporting (Das, Roberts, Tybout 07)
 - Endogenous entry/exit of exporters and stock of exporters (N)

《曰》 《聞》 《臣》 《臣》 三臣 ---

Model

- SOE model with a non-constant trade elasticity
- Nominal bond (\$) to smooth consumption of composite NT final good made from imports & domestic intermediates
- Export sector with stochastic fixed entry & continuation costs of exporting (Das, Roberts, Tybout 07)
 - Endogenous entry/exit of exporters and stock of exporters (N)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Aggregate shocks to productivity, interest rate, and β (discounting) S = (z, r, β)
 - Endogenizes fluctuations in rer

Consumer's Problem

$$V(B, N, S) = \max_{C, L, B'} u(C, L) + \beta E V(B', N', S')$$

st : $PC + B = WL + \frac{B'}{1 + R} + \Pi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consumer's Problem

$$V(B, N, S) = \max_{C, L, B'} u(C, L) + \beta E V(B', N', S')$$

st :
$$PC + B = WL + \frac{B'}{1 + R} + \Pi$$

Standard FOC's

$$\frac{u_c}{P} = \frac{u_l}{w}$$

$$1 = \beta (1+R) \frac{Eu_{c'}/P'}{u_c/P}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consumer's Problem

$$V(B, N, S) = \max_{C,L,B'} u(C, L) + \beta E V(B', N', S')$$

st : $PC + B = WL + \frac{B'}{1+R} + \Pi$

Standard FOC's

$$\begin{aligned} \frac{u_c}{P} &= \frac{u_l}{w} \\ 1 &= \beta \left(1 + R \right) \frac{E u_{c'} / P'}{u_c / P} \end{aligned}$$

For stationarity assume elastic interest rate on bonds

$$R = r + e^{\psi(\bar{B} - B)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Final good sector

Competitive sector combines domestic & foreign inputs

$$P = \min p_m M + p_d D$$

st : $G(M, D) = \left(D^{\frac{\gamma-1}{\gamma}} + \omega^{\frac{1}{\gamma}} M^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}} \ge 1$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Final good sector

Competitive sector combines domestic & foreign inputs

$$P = \min p_m M + p_d D$$

st : $G(M, D) = \left(D^{\frac{\gamma-1}{\gamma}} + \omega^{\frac{1}{\gamma}} M^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}} \ge 1$

Armington structure implies:

$$P = \left(p_d^{1-\gamma} + \omega p_m^{1-\gamma}\right)^{\frac{1}{1-\gamma}}$$
$$p_m/p_d = \omega^{\frac{1}{\gamma}} (M/D)^{-\frac{1}{\gamma}} = 1/RER$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

For simplicity, assume $p_d = w/z$, normalize $p_m = 1$

Export Sector and Extensive Export Margin

- Unit mass of intermediates available to export
 - ▶ Differ in export status $m \in \{0, 1\}$ & iid cost κ from $F_m(\kappa)$

(日) (四) (문) (문) (문) (문)

- $F_0(\kappa_0) \in [0,1]$ nonexporters start to export
- $F_1(\kappa_1) \in [0,1]$ exporters continue to export
- One period lag in changing exporting status

Export Sector and Extensive Export Margin

- Unit mass of intermediates available to export
 - ▶ Differ in export status $m \in \{0, 1\}$ & iid cost κ from $F_m(\kappa)$
 - $F_0(\kappa_0) \in [0, 1]$ nonexporters start to export
 - $F_1(\kappa_1) \in [0, 1]$ exporters continue to export
 - One period lag in changing exporting status
 - ► N current exporters and 1 − N nonexporters
- Law of motion of stock of exporters

$$N' = F_1(\kappa_1) N + F_0(\kappa_0) (1 - N)$$

< □ > < (四 > < (回 >) < (u >

Export Sector and Extensive Export Margin

- Unit mass of intermediates available to export
 - ▶ Differ in export status $m \in \{0, 1\}$ & iid cost κ from $F_m(\kappa)$
 - $F_0(\kappa_0) \in [0, 1]$ nonexporters start to export
 - $F_1(\kappa_1) \in [0, 1]$ exporters continue to export
 - One period lag in changing exporting status
 - ► N current exporters and 1 − N nonexporters
- Law of motion of stock of exporters

$$N' = F_1(\kappa_1) N + F_0(\kappa_0) (1 - N)$$

(日) (四) (문) (문) (문) (문)

• Production: exports, $EX = zI_1^{\alpha}$

Study export decision seperate from pricing

$$V_{m}(\kappa,S) = m\pi + \max\left\{-\frac{w}{z}\kappa + \frac{EV_{1}(\kappa',S')}{1+R}, \frac{EV_{0}(\kappa',S')}{1+R}\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$V_{m}(\kappa,S) = m\pi + \max\left\{-\frac{w}{z}\kappa + \frac{EV_{1}(\kappa',S')}{1+R}, \frac{EV_{0}(\kappa',S')}{1+R}\right\}$$

Marginal export cost satisfies

$$\frac{w\kappa_m}{z} = \frac{E\left[V_1\left(\kappa', S'\right) - V_0\left(\kappa', S'\right)\right]}{1+R}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

IID shocks implies $\kappa_0 = \kappa_1 = \kappa^*$,

$$V_{m}(\kappa,S) = m\pi + \max\left\{-\frac{w}{z}\kappa + \frac{EV_{1}(\kappa',S')}{1+R}, \frac{EV_{0}(\kappa',S')}{1+R}\right\}$$

Marginal export cost satisfies

$$\frac{w\kappa_m}{z} = \frac{E\left[V_1\left(\kappa', S'\right) - V_0\left(\kappa', S'\right)\right]}{1+R}$$

IID shocks implies $\kappa_0 = \kappa_1 = \kappa^*$, in steady state

$$\frac{w\kappa^{*}}{z}=\frac{\pi+\int_{0}^{\kappa^{*}}\left(F_{1}\left(\kappa\right)-F_{0}\left(\kappa\right)\right)d\kappa}{1+R}.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Pricing decision

$$\begin{aligned} \pi &= \max p_{X} EX\left(p_{X}, S\right) - w l_{X} \\ \text{st} &: EX\left(p_{X}, S\right) = \left(z l_{X}\right)^{\alpha} = \overline{EX}\left(S\right) p_{X}^{-\theta} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

where $\overline{EX}(S)$ is a demand shifter.
Pricing decision

$$\begin{aligned} \pi &= \max p_{X} EX\left(p_{X},S\right) - wl_{X} \\ \text{st} &: EX\left(p_{X},S\right) = \left(zl_{X}\right)^{\alpha} = \overline{EX}\left(S\right)p_{X}^{-\theta} \end{aligned}$$

where $\overline{EX}(S)$ is a demand shifter.

Optimal price is a markup over marginal cost

$$p = rac{ heta}{ heta - 1} mc = rac{ heta}{ heta - 1} rac{w}{lpha z} y^{rac{1}{lpha} - 1}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで

Pricing decision

$$\begin{aligned} \pi &= \max p_{X} EX\left(p_{X},S\right) - wl_{X} \\ \text{st} &: EX\left(p_{X},S\right) = \left(zl_{X}\right)^{\alpha} = \overline{EX}\left(S\right)p_{X}^{-\theta} \end{aligned}$$

where $\overline{EX}(S)$ is a demand shifter.

Optimal price is a markup over marginal cost

$$p = rac{ heta}{ heta-1}mc = rac{ heta}{ heta-1}rac{w}{lpha z}y^{rac{1}{lpha}-1}$$

ROW demand shifter derived from ROW problem:

$$\overline{EX}\left(S\right)=N^{\frac{\gamma-\theta}{\theta-1}}p_{x}^{-\gamma}Y$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 ∽��?

Calibration - Shocks

$$\begin{split} \log z' &= \rho_z \log z + \varepsilon^z \\ r &= \overline{r} + \rho_r \left(r - \overline{r} \right) + \varepsilon^r \\ \log a' &= \rho_\beta \log a + \varepsilon^a \\ \beta &= \overline{\beta} e^a \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\rho_z = \rho_r = \rho_\beta = 0.95$ and choose shocks $\{z_t, r_t, a_t\}$ to fit $\{y_t, R_t, rer_t\}$

<ロ> (四) (四) (三) (三)

æ

Model misses overshooting of real exchange rate.

Figure 8: Productivity, Interest Rates, Discount factor, Labor Productivity

Shocks

Figure 8: Productivity, Interest Rates, Discount factor, Labor Productivity

Net export elasticity

Useful to focus on elasticiyt of NX wrt to RER

$$\varepsilon_t^{nx} = \frac{\Delta \ln \left(P_x X_t / M_t \right) - \Delta \ln \left(D_t^* / D_t \right)}{\Delta \ln \operatorname{rer}_t}$$

where D^* , D are measures of ROW and local expenditures.

Unconventional NX measure, but recovers elasticity of substitution in Armington trade models.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Do dynamics of export elasticity matter?

- Compare benchmark model with 3 versions of no sunk cost (i.e. $f_0 = f_1$)
 - No sunk
 - Export habit: $\hat{X}_t = X_t e^{-\xi_X \Delta X}$
 - Elastic entry costs: $f_t = e^{\xi_N \Delta N}$
- Same shocks but calibrate dispersion in export costs (ν) to generate same avg. export elasticity & slope (ξ_x, ξ_N)

(日) (四) (문) (문) (문) (문)

Plain-vanilla no sunk cost model

- No sluggishness: exports or NXs
- Smaller recession & minor recovery
- Oeeper depreciation

Does source of sluggish exports? Yes!

- Export habit similar to model with no export dynamics.
- Elastic entry costs $(f_t = e^{\xi_N \Delta N})$ comes closest to sunk cost model
 - ▶ But requires $\xi_N = 77 \Rightarrow 1$ percent increase in exporters increases entry cost by 77%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Also response to interest rate shocks quite different

Does sluggish in NX matter?

Sluggish nx elasticity requires habit on imports (not consumption)

$$G(X, M, M_{-1}) = \left[D^{\frac{\gamma-1}{\gamma}} + \left[\omega e^{\xi_M \Delta M}\right]^{\frac{1}{\gamma}} M^{\frac{\gamma-1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

No impact on sluggish exports

Bigger drop in output in SR

(日) (四) (三) (三) æ

High and Low Interest Rate Shocks

- Reconsider differences in export response of high and low interest countries
- Consider response to $\{z, \beta\}$ with high or low interest rate path
- Find high interest rate path generates 80 percent of long-run response of low interest rate

《曰》 《聞》 《臣》 《臣》 三臣 ---

60 percent of the growth in export elasticity

<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>

Conclusion

- Document key features of export dynamics following devaluations
 - Gradual export expansion
 - Interest rate dampens exports
- Find with a sunk cost of exporting we can generate
 - Some gradualness of exports
 - Most gradualness of extensive margin
 - Takes time to build up intangible exporter capital

◆□> ◆舂> ◆注> ◆注> 注

- Some sensitivity to interest rates
- Sluggishness matters for aggregates (y,nx,TFP)
 - Source of sluggishness matters.

Do dynamics of export elasticity matter?

- Different output dynamics across models primarily reflect differences in response to productivity & interest rates shocks
- For productivity shocks, without sunk cost output responds more in the short-run and less in the long-run.
 - With sunk costs, substantial resources used to build up stock of exporter

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Interest rate shocks more recessionary wth sunk cost since discourages investment in exporting
- Examine impulse response to shocks

æ

Two Main Questions

Is there a better shock than the beta shock?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

• Related Literature

- Evidence
- Model
- Results

Related Literature

- Sluggish trade J-curve (Junz & Rhomberg, 73, Magee 73, Meade 88) - focus on contracting frictions for slow reversal of NX following devaluations.
- Sunk costs and exchange rates in partial equilibrium
 - Baldwin & Krugman (86) argue sunk costs affect NX dynamics.
 - Roberts & Tybout (97), Das, Roberts & Tybout (07) show sunk costs can generate some sluggishness.
- Sunk costs in GE
 - Alessandria & Choi (07) sunk costs don't matter for NX
 - Alessandria & Choi (11) sunk costs matter for output/trade dynamics following trade liberalization
 - Here consider more shocks, big shocks, & calibrate to sluggishness.

- Might suspect new exporters are relatively small & account for relatively little export growth
- Split products into continuing, new, and exitting from t_0 to t
- Disaggregate export growth into the intensive margin and extensive margins of entry and exit
- Measure cumulative contribution of net entry in US import data

(日) (四) (코) (코) (코) (코)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\frac{X(t) - X(t_0)}{[X(t_0) + X(t)]/2} =$

$$\left(\frac{\sum_{j \in CN^{t0,t}} [x(j,t_0) + x(j,t)]/2}{[X(t_0) + X(t)]/2}\right) \left(\frac{\sum_{j \in CN^{t0,t}} [x(j,t) - x(j,t_0)]}{\sum_{j \in CN^{t_0,t}} [x(j,t_0) + x(j,t)]/2}\right)$$

$$\sum_{j \in CN^{t0,t}} [x(j,t) - \overline{x}(t_0)]$$

$$+\frac{NEN^{t_0,t_{\overline{X}}}(t_0)}{[X(t_0)+X(t)]/2}+\frac{j\in EN_n^{t_0,t}}{[X(t_0)+X(t)]/2}$$

$$-\frac{NEX^{t_0,t}\overline{x}(t_0)}{[X(t_0)+X(t)]/2}-\frac{\sum_{j\in EX^{t_0,t}}[x(j,t)-\overline{x}(t_0)]}{[X(t_0)+X(t)]/2}.$$

% Contribution of Net Entry into New Products to Export Growth to the US in High and Low Interest Rate Increase Countries

• Custom data for Argentina, Colombia, Mexico, and Uruguay

- Custom data for Argentina, Colombia, Mexico, and Uruguay
- Extensive margin defined as (1) product & destination and (2) product & destination & exporters

《曰》 《聞》 《臣》 《臣》 三臣 ……

- Custom data for Argentina, Colombia, Mexico, and Uruguay
- Extensive margin defined as (1) product & destination and (2) product & destination & exporters

Model Intuition

 Aggregating across exporters, export revenues rise with higher Y, lower p_x, higher N

$$\Delta EXR = \left(\frac{\gamma - 1}{\theta - 1}\right) \Delta N + (1 - \gamma) \, \Delta p_{x} + \Delta Y$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• γ and θ determine the magnitude of the extensive margin

Model Intuition

 Aggregating across exporters, export revenues rise with higher Y, lower p_x, higher N

$$\Delta EXR = \left(\frac{\gamma - 1}{\theta - 1}\right) \Delta N + (1 - \gamma) \,\Delta p_{x} + \Delta Y$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- γ and θ determine the magnitude of the extensive margin
- Extensive margin N determined by the Euler equation

Model Intuition

 Aggregating across exporters, export revenues rise with higher Y, lower p_x, higher N

$$\Delta EXR = \left(\frac{\gamma - 1}{\theta - 1}\right) \Delta N + (1 - \gamma) \,\Delta p_{x} + \Delta Y$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- γ and θ determine the magnitude of the extensive margin
- Extensive margin N determined by the Euler equation

Model Intuition II

Combining pricing equation & export demand yields export elasticity $\frac{\Delta EXR}{\Delta rer} \approx$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\underbrace{\frac{\gamma - 1}{1 + \left(\frac{1}{\alpha} - 1\right)\gamma}}_{\text{Short-run}} + \underbrace{\left[\frac{\gamma - 1}{\theta - 1} + \frac{(\gamma - 1)\left(\frac{1}{\alpha} - 1\right)\frac{\gamma - \theta}{\theta - 1}}{1 + \left(\frac{1}{\alpha} - 1\right)\gamma}\right]\frac{\Delta N}{\Delta rer}}_{\text{Dynamic}}$$

Model Intuition II

Combining pricing equation & export demand yields export elasticity $\frac{\Delta EXR}{\Delta m} \approx$

$$\underbrace{\frac{\gamma - 1}{1 + \left(\frac{1}{\alpha} - 1\right)\gamma}}_{\text{Short-run}} + \underbrace{\left[\frac{\gamma - 1}{\theta - 1} + \frac{(\gamma - 1)\left(\frac{1}{\alpha} - 1\right)\frac{\gamma - \theta}{\theta - 1}}{1 + \left(\frac{1}{\alpha} - 1\right)\gamma}\right]\frac{\Delta N}{\Delta rer}}_{\text{Dynamic}}$$

When $\alpha = 1$ these terms reduce to

$$rac{\Delta EXR}{\Delta rer} = (\gamma - 1) + rac{\gamma - 1}{ heta - 1} rac{\Delta N}{\Delta rer}$$

Given extensive margin response $\left(\frac{\Delta N}{\Delta rer}\right)$ there should be a

combination of (γ, θ) to match export elasticity

Calibration - Average Devaluation

Functional forms

$$u(C, L) = \frac{(C - \lambda L^{\eta})^{1-\sigma}}{1-\sigma}$$

$$G(X, M) = \left[D^{\frac{\gamma-1}{\gamma}} + \omega^{\frac{1}{\gamma}} M^{\frac{\gamma-1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}$$

$$F_m(k) = \left(\frac{k}{f_m v_m}\right)^{\frac{1}{v_{m-1}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Calibration

-

Parameters	Target
B	debt/imports=10
$v_0 = v_1$	extensive margin elasticty
f ₀	exporter ratio ${\it N}=25\%$
f_1	exit rate of exporter $1-{{ extsf{F}}_{1}}\left(\kappa ight) =1.5\%$
ω	trade share of 15%
α	ratio of rerppi to rercpi
θ	markup = 50%
γ	standard (1.3)
λ	total labor normalization (L $=1/3$)
σ	standard (2)
η	standard (1.5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

=>Large sunk cost $(f_0/f_1 > 10)$

Figure 2: Exports to U.S., Detrended By Interest rate

Note: Volume and Extensive margin are detrended

• Iceberg cost models can't get a gradual expansion.

$$EX = (P_x \tau)^{-\varepsilon}$$
$$\Delta ex = -\varepsilon (\Delta p_x + \Delta \tau)$$
$$\varepsilon = -\frac{\Delta ex}{\Delta p_x + \Delta \tau}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Iceberg cost models can't get a gradual expansion.

$$EX = (P_x \tau)^{-\varepsilon}$$

$$\Delta ex = -\varepsilon (\Delta p_x + \Delta \tau)$$

$$\varepsilon = -\frac{\Delta ex}{\Delta p_x + \Delta \tau}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Need $\Delta \tau$ to offset changes in Δp_{χ} initially

• Iceberg cost models can't get a gradual expansion.

$$EX = (P_{x}\tau)^{-\varepsilon}$$
$$\Delta ex = -\varepsilon (\Delta p_{x} + \Delta \tau)$$
$$\varepsilon = -\frac{\Delta ex}{\Delta p_{x} + \Delta \tau}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Need $\Delta \tau$ to offset changes in Δp_x initially Financial friction models (i.e. trade credit) imply $\Delta \tau = \Delta r/4$

• Fixed costs models can't get a gradual expansion.

$$EX = N(P_{x}\tau)^{-\varepsilon}$$

$$\Delta ex = \Delta n - \varepsilon (\Delta p_{x} + \Delta \tau)$$

$$\Delta n = \alpha [-\varepsilon (\Delta p_{x} + \Delta \tau)]$$

$$\hat{\varepsilon} = \varepsilon (1 + \alpha) = -\frac{\Delta ex}{\Delta p_{x} + \Delta \tau}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Model Outline

- Consumer's problem
- Final good producer's problem

(日) (월) (문) (문) (문)

- Exporter's problem
- Foreign demand
- Equilibrium

Exporter's Problem

Integrating over export costs, define expected value

$$EV_{m}=\int V_{m}\left(\kappa,S
ight)dF_{m}$$

Differencing yields straightforward relationship

$$\Delta V = \pi + \frac{w}{z} \int_{0}^{\kappa^{*}} \kappa \left(dF_{0} \left(\kappa \right) - dF_{1} \left(\kappa \right) \right) + \frac{\left[F_{1} \left(\kappa^{*} \right) - F_{0} \left(\kappa^{*} \right) \right] \Delta V'}{1 + R}$$

In steady state

$$\frac{w\kappa^{*}}{z}=\frac{\pi+\int_{0}^{\kappa^{*}}\left(F_{1}\left(\kappa\right)-F_{0}\left(\kappa\right)\right)d\kappa}{1+R}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Export Demand

 From ROW demand for imports derive foreign demand per exporter as

$$\overline{\textit{EX}}\left(\textit{S}
ight) = \textit{N}^{rac{\gamma - heta}{ heta - 1}}\textit{p}_{x}^{-\gamma}\textit{Y}$$
 ,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Y is ROW income.
- θ elas. of subst. between varieties
- γ elas. of subst.between exports & ROW goods